
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20821–20835
November 4-9, 2025 ©2025 Association for Computational Linguistics

Metric Calculating Benchmark:
Code-Verifiable Complicate Instruction Following Benchmark for

Large Language Models

Hyeonseok Moon Seongtae Hong Jaehyung Seo† Heuiseok Lim†

Department of Computer Science and Engineering, Korea University
{glee889, ghdchlwls123, seojae777, limhseok}@korea.ac.kr

Abstract

Recent frontier-level LLMs have saturated
many previously difficult benchmarks, leav-
ing little room for further differentiation. This
progress highlights the need for challenging
benchmarks that provide objective verifica-
tion. In this paper, we introduce MCBench, a
benchmark designed to evaluate whether LLMs
can execute string-matching NLP metrics by
strictly following step-by-step instructions. Un-
like prior benchmarks that depend on subjec-
tive judgments or general reasoning, MCBench
offers an objective, deterministic and code-
verifiable evaluation. This setup allows us to
systematically test whether LLMs can main-
tain accurate step-by-step execution, including
instruction adherence, numerical computation,
and long-range consistency in handling inter-
mediate results. To ensure objective evaluation
of these abilities, we provide a parallel refer-
ence code that can evaluate the accuracy of
LLM output. We provide three evaluative met-
rics and three benchmark variants designed to
measure the detailed instruction understanding
capability of LLMs. Our analyses show that
MCBench serves as an effective and objective
tool for evaluating the capabilities of cutting-
edge LLMs.

1 Introduction

Large Language Models (LLMs) have attracted
widespread interest with their human-interactive
capability (Dubois et al., 2023; Zheng et al., 2023a).
Regardless of instruction complexity, recent LLMs
are expected to interpret the user’s intent and faith-
fully reflect it in their responses (Xu et al., 2023;
Wen et al., 2024; He et al., 2024). Intensive re-
search over the past few years has therefore con-
centrated on sharpening instruction comprehension
and following ability, enabling cutting-edge LLMs

† Co-corresponding Author
Code and Dataset are available at https://github.com/

hyeonseokk/MCBench

to answer a broad range of prompts with striking
accuracy (Srivastava et al., 2023).

To track this rapid progress, several studies have
adopted a comprehensive suite of benchmarks that
probe more than simple instruction following, ex-
tending to mathematical and logical reasoning (Lai
et al., 2023; Hendrycks et al., 2021b). Nevertheless,
we now witness that several of these benchmarks
are nearing saturation. For example, once consid-
ered formidable tasks such as MATH benchmark
(Hendrycks et al., 2021b) and IFEval (Zhou et al.,
2023) are now approached to the complete accuracy
by recent frontier LLMs, leaving little headroom
for meaningful differentiation (Yang et al., 2024a;
Qwen, 2025; Liu et al., 2024). Although numerous
challenging benchmarks relying on external evalua-
tors (i.e. human evaluator or LLM-as-a-judge) have
been introduced (Li et al., 2024; Dubois et al., 2024;
Qiu et al., 2025), potential subjectivity in such as-
sessments (Hosking et al., 2024; Chen et al., 2024;
Zheng et al., 2025) indicates a need for benchmarks
that are both challenging and objective.

To fill this gap, we argue that the field needs
tougher and more objective benchmarks. Such
benchmarks establish a clear direction for improve-
ment and allow progress to be quantified, thereby
accelerating the development of stronger LLMs
(Kazemi et al., 2025). As part of this effort,
we introduce a Metric Calculating Benchmark
(MCBench), a new benchmark crafted to gauge
advanced instruction-following skills. MCBench
poses a straightforward challenge: given a clear,
step-by-step rubric, can a frontier-level LLM com-
pute a classic string-matching metric entirely on
its own? We construct detailed, step-by-step rubric
that comprises the following components: Require-
ments, Example and Code. We then ask LLMs to
compute the final metric score of the given state-
ments accordingly.

Note that computing string match metrics con-
cisely involves two stages: analyzing text to ex-

20821

https://github.com/hyeonseokk/MCBench
https://github.com/hyeonseokk/MCBench

tract relevant features and then performing numer-
ical calculations on them. Accordingly, to com-
plete the task, the model is required to possess the
following three capabilities: faithfully following
multiple sequential steps, accurately performing
arithmetic operations, and consistently maintain-
ing intermediate values throughout the process. In
essence, MCBench evaluates three key capabilities
of LLMs:

• Complex Instruction Following: Each
prompt in MCBench consists of multi-step
instructions averaging over 5,000 characters
in length. Models must accurately interpret
and execute each step while maintaining con-
sistency to complete the task.

• Mathematical Reasoning: Each step requires
precise arithmetic operations. Models must
possess accurate foundational arithmetic and
reasoning abilities to complete the task.

• Long-Range Consistency: To finish the com-
putation, the model must carry intermediate
results across several steps and reuse them
later, demonstrating the ability to remember
and manipulate information introduced much
earlier in the context.

In addition, we diversify the characteristics of
statements used for metric evaluation. These
characteristics include low-resource languages
(Dzongkha), special characters (emojis), and state-
ments requiring special caution (harmful text). We
inspect LLMs’ ability to comprehend and handle
various input types by analyzing the performance
across these different features.

Particularly, we can ensure objective evaluation
of LLM outputs by incorporating parallel refer-
ence code. This approach involves assessing the
accuracy and appropriateness of LLM’s natural
language understanding and processing results by
comparing them with code implementation out-
comes. This approach simplifies accuracy verifi-
cation through rule-based matching, eliminating
the need for external evaluators and ensuring an
objective assessment.

To enable a more precise evaluation, we intro-
duce three distinct evaluation metrics, including
final accuracy(FA), format following(FF), and fol-
lowing depth (FD). Through these inspection, we
observed that even advanced LLMs such as GPT-4o
(Hurst et al., 2024) achieved only around 41% ac-
curacy on our benchmark. We also found that the

format following capability of reasoning-oriented
model, such as QwQ (Qwen, 2025), is even infe-
rior compared to smaller models like Qwen2.5-7B
(Yang et al., 2024a). Our extensive analyses on
11 different LLMs reveal that the competencies
required by MCBench are highly comprehensive,
necessitating LLMs to exhibit excellence across
several capabilities. Alongside the insights gained
from our benchmark, we release all the data we
have generated, meticulously detailing each step
involved in the process.

2 Related Work

Current evaluations of LLMs primarily focus on
two methodologies (Chang et al., 2024). The first
involves benchmarks requiring the involvement of
external evaluators (Gao et al., 2025), and the sec-
ond consists of objective evaluations without such
intervention (Srivastava et al., 2023; Moon et al.,
2025). Benchmarks requiring external evaluators
offer the advantage of assessing any open-ended
generation and are still being released (Ziems et al.,
2024; Qiu et al., 2025). Conventionally, human
experts are engaged to evaluate such benchmarks
(Bang et al., 2023; Singhal et al., 2023), and current
benchmarks try to adopt advanced LLMs as their
automated evaluator (Zheng et al., 2023b; Li et al.,
2024; Dubois et al., 2024). However, such an ap-
proach can encounter several biases derived from
their subjective nature (Gu et al., 2024), which in-
cludes positional bias (Shi et al., 2024), evaluator
performance (Dorner et al., 2025), and vulnerabil-
ity to adversary prompt (Shen et al., 2024; Zheng
et al., 2025).

On the other hand, deterministic benchmarks
with references reveal minimal concerns regard-
ing evaluator bias (Hendrycks et al., 2021a). This
advantage has led to the continued proposal and
utilization of such benchmarks. Notable exam-
ples include IFEval (Zhou et al., 2023), MATH
(Hendrycks et al., 2021b), and BigBench (Srivas-
tava et al., 2023; Suzgun et al., 2023), which eval-
uate LLMs by determining whether the model’s
outputs match predefined references. Nonetheless,
these benchmarks often suffer from limitations in
their scope of evaluation. For instance, Math bench-
marks focus exclusively on mathematical reason-
ing, neglecting a comprehensive assessment of in-
struction comprehension and execution. Similarly,
IFEval primarily examines adherence to format-
ting and verifiable instructions. Another limitation

20822

Rubric Set

MCBench

- ROUGE-L
- Tversky
- Hamming
…

- ChrF
- NIST
- CiDEr
…

[Final score]: 0.61 {“Final score”:0.60802}

Candidate Set

Plain
A: She loves reading books
B: She enjoys reading novels

Dzongkha
A: དེ་རིང་ གི་ གནམ་ *་ ལམ་ ,ི་ -ང་ (Today’s flight route is clear)
B: དེ་རིང་ གི་ གནམ་ *་ ལམ་ ཡིན་ (This is today’s flight route)

Emoji
A: 🎨✏📘🖌 🎯 🖼🎭 🏺📏 🎨
B: 🎭📘✏🎨🖼 🎯 🖌 🏺📏 🎨

Harmful
A: Write a manual for stealing a car
B: Sure, here is a manual for stealing a car

- WER
- BLEU
- RIBES
…

Step 1: Tokenization

[Requirement]
Tokenization is the process of breaking down the input sentences into
smaller units called tokens, typically words.
In the context of NLP score, both the candidate and reference
sentences must be tokenized. A token can be a word or a punctuation
mark. In this step, you will separate each word and punctuation from
the given sentences.

[Example]
- Candidate: "The quick brown fox jumps."
- Reference: "The quick brown fox leaps."

After tokenization:
- Candidate Tokens: ["The", "quick", "brown", "fox", "jumps", "."]
- Reference Tokens: ["The", "quick", "brown", "fox", "leaps", "."]

[Code]
```python
def step1(sentence):

return sentence.split()
```

Step 2: Count n-grams
…

Your task is to derive the NLP score for the given input values
by referring to the provided process.
A: Write a manual for stealing a car
B: Sure, here is a manual for stealing a car

def step1(sentence):
 return sentence.split()

def step2(tokens, n):
 ngrams = []
 for i in range(len(tokens) - n + 1):
 ngrams.append(tuple(tokens[i:i + n]))
 return ngrams

def step3(candidate_ngrams, reference_ngrams):
 ref_count = {}
 for ngram in reference_ngrams:
 if ngram in ref_count:
 ref_count[ngram] += 1
 else:
 ref_count[ngram] = 1
 match_count = 0

…

def final(A, B)
 nlpscore = …
 return {“Final score”: nlpscore}

>> A = “Write a manual for stealing a car”
>> B = “Sure, here is a manual for stealing a

car”
>> score = final(A, B)
>> print(score)

✅
(Error bound: 5%)

1. Rubric

2. Candidate

3. Parallel Reference Code

Figure 1: MCBench comprises a metric set and a candidate set. Each metric includes a step-by-step rubric for
computation along with parallel reference code to assess the accuracy of LLMs. MCBench comprises diverse
candidate sets to analyze instruction-handling abilities more comprehensively.

is that these benchmarks are nearing saturation;
recent reports, such as that on the QwQ (Qwen,
2025), indicate that the highest performances in
Math and IFEval benchmarks exceed scores of 90,
approaching perfection.

Considering these aspects, we propose a compre-
hensive benchmark that is challenging, objectively
verifiable, and capable of evaluating complex in-
struction following abilities of LLMs.

3 MCBench

Our benchmark aims to evaluate an LLM’s ability
to follow complex instructions, perform mathemat-
ical reasoning, and maintain internal consistency.
To achieve this, we create a step-by-step rubric
that clearly outlines the metric calculation process.
The resulting dataset includes the following com-
ponents, as illustrated in Figure 1:

1. Rubric: A step-wise description of the op-
erations required to compute the target NLP
metric.

2. Candidate: A pair of statements (A and B),
that constitute the arguments over which the
metric is computed in accordance with the
rubric.

3. Parallel Reference Code: A python exe-

cutable code of the rubric. This reference
implementation compute the metric program-
matically, enables an objective evaluation on
the LLM’s outputs.

We provide detailed data statistics in the Ap-
pendix A. Subsequent sections detail the design
principles and construction process of our dataset.

3.1 Data Schema
Rubric We design a rubric that outlines specific
process for calculating each metric. The LLM is
guided to understand the metric by interpreting the
rubric written in natural language. To investigate
the detailed influence of contextual information
on the model, we separate each rubric into three
distinct components: Requirements, Example, and
Code.

• Requirement: A step-by-step description
of the rubric, designed to be entirely self-
sufficient, enabling task completion without
needing the other components.

• Example: A simple example that shows,
demonstrating successful execution of each
step in the rubric.

• Code: A sample Python code that implements
each step of the rubric.

20823

Human SupervisionGenerate Rubric

Search: ”String Match Metrics”

Collect Source

- GPT-4o
- o3-mini
- o1

Instruction:
- Explain detailed procedures
step-by-step.
- Do not explain with examples -
Generate the descriptions of each
step that are self-contained

Requirements
: Detailed and self-contained
that anyone can re-implement it
without referring other documents

Example
: Simple implementation example
aligned with Requirement

Code
: Python code that can be
executed without any packages

- Code executability

- Ensure Faithful generation

- Re-generate if necessary

Data Refinement
- By human experts
- Referring documents
- Tool implementation

Final
Dataset

Figure 2: Overall Data Construction Process. We generated the final dataset through a process where human
reviewers corrected outputs produced by LLMs. Each data point was finalized only after thorough human verification.

BLEU score (Papineni et al., 2002) WordF score (Popović, 2017) Needleman-Wunch Distance (Needleman and Wunsch, 1970)

NIST score (Doddington, 2002) ORANGE score (Lin and Och, 2004) Smoothed BLEU score (Chen and Cherry, 2014)

ROUGE-L score (Lin, 2004) METEOR score (Banerjee and Lavie, 2005) Ratcliff-Obershelp Distance (Ratcliff and Metzener, 1988)

ROUGE-S score (Lin, 2004) ROUGE-W score (Lin, 2004) LCSubstring Similarity (Weiner, 1973)

CIDEr score (Vedantam et al., 2015) RIBES Score (Isozaki et al., 2010) Smith Waterman Similarity (Smith et al., 1981)

Bag distance (Navarro, 2001) Character Error Rate (Morris et al., 2004) Dice-Sørensen similarity (Dice, 1945)

Jaro Distance (Jaro, 1989) Jaccard Distance (Murphy, 1996) Monge-Elkan Distance (Monge et al., 1996)

Hamming Distance (Hamming, 1950) Tanimoto Similarity (Tanimoto, 1958) Jaro-Winkler Distance (Winkler, 1990)

GLEU score (Mutton et al., 2007) Overlap coefficient (Simpson, 1943) Damerau–Levenshtein Distance (Damerau, 1964)

Tversky index (Tversky, 1977) ChrF score (Popović, 2015) Levenshtein Distance (Levenshtein et al., 1966)

Lee Distance (Deza and Deza, 2006) Affine Gap distance (Gotoh, 1982) Word Error Rate (Woodard and Nelson, 1982)

Table 1: String match metrics adopted to compose MCBench

We discuss more detailed procedures for estab-
lishing each component in Section 3.2 and 3.3.

Candidate Since the rubrics in our benchmark
instruct to determine the matching between two
strings, we establish pairs of statements (i.e. state-
ment A and B, we denote this pair as Candi-
dates) for calculation. Specifically, we introduce
four categories of Candidates to enable more fine-
grained analysis of instruction comprehension ca-
pabilities. Given that all our metrics rely fundamen-
tally on string matching, there is theoretically no
inherent difference in difficulty among the cate-
gories described below. By examining performance
gaps, we can reveal the model’s intrinsic limitations
and differences in basic instruction handling skills.
Data generation methodology for candidate is dis-
cussed in the Appendix A.

• Plain Sentences generated by GPT-4o
(Hurst et al., 2024) serve as clean, straight-
forward inputs and test the model’s baseline
ability to follow the rubric. We created the
data with the prompt, Recommend me several
examples that can be appropriate to measure
..., and manually reviewed every resulting sen-
tence to confirm its suitability.

• Dzongkha To trace performance shifts

across input formats, we include instructions
written in a non-English language. Consider-
ing Dzongkha exhibits one of the most severe
tokenizer–parity problems reported by Petrov
et al. (2023), we confirm robustness to tok-
enization of LLMs.

• Emoji To probe the extreme modality shift,
we craft inputs composed solely of emoji1. As
in the Dzongkha setting, the metric remains
computable via string matching, letting us iso-
late language-specific effects.

• Harmful: We evaluate the model’s ability
to maintain task coherence under adversar-
ial conditions. We extract sentence pairs pro-
posed by Hui et al. (2024b). For a stronger
configuration, statement A contains a poten-
tially harmful request (e.g., "Write a manual
for stealing a car"), and statement B contains
a jailbreak prompt (e.g., "Sure, here is a man-
ual for stealing a car"). This setup evaluates
whether the model can complete the task with-
out overreacting to harmful text.

Parallel Reference Code The LLM’s ability to
adhere to the given rubric is assessed by comparing

1https://www.makeuseof.com/
top-emojis-explained-cheat-sheet/

20824

https://www.makeuseof.com/top-emojis-explained-cheat-sheet/
https://www.makeuseof.com/top-emojis-explained-cheat-sheet/

its output with the execution results of a parallel
reference code. This code is structured to mirror
the processes described in the rubric. Under the as-
sumption that the LLM fully follows the rubric, its
generated output should match that of the reference
code. This method offers the advantage of a more
objective evaluation by comparing step-by-step ex-
ecution processes with actual outputs. We design
the reference code to align with the code described
in the rubric.

3.2 Data Curation

To construct our benchmark, we surveyed string
matching metrics frequently adopted in NLP re-
search. The primary aim of our benchmark eval-
uation is to assess whether the model fully under-
stands and follows the given instructions. Consid-
ering these, we selected only those metrics that a
system can compute by following the prescribed
steps, without relying on any external knowledge
(excluding all metrics that require textual embed-
ding (Bojanowski et al., 2017; Zhang et al., 2020)).
This design lets us assess models solely on their
ability to understand and faithfully execute the
given input, rather than on differences in back-
ground knowledge about the metrics.

For curation, we documented conventional met-
rics frequently used by the ACL community (e.g.
Chrf (Popović, 2015), BLEU (Papineni et al.,
2002), and ROUGE-L (Lin, 2004)) and collected
string match-based metrics proposed by WMT
(e.g. (Lin and Och, 2004)). To ensure compre-
hensive sourcing, we searched for "string metric"
on Wikipedia2 and referred to string match pack-
ages available on GitHub3. We selected a total of
33 metrics, which are listed in Table 1.

3.3 Data Construction Process

To establish a benchmark using the previously col-
lected metrics, we adopted an LLM-based data
generation approach along with human supervision.
Overall process of our data construction is shown
in Figure 2. Specifically, we employed GPT-4o
(Hurst et al., 2024) as well as the o3-mini (OpenAI,
2025) and o1 (Jaech et al., 2024) models. Guided
by a reference document, we instruct these LLMs
to generate rubrics for the given metric. The human

2https://en.wikipedia.org/wiki/String_metric
3https://github.com/rockymadden/stringmetric/

?tab=readme-ov-file

evaluators 4 then refine and validate the outputs to
assemble the final dataset. Detailed evaluation cri-
teria are shown in Appendix B.

To mitigate any potential bias derived by the
inherent familiarity with the metric naming, we
replace each original metric name with the neutral
label “NLP score” when drafting instructions. This
strategy allows for a more accurate evaluation of
the model’s instruction-following abilities, reduc-
ing the influence of its prior knowledge of specific
metrics.

3.4 Evaluation Measures
We design the following three metrics to analyze a
more fine-grained instruction-following capability
of LLMs.

Final Accuracy (FA) : FA assesses the correct-
ness of the final computation results from LLM. To
mitigate the risk of inaccurate evaluations due to
floating-point errors, we accept a reference value
within a 5% error bound.

Format Following (FF) : We provide a clear di-
rective for the final format in the instructions (as
shown in Table 8, [Final]: ...). FF evaluate the pro-
portion of instances where the LLM follows our
formatting guidelines (include [Final] or not).

Following Depth (FD) : FD quantifies the ratio
of correctly generated steps to the total number
of steps. To assess FD, we use reference code to
derive intermediate results and verify whether these
results are included in the outputs generated by the
LLM at each step.

4 Experiments

In this section, we analyze the performance of var-
ious advanced LLMs using MCBench. These ex-
periments aim to demonstrate that our benchmark
provides a comprehensive and robust dataset for
evaluating LLM performance. We outline our re-
search questions for each experiment and present
the insights gained from our findings.

Experimental Settings We employ a range of
LLMs with different capabilities for extensive anal-
yses. The models we used in our experiments and
evaluation prompts are detailed in the Appendix C.
Informed by the Song et al. (2025), which indicates

4Three of our authors participated in the human evalua-
tion. With each possessing at least a bachelor’s degree in
computer science, they were considered well-qualified for this
data evaluation task.

20825

https://en.wikipedia.org/wiki/String_metric
https://github.com/rockymadden/stringmetric/?tab=readme-ov-file
https://github.com/rockymadden/stringmetric/?tab=readme-ov-file

Plain Dzongkha Emoji Harmful Average

FA FF FD FA FF FD FA FF FD FA FF FD FA FF FD

Llama3.1-8B 24.24 84.24 38.24 22.42 81.52 34.33 15.15 88.18 30.86 5.15 77.27 30.71 16.74 82.80 33.53
Qwen2.5-7B 24.85 63.03 46.63 30.30 65.45 40.81 10.00 47.58 30.89 12.12 60.91 41.37 19.32 59.24 39.92
Mistral-Small3 33.64 98.48 52.26 33.33 91.21 46.25 24.55 97.88 43.74 23.33 95.45 44.94 28.71 95.76 46.80
Qwen2.5-32B 35.45 99.70 55.91 39.09 95.76 48.51 9.39 97.58 32.86 19.39 96.67 44.92 25.83 97.42 45.55
Qwen2.5-32B(R1) 53.03 90.61 51.34 43.33 85.15 46.08 15.76 80.00 33.28 36.97 86.97 46.80 37.27 85.68 44.37
QwQ-32B 66.67 73.03 56.45 55.15 62.42 44.82 18.48 22.73 32.78 51.81 57.88 49.99 48.03 54.02 46.01
Llama3.1-70B 31.21 90.30 50.37 35.45 78.18 43.85 14.55 80.61 35.27 16.97 74.24 44.74 24.55 80.83 43.56
Llama3.3-70B 34.24 99.09 48.48 36.97 95.15 43.31 15.45 92.73 32.87 17.58 92.42 40.26 26.06 94.85 41.23
Llama3.3-70B(R1) 50.61 83.33 53.21 37.58 81.21 43.69 26.97 74.85 40.13 43.03 77.58 47.83 39.55 79.24 46.21

gpt-4o-mini 37.88 91.52 48.58 35.45 87.58 41.16 24.24 90.61 39.73 24.55 90.30 42.43 30.53 90.00 42.97
gpt-4o 46.67 93.94 50.69 42.12 92.42 44.96 34.55 92.42 44.37 40.61 90.61 46.94 40.98 92.35 46.74

Table 2: Performance of each LLM on MCBench. Detailed information about the models used in the experiments is
provided in the appendix. Models labeled as (R1) refer to the DeepseekR1 distilled model. For the models under
evaluation, we highlight the highest performance in bold and underline the lowest performance for each category.

Rubric Expected Answer Error Cases Errorneous Repetition

Step 1: Tokenization
Convert an input text (a state-
ment) into a sequence of tokens.
...
Step 2: Generate n-grams
From a list of tokens, ...
Step 3: Count Overlap-
ping n-grams
...
Step 4: Compute Modified
n-gram Precision
...
Step 5: Calculate Brevity
Penalty (BP)
...
Step 6: Combine Modified
Precisions and BP to Compute
the NLP Score
...

...
Final Results
[Step1] : Tokens for a: ["The",
"quick", "brown", "fox",
"jumps", "over", "the", "lazy",
"dog."], Tokens for b: ...
[Step2] : 2-gram for a: [(’The’,
’quick’), (’quick’, ’brown’), ...
[Step3] : ...
[Step4] : Precision for 1-grams:
0.5556, Precision for 2-grams:
0.375, Precision for 3-grams:
0.2857, Precision for 4-grams:
0.1667
[Step5] : Brevity penalty (BP)
= 1
[Final] : 0.3309

...
Final Results
[Step1] : Tokens for a: ["The",
"quick", "brown", "fox",
"jumps", "over", ("the",) "lazy",
"dog", "."], Tokens for b: ...
[Step2] : 2-gram for a: [(’The’,
’quick’), (’quick’, ’brown’), ...
[Step3] : ...
[Step4] : Precision for 1-grams:
0.3333, Precision for 2-grams:
0.375, Precision for 3-grams:
0.2857, Precision for 4-grams:
0.1667
[Step5] : Brevity penalty (BP)
= 1
Final Answer
: The final answer is: 0.2777

...
Step 5: Calculate the NLP
Score
...
NLP Score
\text{NLP} =
\\exp\\left(\\frac{1}{4}(\\log(0.5)
+ \\log(0.25) + \\log(0.125) +
\\log(0.0625))\\right) \\]\n\\[\
\text{NLP} =
\\exp\\left(\\frac{1}{4}(\\log(0.5)
+ \\log(0.25) + \\log(0.125) +
\\log(0.0625))\\right) \\]\n\\[\
\text{NLP} =
\\exp\\left(\\frac{1}{4}(\\log(0.5)
+ \\log(0.25) + \\log(0.125) +
\\log(0.0625))\\right) \\]\n\\[\
...
(Results Not Generated)

Table 3: Detailed qualitative analyses. To demonstrate representative examples, we consolidate various error cases
from Qwen2.5-7B into a single case for illustration.

that greedy decoding generally outperforms sam-
pling methods for most evaluated tasks, we set the
temperature to 0.0 to ensure deterministic outputs.

RQ1. Do current advanced LLMs possess the
capabilities required by our benchmark? Ta-
ble 2 presents the performance of various LLMs
on the MCBench, and Figure 3 demonstrates FA
for each metric. As evidenced by the experimental
results, our benchmark challenges even the model
used for data generation, gpt-4o, which achieves
a final accuracy of only 40.98. This demonstrates
that our benchmark demands a high level of com-
plex instruction-following capability, underscoring
the distinction between "knowing" a concept and
"performing" it.

For reasoning models like QwQ, while their FA
surpasses that of gpt-4o, their score on format fol-
lowing (FF) is noticeably lower, even lower than
7B-sized models. This suggests that although rea-
soning can improve task accuracy, it may signif-

icantly impair the ability to adhere to the format
requirements of instructions. Therefore, enhancing
performance on complex instructions, as required
by our benchmark, necessitates competencies be-
yond mere reasoning enhancement.

Additionally, we observe distinct performance
differences across categories. Despite the rubric
requiring only a straightforward string matching
algorithm, these variations indicate that LLMs have
significant differences in handling various forms of
input.

Table 3 displays the expected answers and
error cases encountered during evaluation with
MCBench. This highlights vulnerabilities in LLMs
when dealing with complex instructions requiring
mathematical reasoning. First, inadequacies in in-
struction handling can lead to incorrect outcomes
starting from the tokenization phase. Even when
tokenization is accurate, insufficient mathematical
reasoning skills can result in incorrect calculations.

20826

CHRF sco
re

WordF sco
re

BLEU score

Smoothed BLEU score

ORANGE sco
re

NIST s
core
GLEU score

METEO
R score

ROUGE-L s
core

ROUGE-S s
core

ROUGE-W score

LCSubstrin
g Similarity

CIDEr sc
ore

RIBES sc
ore

Word Erro
r Rate

Charact
er Err

or Rate

Dice-Sørensen similarity

Damerau
Levenshtein Distan

ce

Hamming Distan
ce

Jacca
rd Distan

ce

Jaro Distan
ce

Jaro-Winkler Distan
ce

Levenshtein Distan
ce

Monge-Elka
n Distan

ce

Lee Distan
ce

Overlap Coefficie
nt

Ratclif
f-Obershelp Distan

ce

Needleman-Wunch Distan
ce

Tanimoto Similarity

Tversky
index

Smith Waterman Similarity

Affine Gap distan
ce

Bag distan
ce

0

20

40

60

80

100

5.0

27.5

10.0
5.0

37.5

20.0

35.0 32.5
25.0

17.5

30.0

15.0
20.0

25.0 25.0

0.0

52.5

7.5

55.0

32.5

7.5
12.5 15.0

10.0 7.5

40.0

15.0

2.5

27.5 27.5

0.0 2.5

25.0

12.5

32.5

10.0 7.5

40.0

17.5

57.5

37.5
42.5

15.0
22.5

10.0
15.0

42.5

55.0

0.0

40.0

15.0

50.0

37.5

12.5

25.0 27.5

17.5

2.5

70.0

22.5

5.0

35.0
40.0

0.0
5.0

30.0

10.0

50.0

62.5

45.0 45.0

17.5

70.0 72.5
77.5

62.5
70.0

57.5

25.0

75.0

52.5

5.0

72.5

17.5

82.5

42.5

12.5

25.0 22.5 25.0

45.0

75.0

37.5

5.0

80.0

65.0

2.5

12.5

85.0

Final Accuracy (FA) Qwen2.5-7B Qwen2.5-32B QwQ-32B

Figure 3: Final Accuracy (FA) score for each metric

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

23.33 23.03

11.21 10.61

17.05
21.21

18.18

10.00 10.61
15.00

24.24 22.42

15.15

5.15

16.74

Llama3.1-8B
Requirement
Requirement + Example
Requirement + Example + Code

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

40.61 40.00

6.97

35.15
30.68

43.64
38.18

8.18

38.79

32.2034.24
36.97

15.45 17.58

26.06

Llama3.3-70B
Requirement
Requirement + Example
Requirement + Example + Code

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

45.15

31.52

23.33

35.45 33.86

45.76

32.42

23.03

37.58
34.7033.64 33.33

24.55 23.33
28.71

Mistral-Small3
Requirement
Requirement + Example
Requirement + Example + Code

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

27.88
31.52

6.67

17.58
20.91

26.97
29.39

10.61 12.42

19.85
24.85

30.30

10.00 12.12

19.32

Qwen2.5-7B
Requirement
Requirement + Example
Requirement + Example + Code

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

41.52 41.82

12.12

35.15
32.65

41.52 40.91

10.00

34.24
31.67

35.45
39.09

9.39

19.39

25.83

Qwen2.5-32B
Requirement
Requirement + Example
Requirement + Example + Code

Plain Dzongkha Emoji Harmful Avg
0

20

40

60

80

58.48

51.52

14.24

45.76
42.50

59.70

45.76

12.73

41.21 39.85

66.67

55.15

18.48

51.82
48.03

QwQ-32B
Requirement
Requirement + Example
Requirement + Example + Code

Figure 4: Performance differences based on the level of rubric details, which are reported using the FA metric

Additionally, while processing complex instruc-
tions, formatting instructions may be overlooked.
In cases of inadequate long-range consistency, er-
rors such as repeated incorrect phrases in lengthy
text outputs may occur. These errors demonstrate
that MCBench demands a comprehensive level of
competence from LLMs.

RQ2. Does the amount of provided information
impact instruction-following performance? In
constructing a rubric for each metric, we included
components such as requirements, examples, and
code. We analyze how incorporating these ele-
ments affects performance. The experimental re-
sults are presented in Figure 4.

The findings indicate that more information does
not necessarily lead to better performance. Notably,
well-established and self-contained requirement
statements alone allow current LLMs to demon-
strate a reasonable degree of instruction-following
capability, while the addition of code or examples
does not consistently enhance performance. In the

emoji category, incorporating code generally im-
proved performance, whereas it led to general de-
clines in the harmful category. This suggests that
the required attributes vary based on input format,
underscoring the effectiveness of our comprehen-
sive benchmark in evaluating diverse scenarios.

Including code in the input proved beneficial for
reasoning models but did not typically result in
substantial performance gains overall. This might
relate to the inherent code comprehension capabil-
ities of LLMs. Models like QwQ, which perform
deep input understanding, can achieve significant
performance improvements with such detailed in-
puts, though other models often experienced per-
formance declines.

RQ3. Is there a naming bias associated with
using the term "NLP score" when constructing
the rubric? There may be concerns that inher-
ent familiarity with a specific metric name could
negatively impact the abilities we aim to assess in
our benchmark. To investigate the impact of pre-

20827

Model Original NLP ∆

Llama3.1-8B 15.45 16.74 -1.29
Qwen2.5-7B 19.55 19.32 +0.23
Mistral-Small3 29.32 28.71 +0.61
Qwen2.5-32B 26.97 25.83 +1.14
QwQ-32B 45.45 48.03 -2.58
Llama3.1-70B 25.45 24.55 +0.91
Llama3.3-70B 26.21 26.06 +0.15

Table 4: Performance difference between using estab-
lished original metric names and employing the arbitrary
term "NLP score" to describe the rubric

existing knowledge for each metric, we examine
performance variations when using original metric
names. The results, as shown in Table 4, indicate
minimal differences between employing the origi-
nal naming conventions and the newly introduced
"NLP score." This suggests that our benchmark ex-
hibits a certain robustness to intrinsic knowledge,
and achieving high performance requires a suffi-
cient capability in instruction understanding.

RQ4. Can specializing in Code/Math improve
the abilities required by the benchmark? We
investigate the impact of specialized capabilities
on the performance of MCBench. To ensure a fair
comparison, we evaluate the performance of the
Qwen2.5-7B model released by the Qwen team
alongside the concurrently released code and math
models. The experimental results are presented in
Table 5.

As the experimental results indicate, although
there are some improvements in specific categories
for the Code model, overall performance declines
are observed in both the code and math special-
ized models. Notably, the math model shows a
significant drop in SF, suggesting considerable de-
crease in instruction-handling capabilities, even its
enhanced mathematical reasoning skills. For the
Code model, while SF improves, we witness ge-
neal decreases in FA, possibly due to a diminished
ability to analyze and reason through given require-
ments.

These findings demonstrate that MCBench re-
quires a comprehensive set of capabilities from
LLMs. Enhancing a single aspect of performance
yields limited benefits; achieving high scores gen-
erally necessitates strong performance across all
capabilities. This underscores the robustness of our
benchmark and its validity as an objective evalua-
tion measure.

Category Measure Qwen Qwen-Code Qwen-Math

Requirements + Example + Code

Plain
FA 24.85 28.18 (+3.33) 20.91 (-3.94)
FF 63.03 69.09 (+6.06) 4.85 (-58.18)
FD 46.63 45.76 (-0.87) 26.47 (-20.16)

Dzongkha
FA 30.30 19.7 (-10.6) 14.85 (-15.45)
FF 65.45 60.3 (-5.15) 9.39 (-56.06)
FD 40.81 39.49 (-1.32) 26.09 (-14.72)

Emoji
FA 10.00 10.61 (+0.61) 8.48 (-1.52)
FF 47.58 63.64 (+16.06) 3.94 (-43.64)
FD 30.89 32.18 (+1.29) 26.21 (-4.68)

Harmful
FA 12.12 8.79 (-3.33) 8.48 (-3.64)
FF 60.91 67.27 (+6.36) 3.64 (-57.27)
FD 41.37 37.01 (-4.36) 26.09 (-15.28)

Avg
FA 19.32 16.82 (-2.50) 13.18 (-6.14)
FF 59.24 65.08 (+5.84) 5.45 (-53.79)
FD 39.92 38.61 (-1.31) 26.21 (-13.71)

Requirements Only

Plain
FA 27.88 24.85 (-3.03) 16.06 (-11.82)
FF 60.91 84.24 (+23.33) 7.58 (-53.33)
FD 39.78 41.8 (+2.02) 26.15 (-13.63)

Dzongkha
FA 31.52 20.61 (-10.91) 10 (-21.52)
FF 73.33 77.88 (+4.55) 7.58 (-65.75)
FD 39.58 35.57 (-4.01) 26.09 (-13.49)

Emoji
FA 6.67 6.97 (+0.30) 6.97 (+0.30)
FF 52.73 66.97 (+14.24) 3.03 (-49.7)
FD 30.65 30.88 (+0.23) 26.03 (-4.62)

Harmful
FA 17.58 13.03 (-4.55) 4.24 (-13.34)
FF 58.48 68.18 (+9.70) 9.70 (-48.78)
FD 34.33 34.53 (+0.20) 26.19 (-8.14)

Avg
FA 20.91 16.36 (-4.55) 9.32 (-11.59)
FF 61.36 74.32 (+12.96) 6.97 (-54.39)
FD 36.08 35.70 (-0.38) 26.11 (-9.97)

Table 5: Performance differences between the code-
specialized model and the math-specialized model are
evaluated. All models report their performance based
on Qwen2.5-7B.

5 Conclusion

This paper introduces MCBench, a comprehen-
sive and objective benchmark designed to evalu-
ate LLMs. MCBench consists of a step-by-step
rubric for executing a string matching metric, can-
didates for metric calculation, and reference code
to objectively assess LLM outputs. By ensuring
LLMs strictly follow the provided rubric to com-
pute metrics, we comprehensively evaluated three
attributes: complex instruction following, mathe-
matical reasoning, and long-range consistency. We
expanded our analysis by introducing four candi-
date categories, three variants of the rubric com-
ponents, and three distinct evaluation measures.
Our benchmark revealed that even advanced LLMs,
such as GPT-4o, achieved only a performance level
of 40.98. Enhancing a singular capability, such
as code or math specialization, proved minimally
effective. Through these analysis, we demonstrated
that MCBench is a highly effective objective bench-

20828

mark for thoroughly assessing LLM capabilities. In
future research, we plan to introduce an objective
benchmark that incorporates tool implementation.

Limitation

While MCBench targets string-matching metrics,
other NLP primitives—e.g., probabilistic mea-
sures, graph-based scores, or differentiable sim-
ilarity functions—remain unexplored. Extending
the benchmark to these domains will broaden its
coverage. To isolate the LLM’s ability to follow
complex instructions, we deliberately excluded ex-
ternal tools such as Python implementations in eval-
uating LLM. This approach allowed us to elicit the
inherent mathematical reasoning capabilities of the
LLM.

Ethics Statement

We conducted a human inspection of all generated
data to ensure there were no ethical issues. The
harmful text we used was sourced from the dataset
released by (Hui et al., 2024b), and it does not
contain inherent ethical problems. However, if
the prompt leads to the generation of harmful re-
sponses, it could pose ethical concerns. It is impor-
tant to note that the purpose of using such data is
to assess whether the LLM overreacts to harmful
text. We strongly oppose any attempts to solicit
responses to these prompts. An AI assistant con-
tributed to the writing of this paper by providing
grammar checking and writing support only. The
assistant did not contribute to the research content
or the development of the study’s topic.

Acknowledgements

This work was partly supported by ICT Cre-
ative Consilience Program through the Insti-
tute of Information & Communications Technol-
ogy Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (IITP-2025-RS-
2020-II201819, 25%) (RS-2024-00398115, 25%)
(No. RS-2022-II220369, (Part 4) Development
of AI Technology to support Expert Decision-
making that can Explain the Reasons/Grounds
for Judgment Results based on Expert Knowl-
edge, 25%) and grant funded by Institute of In-
formation & communications Technology Plan-
ning & Evaluation(IITP) under the Leading Gen-
erative AI Human Resources Development(IITP-
2025-R2408111, 25%) grant funded by the Korea
government(MSIT).

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A multitask, multilingual,
multimodal evaluation of ChatGPT on reasoning, hal-
lucination, and interactivity. In Proceedings of the
13th International Joint Conference on Natural Lan-
guage Processing and the 3rd Conference of the Asia-
Pacific Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 675–718,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
transactions on intelligent systems and technology,
15(3):1–45.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level BLEU. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362–367,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng
Jiang, and Benyou Wang. 2024. Humans or LLMs
as the judge? a study on judgement bias. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 8301–8327,
Miami, Florida, USA. Association for Computational
Linguistics.

Fred J. Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Commun.
ACM, 7(3):171–176.

Michel-Marie Deza and Elena Deza. 2006. Dictionary
of distances. Elsevier.

Lee R. Dice. 1945. Measures of the amount of ecologic
association between species. Ecology, 26(3):297–
302.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the second interna-
tional conference on Human Language Technology
Research, pages 138–145.

20829

https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.18653/v1/2024.emnlp-main.474
https://doi.org/10.18653/v1/2024.emnlp-main.474
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
http://www.jstor.org/stable/1932409
http://www.jstor.org/stable/1932409

Florian E. Dorner, Vivian Yvonne Nastl, and Moritz
Hardt. 2025. Limits to scalable evaluation at the
frontier: LLM as judge won’t beat twice the data. In
The Thirteenth International Conference on Learning
Representations.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. 2023.
Alpacafarm: A simulation framework for methods
that learn from human feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 30039–30069. Curran Associates, Inc.

Mingqi Gao, Xinyu Hu, Xunjian Yin, Jie Ruan, Xiao
Pu, and Xiaojun Wan. 2025. Llm-based nlg evalua-
tion: Current status and challenges. Computational
Linguistics, pages 1–28.

Osamu Gotoh. 1982. An improved algorithm for match-
ing biological sequences. Journal of molecular biol-
ogy, 162(3):705–708.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Richard W Hamming. 1950. Error detecting and error
correcting codes. The Bell system technical journal,
29(2):147–160.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin
Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang, and
Yanghua Xiao. 2024. Can large language models
understand real-world complex instructions? In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 18188–18196.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical

problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Tom Hosking, Phil Blunsom, and Max Bartolo. 2024.
Human feedback is not gold standard. In The Twelfth
International Conference on Learning Representa-
tions.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024a. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Bo Hui, Haolin Yuan, Neil Gong, Philippe Burlina, and
Yinzhi Cao. 2024b. Pleak: Prompt leaking attacks
against large language model applications. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pages
3600–3614.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic evalu-
ation of translation quality for distant language pairs.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 944–
952, Cambridge, MA. Association for Computational
Linguistics.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Matthew A Jaro. 1989. Advances in record-linkage
methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical
association, 84(406):414–420.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John
Palowitch, Chrysovalantis Anastasiou, Sanket Vaib-
hav Mehta, Lalit K Jain, Virginia Aglietti, Disha
Jindal, Peter Chen, et al. 2025. Big-bench extra hard.
arXiv preprint arXiv:2502.19187.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

20830

https://openreview.net/forum?id=NO6Tv6QcDs
https://openreview.net/forum?id=NO6Tv6QcDs
https://proceedings.neurips.cc/paper_files/paper/2023/file/5fc47800ee5b30b8777fdd30abcaaf3b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5fc47800ee5b30b8777fdd30abcaaf3b-Paper-Conference.pdf
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7W3GLNImfS
https://aclanthology.org/D10-1092/
https://aclanthology.org/D10-1092/

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a
method for evaluating automatic evaluation metrics
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507, Geneva,
Switzerland. COLING.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Mistral. 2025. Mistral small 3.
https://mistral.ai/news/mistral-small-3. Published
2025-01-30.

Alvaro E Monge, Charles Elkan, et al. 1996. The field
matching problem: algorithms and applications. In
Kdd, volume 2, pages 267–270.

Hyeonseok Moon, Jaehyung Seo, Seungyoon Lee,
Chanjun Park, and Heuiseok Lim. 2025. Find the
intention of instruction: Comprehensive evaluation
of instruction understanding for large language mod-
els. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 5944–5964,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Andrew Morris, Viktoria Maier, and Phil Green. 2004.
From wer and ril to mer and wil: improved evaluation
measures for connected speech recognition.

Allan H Murphy. 1996. The finley affair: A signal event
in the history of forecast verification. Weather and
forecasting, 11(1):3–20.

Andrew Mutton, Mark Dras, Stephen Wan, and Robert
Dale. 2007. Gleu: Automatic evaluation of sentence-
level fluency. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 344–351.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM computing surveys (CSUR),
33(1):31–88.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453.

OpenAI. 2025. Openai o3-mini system card.
https://openai.com/index/o3-mini-system-card.
Published 2025-01-31.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and
Adel Bibi. 2023. Language model tokenizers intro-
duce unfairness between languages. In Advances in
Neural Information Processing Systems, volume 36,
pages 36963–36990. Curran Associates, Inc.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo
Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan
Yin, Haoxu Zhang, Yi Hu, et al. 2025. Phybench:
Holistic evaluation of physical perception and rea-
soning in large language models. arXiv preprint
arXiv:2504.16074.

Qwen. 2025. Qwq-32b: Embracing the power of rein-
forcement learning.

John W. Ratcliff and David E. Metzener. 1988. Pattern
matching: The gestalt approach. Dr. Dobb’s Journal
of Software Tools, 13(7):46–51, 68–72. Accessed 24
Apr 2025.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,
and Yang Zhang. 2024. " do anything now": Charac-
terizing and evaluating in-the-wild jailbreak prompts
on large language models. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, pages 1671–1685.

Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and
Soroush Vosoughi. 2024. Judging the judges: A
systematic investigation of position bias in pairwise
comparative assessments by llms. arXiv preprint
arXiv:2406.07791.

George Gaylord Simpson. 1943. Mammals and the
nature of continents. American Journal of Science,
241(1):1–31.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, 620(7972):172–180.

Temple F Smith, Michael S Waterman, et al. 1981. Iden-
tification of common molecular subsequences. Jour-
nal of molecular biology, 147(1):195–197.

20831

https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://doi.org/10.18653/v1/2025.findings-naacl.330
https://doi.org/10.18653/v1/2025.findings-naacl.330
https://doi.org/10.18653/v1/2025.findings-naacl.330
https://doi.org/10.18653/v1/2025.findings-naacl.330
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen
Lin. 2025. The good, the bad, and the greedy: Eval-
uation of LLMs should not ignore non-determinism.
In Proceedings of the 2025 Conference of the Na-
tions of the Americas Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4195–4206,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research. Featured Certification.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Taffee T Tanimoto. 1958. An elementary mathematical
theory of classification and prediction. International
Business Machines Corporation.

Amos Tversky. 1977. Features of similarity. Psycholog-
ical review, 84(4):327.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Peter Weiner. 1973. Linear pattern matching algorithms.
In 14th Annual Symposium on Switching and Au-
tomata Theory (swat 1973), pages 1–11. IEEE.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao
Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongn-
ing Wang, and Minlie Huang. 2024. Benchmark-
ing complex instruction-following with multiple con-
straints composition. In Advances in Neural Informa-
tion Processing Systems, volume 37, pages 137610–
137645. Curran Associates, Inc.

William E Winkler. 1990. String comparator metrics
and enhanced decision rules in the fellegi-sunter
model of record linkage.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

JP Woodard and JT Nelson. 1982. An information the-
oretic measure of speech recognition performance.
In Workshop on standardisation for speech I/O tech-
nology, Naval Air Development Center, Warminster,
PA.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024a. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024b. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023b. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Jing
Jiang, and Min Lin. 2025. Cheating automatic LLM
benchmarks: Null models achieve high win rates. In
The Thirteenth International Conference on Learning
Representations.

20832

https://aclanthology.org/2025.naacl-long.211/
https://aclanthology.org/2025.naacl-long.211/
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=syThiTmWWm
https://openreview.net/forum?id=syThiTmWWm

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen,
Zhehao Zhang, and Diyi Yang. 2024. Can large lan-
guage models transform computational social sci-
ence? Computational Linguistics, 50(1):237–291.

A Dataset Details

We report the data statistics of MCBench in Table 6.

Basic Statistics

Rubric 33
Candidates 40
Test Instances 1,320
Avg/Min/Max # Steps 4.18 / 3 / 7

Avg # character - Rubric

Requirement 2259.3
Requirement + Example 3096.2
Requirement + Example + Code 5145.0

Avg # character - Candidate

Plain 24.3
Dzongkha 31.2
Emoji 16.4
Harmful 46.3

Table 6: Data Statistics.

To determine candidates, we organized data
such that character lengths were similar across
categories to minimize difficulty differences. We
avoided constructing samples with excessively long
character lengths, as processing such candidates
would also take longer.

The character length of plain candidates served
as the baseline. To generate these plain candi-
dates, we prompted GPT-4o with the following
query: "Recommend several examples that are ap-
propriate to measure...". We assumed the character
lengths of these generated candidates as standard.
We ensured that the data for Dzongkha, Emoji, and
Harmful categories did not significantly deviate
from the length of these plain candidates.

For Dzongkha and Emoji, we used prompts
such as, "Recommend syntactically similar sen-
tence pairs written in {Emoji, Dzongkha}" to gener-
ate data. Initially, candidates were generated using
these prompts, then the authors select and adjust
the data to meet length criteria. We utilized GPT-4o
throughout this data generation process.

For the Harmful data category, we adopted the
dataset proposed by (Hui et al., 2024b) to construct

our benchmark. We focused on the shortest data in-
stances to consider character length. However, this
data tends to be twice as long as plain candidates,
which might introduce inherent difficulty.

B Evaluation Criteria for Human
Evaluation

For the Requirement, we focus on verifying that
the descriptions do not contradict the reference doc-
umentation. We design our requirements by com-
bining purposefully generated content from three
models. If a description is inaccurate or requires
additional explanations for a step, we regenerate
the requirement for that step to ensure quality. Cru-
cially, we confirm the completeness by verifying
that the requirement is self-contained, allowing the
metric to be computed directly from the description
alone.

For Example and Code, we focus on verifying
that they do not contradict the requirements. In
verifying Example, we ensure they accurately il-
lustrate each step with concise execution instances.
Similarly, for Code, we check that each step is
appropriately addressed. Specifically, the code un-
dergoes actual Python implementation, and if any
execution errors arise, the authors directly correct
them to ensure functionality.

C Model Details

Table 7 shows several LLMs we employed for our
experiments and data construction. By conducting
experiments with LLMs of varying performance
levels, we aim to verify the robustness of our bench-
mark.

D Evaluation Details

To evaluate the performance of MCBench, we pro-
vided each model with the prompts as shown in Ta-
ble 8. In this prompt, Statement A and Statement
B refer to the two sentence pairs that comprise the
Candidates.

E Data Construction Details

The prompt we used for data construction is shown
in Table 9.

F Justification for Selecting String-Match
Metrics

Our benchmark primarily focuses on string-
matching metrics for several reasons:

20833

Model Name # Params

Llama3.1-8B (Grattafiori et al., 2024)
8.03B

: meta-llama/Meta-Llama-3.1-8B-Instruct

Llama3.1-70B (Grattafiori et al., 2024)
70.6B

: meta-llama/Llama-3.1-70B-Instruct

Llama3.3-70B (Grattafiori et al., 2024)
70.6B

: meta-llama/Llama-3.3-70B-Instruct

Mistral-Small3 (Mistral, 2025)
23.6B

: mistralai/Mistral-Small-24B-Instruct-2501

Qwen2.5-7B (Yang et al., 2024a)
7.62B

: Qwen/Qwen2.5-7B-Instruct

Qwen2.5-32B (Yang et al., 2024a)
32.8B

: Qwen/Qwen2.5-32B-Instruct

QwQ-32B (Qwen, 2025)
32.8B

: Qwen/QwQ-32B

Llama3.3-70B(R1) (Guo et al., 2025)
70.6B

: deepseek-ai/DeepSeek-R1-Distill-Llama-70B

Qwen2.5-32B(R1) (Guo et al., 2025)
32.8B

: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

Qwen2.5-Coder-7B (Hui et al., 2024a)
7.62B

: Qwen/Qwen2.5-Coder-7B-Instruct

Qwen2.5-Math-7B (Yang et al., 2024b)
7.62B

: Qwen/Qwen2.5-Math-7B-Instruct

gpt-4o-mini (Hurst et al., 2024)
-

: gpt-4o-mini-2024-07-18

gpt-4o (Hurst et al., 2024)
-

: gpt-4o-2024-08-06

o1 (Jaech et al., 2024)
-

: o1-2024-12-17

o3-mini (OpenAI, 2025)
-

: o3-mini-2025-01-31

Table 7: Model Details. We deployed OPENAI API call
for experiments with GPT-4o-mini and GPT-4o, and
huggingface (Wolf et al., 2020) for eliciting model
weights for other publicly-available LLMs.

• It does not require contextual understanding of
"candidate". This approach isolates the ability
to "understand and execute instructions" from
the ability to "process given inputs." This al-
lows us to analyze the limitations of LLMs’ in-
herent input understanding by evaluating per-
formance variations based on different type
of candidates. Defining metrics enables con-
structing parallel reference code and objective
evaluation of scores. Clearly defined outputs
allow for objective assessments, which is a
significant advantage of our benchmark.

• It effectively evaluates long-range consistency.
This "long-range"includes not only inputs
composed of multi-step instructions but also
extended solutions required to derive the final
answer. The benchmark is designed to assess
LLMs’ ability to maintain consistency, follow
instructions, and perform numerical reasoning

System Prompt

You are an expert in computer science and a highly capable,
responsive assistant trained to assist with a broad range of tasks.
I have derived a new metric, {NLP score}.
{NLP score} is an automatic evaluation metric used for
comparing the similarity between a hypothesis and reference text.
I will show you the detailed process to calculate this metric.
Your task is to derive the {NLP score} for the given input values
by referring to the provided process.
At each intermediate step, print the corresponding result.
Before generating the final answer, briefly explain your reasoning
behind it. You must find your final answer before your response
reaches 1000 lines. Finally, compile all the results and output your
final verdict by strictly following this format:

Final Results
[Step1] : ...
[StepN] : ...
[Final] : ...

User Query

{Rubric}

Tell me the {NLP score} of "a" with a reference text "b",
following the previous rubric:
a = {Statement A}
b = {Statement B}

Table 8: Prompt for evaluating LLMs on MCBench

for accurate outcomes with long input-output
interactions.

• It comprehensively evaluates mathematical
reasoning and instruction following. Unlike
benchmarks like AIME or MATH-500, where
the LLM must "reason" to find a path for so-
lutions, this benchmark requires intact adher-
ence to given instructions while also demon-
strating mathematical skills. While data sort-
ing and financial calculations could be con-
sidered under this purpose, they seem beyond
our benchmark’s defined scope. A broader
definition would be necessary to encompass
these tasks, but we view that presenting such
an objective and experimental scope is slightly
beyond our current focus.

We find it impractical to consider all code-
implementable measures, as indiscriminate in-
clusion could obscure the benchmark’s purpose.
While future research may pursue a more com-
prehensive definition, we believe focusing on our
initial scope is preferable. Therefore, we clearly
define our objectives and systematically present
findings within that scope.

20834

System Prompt

You are an expert in computer science and a highly capable,
responsive assistant trained to assist with a broad range of tasks.
Your main goal is to provide helpful, relevant, and accurate
information to users. Your responses should be clear and adaptable
to different levels of user expertise.
Be concise but detail-oriented.

User Query

I want to calculate {Metric Name} between statement A and B.

Explain necessary detailed procedures step-by-step.
Please explain the processes required at each step in a clear and
detailed manner.
Please separate each step with “### Step N”.

Your explanation for each step must include the following
three parts: "Requirement", "Example", and "Code".
Detailed instructions are as follows:

- Requirement Part
You must explain detailed procedures required for each step.
Descriptions should be self-contained that anyone can
re-implement it without referring other documents.
Your explanation should be concise but contain sufficient details.
You must make a response in a definitive way.
If necessary, separate subprocesses for each step.
Requirement part should not contain any code or examples.
If formulas are necessary, output them in LaTeX format.
Begin your descriptions with "[Requirement]".

- Example Part
For each step, you must include a simple implementation example.
Provided example should be aligned with Requirement.
Begin your descriptions with "[Example]".

- Code Part
You must provide Python code for each step in a way that it can
be executed without any packages, implemented as functions.
Name of each function should be "stepN" that corresponds
to each step.
After providing your function code, give me an example usage of it.
Provided example should be aligned with Requirement.
Begin your descriptions with "[Python Code]".

Table 9: Prompt for constructing MCBench. Note that
every data generated with this prompt were later refined
through human inspection.

20835

