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Abstract

Recent agent frameworks and inference-time
algorithms often struggle with natural planning
problems due to limitations in verifying gener-
ated plans or reasoning and varying complex-
ity of instances within a single task. Many
existing methods for these tasks either per-
form task-level verification without considering
constraints or apply inference-time algorithms
without adapting to instance-level complex-
ity. To address these limitations, we propose
PlanGEN, a model-agnostic and easily scalable
agent framework with three key components:
constraint, verification, and selection agents.
Specifically, our approach proposes constraint-
guided iterative verification to enhance perfor-
mance of inference-time algorithms–Best ofN ,
Tree-of-Thought, and REBASE. In PlanGEN
framework, the selection agent optimizes algo-
rithm choice based on instance complexity, en-
suring better adaptability to complex planning
problems. Experimental results demonstrate
significant improvements over the strongest
baseline across multiple benchmarks, achieving
state-of-the-art results on NATURAL PLAN
(∼8%↑), OlympiadBench (∼4%↑), DocFinQA
(∼7%↑), and GPQA (∼1%↑). Our key finding
highlights that constraint-guided iterative verifi-
cation improves inference-time algorithms, and
adaptive selection further boosts performance
on complex planning and reasoning problems.

1 Introduction

In many real-world tasks, we often encounter the
word “plan for” or “plan to”. For example, prompt-
ing large language models (LLMs) with “Let us
make a plan to ...” yields completions such as
“travel the world”, “schedule a meeting”, or “or-
ganize a visit” (App. B for examples). The tasks
related to such prompts are referred to as “natural
planning” which is different from the traditional
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∗Joint last authors

classical AI planning, where given an initial state,
goal, descriptions of executability and effect of
actions, one has to come up with a sequence of
executable actions which achieves the goal1. Re-
cent works (Kambhampati et al., 2024; Valmeekam
et al., 2024b) have shown that LLMs are not good
at such planning, and natural planning with LLMs
offers a promising direction, aligning better with
real-world tasks (Hao et al., 2023; Zhao et al., 2023;
Wang et al., 2024c; Jiao et al., 2024). Thus, our fo-
cus is only on natural planning (Zheng et al., 2024)
and its effect on downstream reasoning tasks (App.
G for examples) where the formulation does not
necessarily match with a classical planning setting.

In recent years, LLM agents have shown impres-
sive abilities to solve complex reasoning problems
(Yao et al., 2023; Xiao et al., 2024; Wang et al.,
2024a). Orthogonal to this exploration, scaling a
search space during inference-time (i.e., test-time
scaling) (Snell et al., 2024; Welleck et al., 2024)
has gained popularity in tackling difficult problems
such as mathematical reasoning (Zhang et al., 2024)
and code generation (Wang et al., 2025). Despite
the success of these frameworks, we hypothesize
that they often struggle with complex planning and
reasoning due to the lack of better verification mod-
ule, and a failure to account for instance-level com-
plexity across single-task. Furthermore, although
some initial explorations exist (Bohnet et al., 2024;
Lee et al., 2025)2, effectiveness of these frame-
works for natural planning is under-explored. Mo-
tivated by these, we proposed PlanGEN, a model-
agnostic, easily scalable, multi-agent framework
for effective natural plan generation.
PlanGEN consists of three specialized agents:

constraint agent, verification agent, and selec-
tion agent. The constraint agent extracts instance-

1Classical AI planning, which in early settings had inputs
in specific formats (i.e., not in natural language), has high
computational complexity (Bylander, 1994).

2Extended related work is presented in App. A
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Constraint
Agent

Task Description and Problem Statement

Example Task:
Schedule a 30-minute meeting for
Alexander, Elizabeth, and Walter on
Monday between 9:00 and 17:00.

Alexander: Busy at 9:30-10:00, 10:30-
11:00, 12:30-13:00, 14:30-15:00, 16:00-
17:00.
Elizabeth: Busy at 9:00-9:30, 11:30-
12:30, 13:00-14:30.
Walter: Busy at 9:00-14:30, 15:30-17:00.

Find an earliest time slot that works for
all participants.

Initial Generated Plan
1. Analyze Constraints: we need a half-
hour meeting ...
2. Identify individual availability ...
3. Determine common availability ...
4. Prioritize earliest time slot ...
5. Ensure solution exists ...

SOLUTION: Here is the proposed time:
Monday, 14:30 - 15:00

Generated Constraints
1. Analyze the list of participants
2. Make sure of correct meeting duration
3. Validate the time frame
4. Make sure of individual schedules
(availability and unavailability)

PlanGEN (BoN)

Any LLM

Verifier Agent

Verify and Reward
1. Incorrect availability for Alex ...
2. Incorrect availability for Eliza ...
3. Incorrect availability for Walter ...
4. Incorrect common availability ...
5. Incorrect solution ...
6. Format adherence ...

Due to the significant errors in
determining availability and the
resulting incorrect solution, the plan
receives a low score.
Score: -50Selection Agent

Score
<

Th

Score
>

Th

Final Generated Plan

1. Re-analyze the constraints ...
2. Adjust incorrect individual
availability ..
3. Re-determine common
availability ...
4. Find common availability ...
5. Prioritize earliest time slot ...

SOLUTION: Here is the proposed
time: Monday, 15:00 - 15:30

LLM-based Selection
- Best of N: This problem involve ...
- Rebase: Rebase is not well-suited
for this since ...
- ToT: Tree of Thought is a good fit
for this since...
Scores: ("Best of N", 0.4),
("Rebase", 0.1), ("ToT", 0.9)

Modified UCB-based Selection
UCB Scores: ("Best of N", 4.0),
("Rebase", 1.0), ("ToT", 9.0)

Selected
Algorithm

Updated
Plan

PlanGEN (ToT)

PlanGEN (RS)

Iterative
Update

Pipeline for
Downstream
Reasoning

Plan Execution
+

Final Answer

Any
LLM

PlanGEN (Mixture of Algorithms)

Figure 1: Schematic representation of PlanGEN (Mixture of Algorithms). An initial plan and constraints guide
iterative plan refinement. The verification agent provides reward scores for plan quality, and the selection agent
chooses inference algorithms until the highest-reward plan is found and used for downstream reasoning (if needed).
UCB: Upper Confidence Bound, BoN: Best of N , ToT: Tree-of-Thought, RS: REBASE.

specific constraints (e.g., budget, concepts, rules,
etc.); the verification agent evaluates plan qual-
ity and provides a reward score considering the
constraints; and the selection agent dynamically
chooses the best inference algorithm using an im-
proved Upper Confidence Bound (UCB) formula
(Han et al., 2024) for instance of different com-
plexity. We explore popular and widely used three
inference algorithms within PlanGEN: Best of N
(Brown et al., 2024), Tree-of-Thought (ToT) (Yao
et al., 2024), and REward-BAlanced SEarch (RE-
BASE) (Wu et al., 2024a). We combine our agents
with these algorithms, yielding four frameworks:
(1) PlanGEN (Best of N ), (2) PlanGEN (ToT), (3)
PlanGEN (REBASE), and (4) PlanGEN (Mixture
of Algorithms). In PlanGEN, “Multi-Agent” signi-
fies using the constraint and verification agents for
the first three approaches, and all three agents for
the “Mixture of Algorithms” (Figure 1). Figure 1
shows example from NATURAL PLAN (Calendar
scheduling), and App. G provides more examples.

We perform all experiments using Gemini-1.5-
Pro (Team et al., 2024) as underlying model in
PlanGEN. We further present case-study on Gemini-
2.5-Pro, Gemini-2.0-Flash, and GPT-4o (Hurst
et al., 2024) to show the model-agnostic nature.

We evaluate natural planning ability on NATU-
RAL PLAN (Zheng et al., 2024), scientific/mathe-
matical reasoning on GPQA (Rein et al., 2024)
and OlympiadBench (He et al., 2024), and fi-
nancial reasoning on DocFinQA (Reddy et al.,
2024). Performance is compared against Zero-
shot Chain-of-Thought (CoT) and a multi-agent
baseline. We achieve state-of-the-art results on
NATURAL PLAN (∼8%↑ average across all cat-
egories), OlympiadBench (text-only) (∼5%↑ on
MATH, ∼4%↑ on PHYSICS), and DocFinQA
(∼7%↑). On GPQA, we outperform Gemini-1.5-
Pro (∼13%↑), GPT-4o (∼12%↑), and Claude-3.5-
Opus (∼9%↑), while achieving competitive per-
formance compared to the multi-agent baseline
(∼1%↑). The simplest method (i.e., PlanGEN (Best
of N )) achieves the best performance on NATU-
RAL PLAN (Figure 5). PlanGEN (Mixture of Al-
gorithms) achieves the best performance for com-
plex problems (Figure 6) including GPQA, and
OlympiadBench. PlanGEN’s improvements target
plan quality, rather than simply refining the final
answer or solution. Our case study on QwQ-32B
(Team, 2025) demonstrates PlanGEN’s compatibil-
ity with recent open-source reasoning models. Our
comparison with Buffer-of-Thought (BOT) (Yang
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et al., 2024) show that PlanGEN achieves superior
performance compared to reasoning-based prompt-
ing. Thorough analysis of the results which reveals
several important findings. In summary, our contri-
butions are: (1) PlanGEN, a novel, model-agnostic,
and easily adaptable multi-agent framework for en-
hancing LLM natural planning; (2) state-of-the-art
results on several complex planning and reasoning
benchmarks; and (3) a novel approach to constraint-
based verification and instance-level complexity-
based inference algorithm selection.

2 PlanGEN

2.1 Proposed LLM Agents
PlanGEN comprises three specialized LLM agents:
a constraint agent, a verification agent, and a se-
lection agent. Each agent utilizes an off-the-shelf
LLM (e.g., Gemini, GPT) which is equipped with
task-specific prompts for efficient performance.

2.1.1 Constraint Agent
We define “constraints” as the instance-specific cri-
teria necessary for verifying solutions to planning
problems. For instance, in the calendar scheduling,
relevant constraints include ‘individual schedules’,
‘availabilities’, and ‘preferences’. In a scientific
reasoning problems from GPQA, constraints might
be the ‘concepts used’, ‘calculation correctness’,
and ‘formula selection’. We argue that careful ex-
traction of these constraints is critical for success-
ful verification. The constraint agent serves as a
preprocessing component in the framework, de-
signed to extract instance-specific constraints from
the problem description. By analyzing the input
problem, this agent identifies maximum possible
constraints that are required for verifying generated
plans to improve the overall relevance and quality
of the planning process. The prompt used by the
constraint agent enables it to systematically iden-
tify constraints by asking the underlying LLM to
focus on specific aspects of the problem. This en-
sures that no critical information is overlooked and
that the resulting constraints are comprehensive.
While constraint agent is effective in capturing the
majority of constraints, it does not offer a formal
guarantee of exhaustiveness in constraint extrac-
tion. Prompts and examples for constraint agent
are provided in App. C and App. G, respectively.

2.1.2 Verification Agent
The verification agent plays a critical role in the
framework by assessing the quality of generated

plans based on constraints. This agent ensures that
plans are aligned with task objectives, adhere to
constraints, and progress logically toward a cor-
rect and complete solution. This agent has two key
components: (i) feedback generation, and (ii) nu-
merical reward score generation based on feedback.
Verification prompts and examples of verification
are provided in App. C and App. G, respectively.

Feedback Generation While verifying each gen-
erated plan against different constraints, the veri-
fication agent generates detailed natural language
reasoning regarding plan quality. We consider this
explanation as “feedback”, offering interpretability
and actionable next step towards improvement.

Numerical Reward Generation Motivated by
Zhang et al. (2024), we instruct the agent to evalu-
ate the plan against various constraints and assign a
reward score on a scale of −100 to 100. The scor-
ing mechanism is designed to enforce strict quality
standards, with a threshold (e.g., a score of 95 or
higher) indicating a verified, high-quality plan.

2.1.3 Selection Agent

The selection agent dynamically determines the
most suitable inference algorithm for solving a
given problem instance based on its complexity.
It leverages a combination of historical perfor-
mance; diversity, and recovery scores; and guid-
ance from a LLM to adaptively select the best al-
gorithm (among three) for the given instance. To
create the selection agent, we utilize a modified
UCB policy. The policy combines multiple factors,
including normalized rewards, exploration bonuses,
diversity adjustments, and recovery scores. Addi-
tionally, the agent incorporates LLM-guided priors,
which provide algorithm suitability scores based
on the problem statement, task requirements, and
previous plan (if available). These priors enable
the agent to align its selections with the input in-
stance complexity and corresponding constraints,
improving the relevance of the chosen algorithm.

UCB(a) =
R(a)

N(a)
+

√
2 log(T + 1)

N(a)

+ λprior · Prior(a)
+

αdiversity

N(a) + 1

+ αrecovery · Srecovery(a)
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Modified UCB Policy equation combines several
terms to balance exploitation, and exploration when
selecting the best algorithm for given task instance.

To modify UCB, we first conducted a prelimi-
nary ablation study, presented in App. C. All terms
in equation given above are calculated across one
evaluation run. Here, the cost of calculation is neg-
ligible since it only utilizes reward values from
previous runs, but only one LLM call require to get
score for Prior(a). The first term, R(a)

N(a) , represents
the average reward for algorithm a, where R(a)
is the total reward accumulated by the algorithm,
and N(a) is the number of times the algorithm has
been selected. This term ensures that algorithms
with higher historical performance are prioritized.

The second term,
√

2 log(T+1)
N(a) , serves as the ex-

ploration component, encouraging the selection of
algorithms with fewer trials, denoted as T . This
term ensures that under-explored options are ad-
equately evaluated. Furthermore, λprior · Prior(a),
which leverages LLM-guided priors to align algo-
rithm selection with the instance-specific complex-
ity. Here, λprior is a dynamically decaying weight
defined as λprior

1+T , where T represents the total num-
ber of trials. This decay gradually shifts the fo-
cus from initial priors to historical performance
as trials progress. The diversity bonus, αdiversity

N(a)+1 ,
penalizes overused algorithms, ensuring balanced
exploration across all options. Finally, the recovery
term, αrecovery ·Srecovery(a), rewards algorithms that
recover effectively from failures, with Srecovery(a)
representing the recovery score for algorithm a.

Selection Process This process begins by initial-
izing algorithm-specific variables, such as accumu-
lated rewards, selection counts, and failure counts.
Further details on this can be found in Algorithm 1
(App. C). The agent then incorporates LLM-guided
priors to generate algorithm suitability scores based
on the problem statement and any provided feed-
back. These priors are derived from a LLM (prompt
for this given in App. C), and serve as initial esti-
mates to adjust the UCB (Han et al., 2024) values.

2.2 Proposed Frameworks

Within PlanGEN, we propose four different frame-
works: (1) PlanGEN (Best of N ) (Figure 2), (2)
PlanGEN (ToT) (Figure 3), and (3) PlanGEN (RE-
BASE) (Figure 4), and (4) PlanGEN (Mixture of
Algorithms) (Figure 1).

Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Verification 
Agent

Plan 1 Plan 2 Plan n

Reward 1 Reward 2 Reward n

Final Plan → Plan with Maximum Reward

Figure 2: Schematic representation of PlanGEN (BoN).

2.2.1 PlanGEN (Best of N )
Motivated by Brown et al. (2024), we adapted the
Best of N algorithm and modified it using our
constraint and verification agents as illustrated in
Figure 2. The framework generates N candidate
plans (Plan 1, Plan 2, ..., Plan n), and each plan is
assessed by a verification agent based on a set of
constraints. Then, a corresponding reward (Reward
1, Reward 2, ..., Reward n) gets assigned by the ver-
ification agent. Finally, the plan with the highest
reward from generated candidates is selected, re-
sulting a plan that aligns to the problem constraints.

2.2.2 PlanGEN (ToT)
ToT algorithm has been studied in detail for solv-
ing many complex problems (Yao et al., 2024). As
shown in Figure 3, we modify the ToT algorithm
with our constraint and verification agents. The
method begins by initializing a root node that repre-
sents the problem and generating multiple potential
next steps, creating a tree-like structure. The gen-
erated steps are verified using a verification agent
which assigns reward scores based on a set of con-
straints. The iterative process involves evaluating
all possible steps at a given depth, selecting the
most promising path based on reward scores, and
expanding it further by generating new steps. This
process continues until a valid solution is identi-
fied or a pre-defined limit on iterations is reached.
Further details on various prompts for the ToT are
presented in App. D.

2.2.3 PlanGEN (REBASE)
The REBASE tree search method inherits the ex-
ploitation and pruning properties of tree search and
is well-studied for mathematical reasoning (Wu
et al., 2024a). As shown in Figure 4, the frame-
work incorporates a dynamic selection and expan-
sion strategy to iteratively refine solutions. At each
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Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3) Completion

Verification 
Agent

Step
Reward 1

Step
Reward 2

Step
Reward 3

Iteratively happens for each step

Figure 3: Schematic representation of PlanGEN (ToT).
Highest-reward steps are highlighted in green.

depth of the tree, candidate nodes are ranked based
on their assigned reward scores (obtained using a
verification agent), ensuring that the most promis-
ing candidates are explored first. Even steps with
lower rewards are considered but with a reducing
number of children, meaning that their exploration
depth is limited. This hierarchical pruning helps
maintain efficiency, thereby reducing unnecessary
exploration of weaker nodes. This process contin-
ues until either a valid, complete solution is found
or a predefined depth or width limit is reached.
Also, there is a completion check similar to ToT
which identifies nodes that represent complete solu-
tions, enabling REBASE to terminate early once a
satisfactory outcome is identified. App. D provides
further details on prompts for the REBASE.

2.2.4 PlanGEN (Mixture of Algorithms)
The Mixture of Algorithms framework (Figure 1)
introduces a selection agent (§2.1.3) which dynam-
ically selects the best possible inference-time al-
gorithms proposed in the above sections based on
instance-level complexity. The framework oper-
ates in a modular and iterative manner, ensuring
adaptability in addressing planning and reasoning
problems with different complexity effectively.

Orchestration The process begins with generat-
ing an initial plan using LLM based on the task de-
scription and problem statement. Along with this,
the constraint agent (§2.1.1) is employed to gener-
ate an instance-specific set of constraints. Based
on the constraints, the verification agent (§2.1.2)
evaluates the quality of the initial plan and pro-
vides a reward score (indicated as ‘Score’ in Figure
1). If the initial plan meets the required threshold
(denoted Th), it is acceptable as the “Final Plan”.
Otherwise, the iterative refinement process begins.

Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3)

Verification 
Agent

Step Rewards
(Similar to ToT)

Figure 4: Schematic representation of PlanGEN (RE-
BASE). Green shading indicates step reward (darker =
higher). Darker steps prioritized for exploration.

Iterative Refinement The refinement loop is
driven by a suite of inference algorithms as shown
in Figure 1. During this iterative refinement, the
selection agent (§2.1.3) determines the most suit-
able algorithm based on the instance-specific com-
plexity and historical UCB values. The selected
algorithm produces an updated plan, which is then
re-evaluated by the verification agent. To ensure
continual improvement, the framework incorpo-
rates feedback generated by a verification agent
that provides guidance, and this feedback loop en-
ables the system to refine the plan incrementally.

3 Experiments and Results

3.1 Experimental Setup
Datasets To demonstrate improvement in natu-
ral planning abilities, we utilize the NATURAL
PLAN (Zheng et al., 2024). After improving the
planning, we show that this significantly enhances
the reasoning capabilities of LLMs on two bench-
marks: GPQA (Rein et al., 2024) and Olympiad-
Bench (text-only) (He et al., 2024). Additionally,
we show that PlanGEN improves performance on a
domain-specific dataset, DocFinQA (Reddy et al.,
2024). Further details are presented in App. E.

Baselines and Our Frameworks We develop
two baselines: (i) Zero-shot CoT (Kojima et al.,
2024) and (ii) a Vanilla Multi-Agent Baseline. In
the Zero-shot CoT, we provide an input prompt to
the model, which generates outputs in the form
of <CoT reasoning, Answer>. For the “Multi-
Agent Baseline”, the same model is called itera-
tively across multiple iterations. The system re-
peatedly refines its outputs through feedback loops,
where the feedback is generated based on a self-
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Figure 5: Performance comparison of the proposed multi-agent frameworks against baselines across four benchmarks.
All experiments are conducted using Gemini-1.5-Pro. Algo: Algorithms, PHY: Physics.

reflective prompt (App. E) designed to improve
reasoning. We evaluate all proposed frameworks
(§2.2) on all benchmarks. For reasoning tasks, we
use a two-stage approach: (1) generating plan us-
ing PlanGEN, and (2) executing the plan to produce
the final answer (Figure 1). App. E presents further
details on model selection, metrics, and experiment
hyper-parameters including the hyper-parameter
choices for inference-time algorithms.

3.2 Main Results

Figure 5 compares performance of PlanGEN frame-
works across various baselines (varies across bench-
marks - some single-agent baselines for GPQA are
obtained from https://klu.ai/glossary/gpqa-eval),
showing that multi-agent frameworks are consis-
tently outperforming the baselines.

Performance on NATURAL PLAN From Fig-
ure 5a, PlanGEN (Best of N ) achieves the highest
EM scores across all tasks: 60.70 (Calendar), 43.80

(Meeting), and 41.63 (Trip). In calendar schedul-
ing, all four frameworks surpass the strongest base-
line (Multi-Agent) by ∼ 10%. For meeting and
trip planning, all except ToT outperform the best
baseline (Gemini-1.5-Pro) by ∼ 6% and ∼ 7%,
respectively. PlanGEN (Mixture of Algo.) achieves
the second-highest performance in meeting and
trip planning while remains competitive in calendar
scheduling. These results demonstrate the effective-
ness of our frameworks in handling diverse natural
language planning tasks and establishing SOTA for
all three categories of NATURAL PLAN.

Performance on OlympiadBench From Figure
5b, PlanGEN (Mixture of Algo.) achieves the
highest accuracy in the MATH (55.94%), outper-
forming the Multi-Agent Baseline (50.68%) by
∼ 5%. The superior performance of the PlanGEN
in MATH highlights its effectiveness in complex
mathematical reasoning, setting a SOTA for the
MATH. In the PHY, all PlanGEN frameworks sur-
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Figure 6: Performance comparison of inference-time al-
gorithms across different complexity levels for calendar
scheduling from NATURAL PLAN.

pass Gemini-1.5-Flash (strongest baseline), with
PlanGEN (Best of N ) achieving the highest accu-
racy (31.78%), setting a SOTA for the PHY.

Performance on GPQA From Figure 5c, the
PlanGEN (Mixture of Algo.) achieves the highest
accuracy (59.6%). The individual inference-time
algorithms achieve a lower performance, indicating
the usefulness of selection. All proposed frame-
works outperform Gemini-1.5-Pro (46.2%), GPT
models (∼ 48%), and Claude-3-Opus (50.4%) by a
large margin. While Claude-3.5-Sonnet, and Multi-
Agent Baseline perform competitively (∼ 59%)
compared to PlanGEN (Mixture of Algo.).

Performance on DocFinQA From Figure 5d,
our frameworks significantly improve performance
on DocFinQA, with PlanGEN (Best of N ) achiev-
ing the highest accuracy (31.16%) and F1-Score
(29.45%), setting SOTA for the task. All our frame-
works outperform the Gemini-1.5-Pro (strong base-
line) by∼ 7%. These results highlight the effective-
ness of PlanGEN in performing financial reasoning.

Performance of PlanGEN w.r.t. different com-
plexity As shown in Figure 6, we conduct a case
study on calendar scheduling task from NATURAL
PLAN to analyze the impact of varying complex-
ity levels on the performance of different frame-
works. For the calendar scheduling, we observe
that PlanGEN (ToT) performs best for simple prob-
lems, while PlanGEN (Best of N ) is more effec-
tive for intermediate problems. As complexity in-
creases, a PlanGEN (Mixture of Algo.) proves to be
the most effective approach. We further conduct a
similar analysis for meeting and trip planning from
NATURAL PLAN presented in App. F.

Main Findings Compared to single-agent sys-
tems, PlanGEN consistently outperform in gener-
ating better planning trajectories (Figure 5). Fur-
thermore, Multi-Agent (Baseline) is not always the
strongest benchmark, as self-correction can intro-
duce challenges as shown in Huang et al. (2024).
Thus, different agents within the system require
distinct handling strategies similar to our PlanGEN.
Additionally, even in PlanGEN frameworks, rely-
ing on a single inference-time algorithm proves
insufficient for more complex problems (Figure
6). A PlanGEN (Mixture of Algo.) approach of-
fers substantial advantages for solving complex
reasoning problems, highlighting the importance
of algorithm selection based on instance-specific
complexity (Figure 1). Given that our frameworks
are multi-agent, we provide further discussion on
latency (calls/time) vs. performance in App. F.

4 Analysis and Discussion

Importance of Verification Agent Figure 7
demonstrates the verification agent’s crucial role
in PlanGEN by showing a strong correlation be-
tween assigned reward values and prediction cor-
rectness (1 for correct, 0 for incorrect). The plot-
ted points represent the average correctness rate
for data buckets of varying reward values, each
bucket containing hundreds of samples. A logistic
regression model trained on DocFinQA and GPQA
data (∼ 1100 total samples) reveals a sigmoidal
trend: higher rewards correlate with increased suc-
cess probability, highlighting the agent’s effective-
ness. This reinforces the importance of constraint-
guided verification for improving inference-time
algorithms (see App. F for further details).

Importance of Selection Agent Figure 8 illus-
trates the importance of the selection agent by com-
paring the performance on the NATURAL PLAN.
Here, Multi-Agent (Ver.) includes only the verifi-
cation agent, while Multi-Agent (Ver. + Selection)
further includes a selection agent. The results high-
light the progressive impact of these components.

For example, in calendar scheduling, Multi-
Agent (Ver.) improves performance to 56.1 EM
compared to Multi-Agent (Baseline). However,
Multi-Agent (Ver. + Selection) achieves 59.3 EM,
demonstrating the additional benefit of algorithm
selection. A similar trend is observed in trip plan-
ning where Multi-Agent (Ver. + Selection) outper-
forms Multi-Agent (Ver.) (41.17 EM vs. 35.44
EM) and the Multi-Agent (Baseline). For meeting
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OlympiadBench OlympiadBench
Methods GPQA NATURAL PLAN

(Calendar) MATH PHY Methods GPQA NATURAL PLAN
(Calendar) MATH PHY Methods GPQA Methods GPQA

Gemini-1.5-Pro 46.20 48.90 32.63 28.35 Gemini-2.0-Flash 60.10 61.10 51.13 27.54 GPT-4o 47.98 Gemini-2.5-Pro 53.03

PlanGEN (BoN)
Gemini-1.5-Pro

56.60 60.70 53.85 31.78 PlanGEN (BoN)
Gemini-2.0-Flash

56.83 68.90 59.90 35.60
PlanGEN (BoN)

GPT-4o
40.40

PlanGEN (BoN)
Gemini-2.5

77.27

PlanGEN (ToT)
Gemini-1.5-Pro

56.60 59.10 54.45 29.37
PlanGEN (ToT)

Gemini-2.0-Flash
59.18 62.30 60.30 35.70

PlanGEN (ToT)
GPT-4o

46.70
PlanGEN (ToT)
Gemini-2.5-Pro

75.25

PlanGEN (REBASE)
Gemini-1.5-Pro

57.10 59.90 54.90 31.36
PlanGEN (REBASE)

Gemini-2.0-Flash
64.14 61.50 60.98 36.02

PlanGEN (REBASE)
GPT-4o

41.40
PlanGEN (REBASE)

Gemini-2.5-Pro
71.72

PlanGEN (MoA)
Gemini-1.5-Pro

59.60 59.30 55.94 31.28
PlanGEN (MoA)
Gemini-2.0-Flash

63.64 66.55 64.10 37.29 PlanGEN (MoA)
GPT-4o

49.40 PlanGEN (MoA)
Gemini-2.5-Pro

68.19

Table 1: Performance comparison for model-agnostic nature of PlanGEN. We utilize Gemini-1.5-Pro, Gemini-
2.0-Flash, GPT-4o, and Gemini-2.5-Pro as baseline and underlying models in PlanGEN frameworks. Comparing
methods that use the same base and underlying model for a fair assessment. MoA: Mixture of Algorithms.
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Figure 7: Logistic regression plot over the joint distribu-
tion showing verification agent’s positive performance
impact. P(Successful Outcome) = probability of predic-
tion being correct.

planning, Multi-Agent (Ver.) achieves 43.1 EM
compared to 36.8 EM of Multi-Agent (Baseline),
whereas, Multi-Agent (Ver. + Selection) achieves
competitive performance. Together, verification
and selection agents drive significant improvements
over single-agent and multi-agent baselines.

Model-Agnostic Nature The results from Ta-
ble 1 demonstrate the model-agnostic nature of
PlanGEN frameworks. While the primary experi-
ments were conducted using Gemini-1.5-Pro, the
framework’s effectiveness holds across different un-
derlying models, such as Gemini-2.5-Pro, Gemini-
2.0-Flash and GPT-4o. For instance, in the NATU-
RAL PLAN (calendar scheduling), the PlanGEN
(Best of N ) framework achieves a significant
improvement, reaching 68.90 EM, outperform-
ing Gemini-2.0-Flash (61.10 EM). Similarly, in
OlympiadBench, the PlanGEN (Mixture of Algo.)
achieves the highest scores in MATH (64.10) and
PHY (37.29), surpassing Gemini-2.0-Flash (52.13
MATH, 27.54 PHY). Note that, the Mixture of
Algo. outperforms other three frameworks, show-
ing effectiveness of selection agent. On GPQA,
Mixture of Algo. (49.40), PlanGEN (REBASE)
(64.14), and PlanGEN (Best of N ) (77.27) outper-
form GPT-4o (47.98), Gemini-2.0-Flash (60.10),
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Figure 8: Case study on NATURAL PLAN, showing
the impact of selection agent. Ver.: Verification

and Gemini-2.5-Pro (53.03), respectively. These
results highlight that regardless of the underlying
model, our frameworks consistently enhance per-
formance by leveraging multi-agent collaboration.

Discussion on LLM calls vs. Performance (%)
Figure 9 shows the relationship between the num-
ber of LLM calls and task performance across base-
lines (single-agent and multi-agent) and proposed
frameworks, using OlympiadBench (MATH cate-
gory). The single-agent system, zero-shot CoT, re-
quires only one LLM call. The multi-agent baseline
requires the same number of calls as PlanGEN (Best
of N ), but our framework outperforms the multi-
agent baseline. For PlanGEN (ToT) and PlanGEN
(REBASE), we focus on LLM calls during the tree
expansion phase. PlanGEN (ToT) involves dynamic
exploration, where each explored path requires
three LLM calls: step generation, reward evalu-
ation, and completion verification. The total cost
is the per-path cost multiplied by the number of
paths explored, constrained by either the number
of steps generated for each problem or a predefined
iteration budget (i.e., 20). For PlanGEN (REBASE),
the number of LLM calls depends on the search
width (i.e., 10). Each solution path expansion in-
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Figure 9: Comparison of baselines and our frameworks,
showing the trade-off between LLM calls and perfor-
mance (%) for OlympiadBench (MATH).

volves three calls: step generation, quality eval-
uation, and completion verification, thus, giving
maximum 30 LLM calls for single problem. For
PlanGEN (Mixture of Algo.), we estimate the av-
erage LLM calls by summing the estimated calls
for each selected algorithm per problem, then di-
viding by the total number of problems. As shown
in Figure 9, the single-agent system exhibits the
lowest performance despite requiring just one LLM
call. Multi-agent approaches show improved per-
formance, with PlanGEN (ToT) and PlanGEN (RE-
BASE) balancing LLM call efficiency and accuracy.
The PlanGEN (Mixture of Algo.) method achieves
the highest performance, suggesting that combin-
ing diverse planning strategies enhances efficiency.

PlanGEN with Recent Reasoning Models We
conducted a case study using the latest QwQ-
32B model (Team, 2025) on GPQA. In a zero-
shot setting, it achieves 65.15% accuracy. When
plugged into our PlanGEN frameworks, its per-
formance further improves—reaching 68.01%
under PlanGEN (Best of N ), 70.00% under
PlanGEN (ToT), and 60.71% under PlanGEN (RE-
BASE)—demonstrating that PlanGEN consistently
boosts even state-of-the-art reasoning models.
Hence, we can say that PlanGEN is model-agnostic
(also discussed in Table 1) and compatible with
recent reasoning models.

PlanGEN vs. BOT We incorporate Buffer-of-
Thoughts (BOT) (Yang et al., 2024)—a recent rea-
soning method—into our evaluation. We imple-
ment BOT using Gemini-1.5-Pro (to match our
PlanGEN setup), we measured accuracy across
four benchmarks. BOT scores 55.50% on GPQA,
52.96% on MATH, and 27.11% on PHY. As shown
in Figure 5, all of our PlanGEN variants outperform

Dataset Baseline Best Framework

GPQA 58.08% 59.60%
OlympiadBench(PHY) 25.85% 31.78%

Table 2: Comparison between a constraints-based CoT
baseline and best-performing PlanGEN framework.

BOT by ∼ 4% on GPQA and OlympiadBench.
These results show that PlanGEN remains superior
to state-of-the-art single-agent reasoning methods.

Constraints-based CoT vs. PlanGEN This base-
line first prompts to generate constraints, then veri-
fies them, and finally revises the final solution, with-
out employing independent agents for these stages,
similar to PlanGEN. We evaluated this baseline on
two datasets, GPQA and OlympiadBench (PHY).
For fair comparison we used the same model as in
our main results (Gemini-1.5-Pro; Figure 5). As
shown in Table 2, our full framework, which as-
signs dedicated agents for constraint extraction, ver-
ification, and strategy selection, consistently outper-
forms baseline on both benchmarks. These results
indicate that explicit modularization of planning
steps is more effective than a monolithic iterative
revision approach. For creating baseline, prompts
for each stage are used as shown in App. C.

Additional Analysis We provide further analysis
on PlanGEN performance on solving AI planning in
natural language such as blocksworld (Valmeekam
et al., 2024a), selection of parameters for PlanGEN,
random baseline, and many more in App. F.

5 Conclusions

In this work, we proposed PlanGEN, an easily scal-
able multi-agent approach incorporating three key
components: constraint, verification, and selec-
tion agents. We leveraged these agents to im-
prove the verification process of existing infer-
ence algorithms and proposed three frameworks:
Multi-Agent Best of N , ToT, and REBASE. Fur-
ther, we introduced a Mixture of Algorithms,
an iterative framework that integrates the selec-
tion agent (Figure 1) to dynamically choose the
best algorithm. We evaluated our frameworks on
NATURAL PLAN, OlympiadBench, GPQA, and
DocFinQA. Experimental results demonstrate that
PlanGEN outperforms strong baselines, achieving
SOTA results across datasets. Furthermore, our
findings suggest that the proposed frameworks are
scalable and generalizable to different LLMs, im-
proving their natural language planning ability.
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Limitations

Despite the strong performance of our frameworks,
an area of improvement is the reliance on prede-
fined heuristics for selecting inference-time algo-
rithms, which may not always generalize optimally
across all tasks and domains. Additionally, while
our frameworks demonstrate strong performance,
their computational overhead could be further op-
timized for efficiency. In addition, the use of rein-
forcement learning or meta-learning techniques to
dynamically adapt agent strategies based on task
complexity could be an interesting area to explore.
Moreover, broadening the scope to multi-modal
and multi-lingual reasoning would significantly ex-
pand the applicability of our approach, and explor-
ing the use of generated planning trajectories for
model training offers valuable direction.

Ethics Statement

The use of proprietary LLMs such as GPT-4, Gem-
ini, and Claude-3 in this study adheres to their poli-
cies of usage. We have used AI assistants (Gram-
marly and Gemini) to address the grammatical er-
rors and rephrase the sentences.
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A Related Works

LLM Agents for Planning Agent-based frame-
works for planning have gained interest, focusing
on enhancing how LLMs decompose tasks and re-
fine their outputs. The Sibyl framework (Wang
et al., 2024c) effectively decomposes tasks into
smaller subtasks, assigning each to specialized
agents that iteratively collaborate until a solution
is reached. OS-Copilot (Wu et al., 2024b) intro-
duces a generalist computer agent that employs self-
improvement through modularization and feedback
loops. Another approach is KnowAgent (Zhu et al.,
2024), which integrates knowledge-augmented
planning to enhance the decision-making capabili-
ties of LLM agents. Similarly, Tool-Planner (Liu
et al., 2024) proposed grouping tools based on sim-
ilar functionalities into toolkits, allowing LLMs to
select the best tool for a given task. Many agent-
based works focusing on planning have been de-
veloped (Chen et al., 2024; Wang et al., 2024b).
Despite the progress, these methods generally (i)
focus on domain-specific tasks or limited bench-
marks, reducing generalizability, and (ii) lack or
under-explore mechanisms for verifying and refin-
ing plans iteratively. While some works explore
natural language planning (Bohnet et al., 2024; Lee
et al., 2025), they either single-agent frameworks or
evaluate proposed framework on domain-specific
benchmarks.

Inference-time Algorithms Inference-time algo-
rithms have recently shown a significant improve-
ment in LLMs performance during inference. For
instance, Best of N sampling (Brown et al., 2024)
selects the most promising output from multiple
generations performed using temperature sampling,
while Tree-of-Thought (ToT) (Yao et al., 2024)
models reasoning as an iterative tree search. RE-
BASE (Wu et al., 2024a) optimizes search-space
pruning using reward balancing. One very popu-
lar approach is Monte Carlo Tree Search (MCTS)
(Zhang et al., 2024) which iteratively explores so-
lution paths during inference. Applied to models
such as LLaMa-3-8B, it enables self-refinement by
revisiting and improving initial solutions. Test-time
optimization (Snell et al., 2024), focuses on dynam-
ically adjusting computational resources during in-
ference (Wu et al., 2024a). Furthermore, Wang
et al. (2025) uses the inference time algorithms to
improve LLMs planning capabilities to solve code
synthesis problems. In inference-time algorithms,
verification is the key component. In contrast to

these past works, here, we enhance performance
of inference-time algorithms utilizing constraint-
guided verification, and multi-agent collaboration
for natural language planning, and its applications
in downstream complex reasoning tasks.

B Natural Planning Prompt Examples

To show open-ended, “everyday” plans from LLMs,
we show below two prompt templates and their
ChatGPT-4o (checkpoint: May 2025) completions.

B.1 Prompt: “Let us make a plan to . . . ”

• Let us make a plan to travel the world on a
budget.

• Let us make a plan to surprise our parents with
a visit.

• Let us make a plan to start our own small
business.

• Let us make a plan to eat healthier without
giving up flavor.

• Let us make a plan to finish that project we
started months ago.

• Let us make a plan to learn a new language
together.

• Let us make a plan to volunteer in our local
community.

• Let us make a plan to save enough money for
a down payment.

• Let us make a plan to reconnect with old
friends.

• Let us make a plan to spend more quality time
offline.

B.2 Prompt: “Let us make a plan for . . . ”

• Let us make a plan for our next big adventure.
• Let us make a plan for retirement that actually

excites us.
• Let us make a plan for the weekend so it

doesn’t slip away.
• Let us make a plan for dealing with unex-

pected emergencies.
• Let us make a plan for hosting the perfect

dinner party.
• Let us make a plan for our child’s education

journey.
• Let us make a plan for how to reach our fitness

goals.
• Let us make a plan for moving into our dream

home.
• Let us make a plan for celebrating our anniver-

sary in style.
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C Further Details on LLM Agents

In this section, we provide additional details about
each specialized agent in PlanGEN. We present the
prompts used for each agent, highlighting their
roles in the framework. The prompt for the con-
straint agent includes task-specific parameters that
can be adjusted to extract relevant constraints for
different tasks. In contrast, the prompts for the
verification agent and selection agent are entirely
task-agnostic, ensuring generalizability and adapt-
ability across various problem domains.

Prompts for Constraint Agent The constraint
agent is responsible for extracting problem-specific
constraints that guide the planning process. To en-
able systematic extraction of constraints, we design
a task-specific prompt for the constraint agent:

Prompt

You are an expert in understanding an input
problem and generating set of constraints.
Analyze the input problem and extract all
relevant instance-specific constraints and
contextual details necessary for accurate
and feasible planning.

(Optional) These constraints may in-
clude:

<You may provide any specific type of
constraints>

<You may provide any formatting instruc-
tion>

Input Problem: <problem statement>

Based on the above prompts, we define the types
of constraints used in the NATURAL PLAN bench-
mark for different planning tasks: calendar schedul-
ing, meeting planning, and trip planning. For
DocFinQA, we provide a set of formatting instruc-
tions to ensure structured constraint generation. For
GPQA and OlympiadBench, the constraint extrac-
tion follows the general prompt outlined above.

Prompts for Verification Agent The prompt
for the verification agent is designed to be task-
agnostic, meaning it can be applied across different
problem domains without modification. By enforc-
ing strict evaluation criteria, this agent enhances

the reliability of PlanGEN, making it robust for var-
ious planning and reasoning tasks. In this prompt,
list of constraints are generated using constraint
agent. Notably, the list of constraints used in the
verification prompt is dynamically generated by the
constraint agent. This ensures that the verification
process is based on instance-specific constraints
rather than relying on predefined, static rules.

Prompt

Provide a reward score between -100 and
100 for the quality of the provided plan
steps, using strict evaluation standards. En-
sure the reward reflects how effectively the
plan contributes to progressing toward the
correct solution.
Problem Statement:
{problem}
Plan:
{plan}
Consider the following constraints while
evaluating:
- [Constraint 1]
- [Constraint 2]
- [Constraint 3]
Provide feedback in the following format:
[Step-by-step reasoning for the reward
score]
Score: [Strictly provide an integer reward
score between -100 and 100]

Prompts for Selection Agent The prompt for the
Selection Agent is task-agnostic, allowing it to be
applied across various domains without modifica-
tion. It processes feedback from the verification
agent and contextual information from the problem
statement to assign suitability scores to different
inference-time algorithms.

Prompt

Analyze the following planning problem
and explain your reasoning for assigning
priority scores to the algorithms based on
their suitability. Scores should be between 0
and 1, where 1 represents the most suitable
algorithm for the given problem.
Problem Statement: <problem statement>
Requirements: <feedback>
Context: <context if context else ‘None
provided’>
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Start by providing a brief reasoning for each
algorithm’s suitability based on problem
complexity. Then, ONLY output your re-
sponse strictly as a list with the exact for-
mat below:
Reasoning:

• Best of N: [Explain why this algorithm
is or isn’t suitable]

• Rebase: [Explain why this algorithm
is or isn’t suitable]

• ToT: [Explain why this algorithm is or
isn’t suitable]

Scores:

[("Best of N", float),

("Rebase", float),

("ToT", float)]

Algorithm for Selection using UCB The algo-
rithm (Algorithm 1) presented is a modified UCB
selection strategy that incorporates additional fac-
tors for exploration, diversity, and recovery. It ini-
tializes each algorithm with basic statistics like
reward (R(a)), count of trials (C(a)), and recovery
score (Rec(a)). The algorithm computes a normal-
ized reward R̄norm(a) for each option, balancing
the reward with exploration (E(a)), which encour-
ages trying less-used algorithms. A diversity bonus
D(a) penalizes overused algorithms, while a recov-
ery bonus RecB(a) rewards algorithms that per-
form well after prior failures. LLM-guided priors
(LLM_prior) are used to influence the selection
process based on prior knowledge. The final selec-
tion is made by maximizing the UCB score, which
combines these factors to balance exploitation and
exploration.

Ablation Study on UCB Modifications To de-
sign our selection agent, we conducted an ablation
study evaluating modifications to the UCB formula,
shown in Figure 10. Initially, we replaced the selec-
tion agent with a simple sequential strategy, termed
“Multi-Agent (Sequential)”, where algorithms exe-
cute in sequence, and the verification agent selects
the highest-scoring plan. Next, we implemented a
UCB selection agent, but excluded the ‘diversity
bonus’ and ‘recovery term’ introduced in our pro-
posed formulation in the main paper, denoted as
“Multi-Agent (UCB w/o div. and rec.)”. Finally, we
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Figure 10: Ablation Study of UCB Modifications on
Selection Agent and its impact on Multi-Agent Mixture
of Algorithms framework. div.: diversity bonus, rec:
recovery term.

implemented the complete selection agent incorpo-
rating our proposed UCB, labeled “Multi-Agent
(UCB)”. As shown in Figure 10, the inclusion
of the diversity bonus and recovery terms in the
UCB formula ("Multi-Agent (UCB)") resulted in
∼ 3.5% performance gain compared to the UCB
variant without these terms, further enhancing over-
all results. Note that the LLM-guided priors are
still the part of Multi-Agent (UCB w/o div. and
rec.) and Multi-Agent (UCB).

D Details on Proposed Frameworks

We provide further details in this section regarding
the prompts used for PlanGEN (ToT) and PlanGEN
(REBASE), as well as the specific algorithms used
to execute these inference-time methods.

Prompts used for ToT and REBASE PlanGEN
(ToT) and PlanGEN (REBASE) employ three
prompt types: (1) step prompt, (2) step reward
prompt, and (3) completion prompt. Step prompt
guide the model to generate subsequent steps based
on the problem statement and previously gener-
ated steps. Step reward prompt evaluate each in-
termediate step against the problem statement and
constraints, similar to the prompts used by a ver-
ification agent. Completion prompt check for a
complete solution after each step. If a solution is
found, exploration terminates; otherwise, the pro-
cess continues until a solution is reached.
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Step Prompt

You are an expert assistant for generating
step-by-step plan to solve a given question
using specified tools. Given the problem
and any intermediate steps, output only the
next step in the plan. Ensure that the next
action helps in moving toward the correct
plan to solve the given question. Do not
provide the full plan. Keep responses con-
cise, focusing solely on the immediate next
step that is most effective in progressing
toward the correct plan.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

Completion Prompt

You are an assistant tasked with verifying
if the final, complete plan to solve the
given question has been achieved within the
intermediate steps. Output only ‘1’ if the
intermediate steps contain the full solution
needed to solve the question. If the full plan
has not yet been reached, output only ‘0’.
Provide no additional commentary—return
exclusively ‘1’ or ‘0’.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

E Further Details on Benchmarks and
Experiments

Statistics of Benchmarks For evaluation, we uti-
lize evaluation sets of all four benchmarks. For
NATURAL PLAN, we employed the provided eval-
uation sets, consisting of 1000 instances each for
Calendar Scheduling and Meeting Planning, and
1600 instances for Trip Planning. The GPQA evalu-
ation was conducted using the Diamond set, which

comprises 198 highly challenging instances. From
OlympiadBench, we selected the text-only prob-
lems, excluding those requiring a theorem prover,
resulting in 674 instances for the MATH category
and 236 for the PHY category. We also used 922
instances from the DocFinQA evaluation set.

Models Our primary evaluations use Gemini-1.5-
Pro for all the experiments. We also present a
case study with Gemini-2.0-Flash, Gemini-2.5-Pro,
GPT-4o, and QwQ-32B (recent reasoning model)
to showcase the model-agnostic nature and gener-
alizability of PlanGEN. For all models, we utilize a
checkpoint from January 2025.

Metrics We use task-specific metrics for all eval-
uations. Specifically, we use Exact Match (EM) for
NATURAL PLAN similar to Zheng et al. (2024),
micro-average accuracy for OlympiadBench simi-
lar to He et al. (2024), and accuracy for GPQA and
DocFinQA (along with F1-Score for DocFinQA).

Feedback prompt for Multi-Agent Baseline In
the multi-agent baseline, we employ a feedback
prompt to iteratively generate improved and refined
outputs. The prompt is provided below:

Feedback Prompt

Analyze the following planning problem
and explain your reasoning for assigning pri-
ority scores You are an intelligent assistant
capable of self-reflection and refinement. I
will provide you with your last response,
and your task is to improve it, if necessary.
Here is your previous response:
{previous_response}
Analyze and refine your response step-by-
step:
1. Reflect on your reasoning process.
Where might it be unclear or incorrect? Im-
prove it.
2. Revise the explanation to address any
identified issues and make it more logical
and comprehensive.
3. Ensure the final answer is correct, sup-
ported by clear reasoning.

Hyper-parameters for Experiments To ensure
deterministic behavior, we set the temperature of
all models to 0 for each agent. For the inference-
time algorithms, we used the following settings:
PlanGEN (Best of N ) with five samples at a tem-
perature of 0.7; Tree of Thoughts (ToT) with three
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Figure 11: KDE plot illustrating the relationship be-
tween reward value and outcome (success/failure)

Methods OlympiadBench

MATH PHY

PlanGEN (Best of N ) (5) 53.26 32.63
PlanGEN (Best of N ) (10) 54.90 31.36
PlanGEN (Best of N ) (20) 53.22 29.38

PlanGEN (ToT) (3) 52.97 31.36
PlanGEN (ToT) (5) 55.20 32.05
PlanGEN (ToT) (10) 55.79 32.52

PlanGEN (REBASE) (10) 54.45 31.78
PlanGEN (REBASE) (20) 54.45 29.37
PlanGEN (REBASE) (30) 55.04 30.28

Table 3: Performance impact of hyper-parameters on
inference-time algorithms in OlympiadBench

children per root node, generated at a temperature
of 0.7; and REBASE, initialized with width 10 at
temperature of 0.7, decremented by 1 after each
call to expand. For our experiments, we set λprior

= 10, αdiversity = 1, αrecovery = 1, and capped the
exploration term at M = 5 (retaining the standard 2
under the square root). All these hyperparameters
are selected based on empirical study.

F More Analysis

Performance of our frameworks w.r.t. differ-
ent complexity From Figure 12, in the meeting
planning, PlanGEN (Best of N ) excels in both sim-
ple and intermediate problems, whereas a PlanGEN
(Mixture of Algo.) performs better for complex
problems. The trip planning presents a different
trend, where PlanGEN (Best of N ) and a PlanGEN
(Mixture of Algo.) consistently outperform other
approaches across all complexity levels. Nonethe-
less, in very complex problems for meeting and trip
planning, all algorithms exhibit poor performance.

Importance of Verification Agent The kernel
density estimation (KDE) plot visualizes the distri-
bution of reward values assigned to two distinct out-

Frameworks NATURAL PLAN OlympiadBench GPQA DocFinQA

PlanGEN (BoN) 19.55% 7.09% 8.56% 81.03%
PlanGEN (ToT) 68.85% 90.09% 85.59% 12.5%
PlanGEN (REBASE) 11.6% 2.82% 5.86% 6.47%

Table 4: Algorithm Selection Frequency by Dataset

comes: “Success” (green) and “Failure” (red). The
plot reveals a clear separation between the reward
distributions, with “Success” outcomes strongly as-
sociated with high reward values (around 80-100)
and “Failure” outcomes primarily associated with
low reward values (around 20-40). The sharply
peaked green curve suggests consistent and high
rewards for successful outcomes, while the broader
red curve reflects more variability in rewards as-
signed to failures. However, a small bump in the
red curve at high reward values (around 80-90)
suggests a few instances where failures received
unexpectedly high rewards, warranting further in-
vestigation. This observation is further supported
by a statistically significant difference between
the reward distributions, a Mann-Whitney U test
(U = 116128.0, p < 0.0001). The low p-value
(3.42e-09) provides evidence that the difference in
reward distributions is statistically significant.

Different hyper-parameters of inference-time
algorithms vs. their performance We conduct
a case study on OlympiadBench, where we ana-
lyze the impact of varying hyper-parameters on
the performance of different inference-time algo-
rithms. The results (Table 3) indicate that while in-
creasing the number of samples (Best of N ), steps
(ToT), or refinements (REBASE) lead to marginal
improvements, the overall differences remain rela-
tively small. Given this, we opted for lower hyper-
parameter values across all inference-time algo-
rithms to balance efficiency and performance.

Frequency of inference-time algorithm selection
across datasets For the PlanGEN (Mixture of
Algo.) method, we analyze how frequently each
inference-time algorithm (Best of N , ToT, and RE-
BASE) is selected across different datasets. The
results (shown in Table 4) show that PlanGEN (ToT)
is the most frequently chosen algorithm in NATU-
RAL PLAN, OlympiadBench, and GPQA, indi-
cating its effectiveness in these domains. In con-
trast, for DocFinQA, PlanGEN (Best of N ) is the
dominant choice, suggesting that its strategy aligns
better with financial reasoning tasks. PlanGEN (RE-
BASE) is selected the least across all datasets, im-
plying that its refinements are less favored by the
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Figure 12: Performance comparison of inference-time algorithms across different complexity levels for meeting and
trip planning from NATURAL PLAN

Figure 13: Comparison of baselines and our frame-
works, showing the trade-off between time (seconds)
and performance (%) for OlympiadBench (MATH).

selection mechanism. These findings highlight the
dataset-dependent nature of inference-time algo-
rithm effectiveness and the adaptability of the mix-
ture approach in dynamically choosing the most
suitable method.

Discussion on Time Complexity vs. Performance
(%) Figure 13 shows the relationship between
the time for running per instance and task perfor-
mance across baselines (single-agent and multi-
agent) and proposed frameworks, using Olympiad-
Bench (MATH category). Since the algorithms
used with the PlanGEN framework are dynamic
and to abstract from transient issues like the ex-
isting quota limit and retrying, we calculate the
average seconds per instance based on the latency
of a single call (denoted as latency_of_single_call).
For example, for a method that supports running
LLM calls in parallel, the total time for 10 calls
would be approximately 1 × latency_of_single_call.
In contrast, for methods that process calls sequen-
tially, the total time would be closer to 10 × la-
tency_of_single_call.

Method Blocksworld (v1) Blocksworld (v3)

Gemini-2.5-Flash 88.40% 92.93%
PlanGEN (BoN) 85.40% 95.96%
PlanGEN (REBASE) 95.54% 98.98%

Table 5: Accuracy on blocksworld v1 and v3 across
different methods for plan generation task.

Direct Solution vs. Plan Generation We con-
ducted a case–study experiment on GPQA where
we use Best-of-N with the same computational
setting as PlanGEN (Best-of-N ), but rather than
generating a plan, we generate a direct final CoT so-
lution. The table below presents the results. From
the results, we can observe that there is a ∼ 2%
performance improvement using PlanGEN (Best-of-
N ) (57.10%) compared to Best-of-N (Baseline)
(55.50%). Here, the computational cost of using
Best-of-N is similar, despite PlanGEN (Best-of-N )
showing a performance gain. For ToT and RE-
BASE, without gold step-by-step solutions to guide
node selection, standalone ToT and REBASE be-
come challenging to apply fairly to benchmarks.

Performance of PlanGEN on Blocksworld (Plan
Generation) We evaluated our approach on the
Blocksworld domain (versions v1 and v3) for
the Plan Generation category from Valmeekam
et al. (2024a). In PlanBench, the Plan Gener-
ation task requires generating a valid sequence
of grounded actions that transforms a given ini-
tial state into a specified goal state while satis-
fying all domain constraints. For experiments,
we utilize default prompts from Valmeekam et al.
(2024a). The results, summarized in Table 5, com-
pare a strong LLM baseline (Gemini-2.5-Flash)
with two variants of our framework: PlanGEN(Best
of N ) and PlanGEN(REBASE). As shown in Ta-
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ble 5, PlanGEN(REBASE)3 achieves the highest
accuracy across both Blocksworld versions, outper-
forming Gemini-2.5-Flash by about 7.1% points
on v1 and 6.0% points on v3. Even the simpler
PlanGEN(Best of N ) variant surpasses Gemini-2.5-
Flash on the more challenging v3, highlighting
the value of diverse plan exploration. These re-
sults demonstrate that PlanGEN’s structured, multi-
agent approach—combining diverse plan sampling
with iterative verification and constraint enforce-
ment—substantially mitigates the weaknesses of
standard LLMs identified by PlanBench and yields
robust improvements.

Constraint-Guided Verification We conducted
targeted experiments on GPQA and Olympiad-
Bench(PHY). In this case study, we compared a
Best ofN baseline, where the constraint agent was
removed and a generated plan was provided di-
rectly to the verifier agent, against our PlanGEN
(Best of N ) variant with constraint-guided veri-
fication. The results show that on GPQA accu-
racy improves from 55.56% to 57.10%, and on
OlympiadBench(PHY) from 29.08% to 31.78%.
These ∼ 2% gains demonstrate that grounding
the verifier in problem-specific constraints leads
to higher-quality plans.

Discussion on Random Baseline we conducted
an ablation on GPQA with the Gemini-2.0-Flash
model to compare our adaptive selection module
against a random-selection baseline. To develop
a random-selection baseline, at each iteration, we
randomly choose among Best of N , ToT, and RE-
BASE under the same stopping threshold, yielding
50.51% accuracy. In contrast, PlanGEN (Mixture
of Algorithms) achieves 63.64% accuracy, where
the selection agent selects the inference-time al-
gorithm. This result demonstrates that informed,
adaptive algorithm choice at test time significantly
outperforms a random baseline.

G Various Examples for Different
Components of PlanGEN

Examples for Constraint Agent To illustrate
the output of our constraint agent, Table 6, Table
7, and Table 8 present representative examples of
generated constraints. These tables highlight the
diverse constraints generated for problem instances
of different tasks.

3Results on REBASE are calculated for only 315 samples
for v1 due to resource constraints, whereas we utilize all 500
samples for v1 and 100 samples for v3.

Example for Verification Agent To illustrate the
output of our verification agent, Table 9 presents
representative examples of verification process for
NATURAL PLAN (calendar scheduling). This ta-
ble highlights the how the verification agent verifies
the generated plan using constraints.

Examples of Generated Plans To demonstrate
the plan generation process, Table 10, Table 11, Ta-
ble 12, and Table 13 present example plans for NAT-
URAL PLAN, GPQA, DocFinQA, and Olympiad-
Bench. Generated using PlanGEN (Best of N ),
these tables highlight the varied nature of plans
produced across different task types. For GPQA,
DocFinQA, and OlympiadBench (i.e., downstream
reasoning tasks), the examples additionally illus-
trate how these generated plans are executed to
derive the final answer.

More examples for agents and frameworks
within PlanGEN are provided at https://anonymous.
4open.science/r/plangen-0C99
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Algorithm 1 Selection using Modified UCB with LLM-Guided Priors

1: Initialize: R(a)← 0, C(a)← 1, Rec(a)← 0, F (a)← 0, D(a)← 1, T ← 0
2: Set λprior, αdiversity, αrecovery
3: Load LLM-guided priors
4: procedure SELECTALGORITHM(args)
5: Compute prior decay: λprior ← λprior

1+T ▷ Reduces as trials increase
6: Set max exploration term M ← 5
7: Obtain LLM prior scores: LLM_prior ← LLM_Guided_Prior(args)
8: Compute max reward: Rmax ← max(R(a)) (set to 1 if all rewards are 0)
9: for each algorithm a do

10: Compute normalized reward:

R̄norm(a)←
R(a)

C(a)Rmax

▷ Scales rewards between 0 and 1 for comparability
11: Compute exploration term:

E(a)← min

(√
2 log(T + 1)

C(a)
,M

)

▷ Encourages trying less-used algorithms, capped at M
12: Compute diversity bonus:

D(a)← αdiversity

C(a) + 1

▷ Penalizes frequently used algorithms to encourage variety
13: Compute recovery bonus:

RecB(a)← αrecovery ·Rec(a)

▷ Rewards algorithms that perform well after failures
14: Compute final UCB score:

UCB(a)← R̄norm(a) + E(a) + λpriorLLM_prior(a) +D(a) +RecB(a)

▷ Balances exploitation, exploration, diversity, and recovery
15: end for
16: Select best algorithm:

a∗ ← argmax
a

UCB(a)

17: return (a∗, UCB(a∗))
18: end procedure
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Benchmark Problem Statement Generated Constraints

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

Instance-Specific Constraints and Details:
Participants: Michelle, Steven, Jerry - The meeting
must include all three.
————
Meeting Duration: 1 hour - The meeting requires a
contiguous 60-minute slot.
————
Work Hours: 9:00 to 17:00 (Monday) - The meeting
must start and end within these working hours. This
acts as a global constraint.
————
Individual Schedules (Existing Meetings/Blocked
Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00,
13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30
to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Mon-
day (note this constraint ends at the end of the work-
day).
————
While the problem states "Note there exists a solu-
tion," this isn’t a constraint in itself; it’s a guarantee
that a feasible solution exists given the constraints.
The actual constraints are the schedules, meeting du-
ration, and working hours.

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.
————
Your response should start with ’SOLUTION:’

Instance-Specific Constraints and Details:
Travel Times:
- Bayview to Golden Gate Park: 22 minutes.
- Golden Gate Park to Bayview: 23 minutes (Note:
This information is provided but not strictly neces-
sary for this specific problem as the return trip isn’t
relevant to meeting Barbara).
————
Locations:
- Starting Location: Bayview
- Meeting Location: Golden Gate Park
————
Scheduled Meeting Times/Participant Availability:
- Barbara is available at Golden Gate Park from 8:00
AM to 11:30 AM.
————
Arrival Time:
- You arrive at Bayview at 9:00 AM.
————
Minimum Meeting Duration:
- The meeting with Barbara must be at least 90 min-
utes long.
————
Sequence Requirements:
- Travel (Bayview to Golden Gate Park) → Wait (if
necessary, due to arriving before Barbara’s availabil-
ity ends) → Meeting (with Barbara)
————
Objective: Maximize the number of friends met (in
this case, it’s simplified to just meeting Barbara, so
the objective is to determine IF a meeting is possible
given the constraints).

Table 6: Examples of constraints generated by the constraint agent given problem statement. These examples
illustrate the constraint generation for calendar scheduling and meeting planning from NATURAL PLAN
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Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?
(A) 10−11 eV
(B) 10−8 eV
(C) 10−9 eV
(D) 10−4 eV

Constraints for Verifying the Energy Difference Solution for Resolvable Quantum States

This problem revolves around the energy-time uncertainty principle, which dictates the resolvability of energy levels given
their lifetimes. To verify a proposed energy difference (∆E = |E2 − E1|) that allows clear resolution, we need constraints
encompassing the following:

1. Uncertainty Principle Adherence:
Primary Constraint: The product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) must satisfy the energy-
time uncertainty relation: ∆E∆t ≥ ℏ

2
, where ℏ is the reduced Planck constant.

Specific Constraint: Since we have two states, we must consider the combined uncertainty in time. We can approximate this as
the average of the individual lifetimes: ∆t ≈ τ1+τ2

2
, where τ1 and τ2 are the lifetimes of the two states.

Operational Constraint: For "clear resolution," we typically require ∆E to be significantly greater than the uncertainty dictated
by the uncertainty principle. A common rule of thumb is ∆E ≥ ℏ

∆t
. A stricter constraint might use a larger factor (e.g.,

∆E ≥ 2ℏ
∆t

) for even clearer resolution.

2. Units Consistency:
Unit Constraint: All calculations must use consistent units. Ensure that energy (∆E), time (∆t), and ℏ are expressed in
compatible units (e.g., Joules and seconds, or eV and seconds). Clearly state the chosen unit system.

3. Numerical Accuracy:
Precision Constraint: Calculations should be performed with sufficient numerical precision to avoid rounding errors. Define
the acceptable level of precision.
Constant Accuracy: Use a precise value for the reduced Planck constant (ℏ).

4. Solution Justification:
Explanation Constraint: The solution must not only provide a numerical value for ∆E but also clearly explain why this value
satisfies the constraints and allows for clear resolution. This explanation should reference the uncertainty principle and the
chosen resolution criterion.

5. Alternative Solutions Consideration (Optional):
Exploration Constraint: Explore whether multiple values of ∆E could satisfy the constraints. If so, discuss the trade-offs
between different solutions.

Example Implementation of Constraints:

Let’s assume we’re working in SI units (Joules and seconds).
1. Uncertainty Principle: ∆E ≥ ℏ

[(10−9 s+10−8 s)/2] , where ℏ ≈ 1.054× 10−34 J s.
2. Units: All calculations are in Joules and seconds.
3. Numerical Accuracy: Calculations will be performed to at least 4 significant figures.
4. Justification: The solution will explain how the calculated ∆E is significantly larger than the uncertainty, ensuring clear
resolution.

Table 7: Examples of constraints generated by the constraint agent given reasoning question. The example illustrates
the constraint generation for solving physics question from GPQA
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Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Constraints for Verifying the Solution Plan for Prime Sequence Problem

This problem requires a solution plan that likely involves a combination of mathematical reasoning and computational verification.
Here’s a breakdown of constraints to verify and evaluate such a plan:

I. Mathematical Reasoning Constraints:

1. Correct Recurrence Relation: The plan must correctly interpret and utilize the given recurrence relations for xn and yn.
Verify that the plan doesn’t misinterpret or modify these definitions.
2. Mersenne Primes Understanding: The plan should demonstrate an understanding that yn are Mersenne numbers (numbers
of the form 2p − 1). It should acknowledge that for yn to be prime, xn must itself be prime (though this is a necessary but not
sufficient condition).
3. Logical Flow and Justification: The plan’s reasoning should be clear, logical, and well-justified. Each step should follow
from the previous ones, with clear explanations for any claims or deductions made. Avoid leaps of logic or unsubstantiated
assertions.
4. Handling of Base Case (k = 1): The plan should explicitly address the trivial case where k = 1. Since y1 = 2a − 1, any
prime value of ’a’ will result in y1 being a potential Mersenne prime. This confirms that k ≥ 1.
5. Strategy for Finding Maximum k: The plan must outline a clear strategy for determining the largest possible k. This likely
involves exploring increasing values of k and checking the primality of the resulting yn sequence. The plan should explain how
it avoids infinite search or unnecessary computations.
6. Optimality Argument: The plan should include an argument (or at least a strategy for developing an argument) for why the
found value of k is indeed the largest possible. This might involve demonstrating that for k + 1, no suitable ’a’ exists.

II. Computational Verification Constraints:

1. Primality Testing Algorithm: If the plan involves computational primality testing, it should specify the algorithm used (e.g.,
probabilistic tests like Miller-Rabin or deterministic tests like AKS). The plan should justify the choice of algorithm based on the
size of the numbers being tested and the desired level of certainty.
2. Correct Implementation: If code is involved, it must be correct and free of errors. The plan should include testing procedures
to ensure the code accurately implements the chosen primality test and the recurrence relations.
3. Computational Resources: The plan should consider the computational resources required for the primality testing. For
large values of xn, testing the primality of yn can be computationally expensive. The plan should address how it manages these
computational challenges.
4. Range of ’a’ considered: The plan should specify the range of values for ’a’ that will be explored. It should justify this range
and explain why exploring values outside this range is unnecessary.
5. Termination Condition: The plan must have a clear termination condition for its computational search. It should explain
how it determines when to stop searching for larger values of ’k’.

III. Presentation and Clarity Constraints:

1. Clear and Concise Explanation: The plan should be presented in a clear, concise, and easy-to-understand manner. Avoid
unnecessary jargon or overly complex language.
2. Well-Organized Structure: The plan should be well-organized, with a logical flow of ideas. Use headings, subheadings, and
bullet points to improve readability.
3. Reproducibility: The plan should be sufficiently detailed to allow another person to reproduce the results. All assumptions,
parameters, and procedures should be clearly stated.

Table 8: Examples of constraints generated by the constraint agent given mathematical reasoning problem. The
example illustrates the constraint generation for solving MATH question from OlympiadBench
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Problem Statement: You are an expert at scheduling meetings. You are given a few constraints on the existing schedule of each
participant, the meeting duration, and possibly some preferences on the meeting time. Note there exists a solution that works
with existing schedule of every participant.

TASK: You need to schedule a meeting for Michelle, Steven and Jerry for one hour between the work hours of 9:00 to 17:00 on
Monday.

Here are the existing schedules for everyone during the day:
- Michelle has meetings on Monday during 11:00 to 12:00;
- Steven has blocked their calendar on Monday during 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30 to 16:00;
-Jerry has blocked their calendar on Monday during 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, 15:30 to 16:00,
16:30 to 17:00;

Find a time that works for everyone’s schedule and constraints.

Instance-Specific Constraints and Details:

Participants: Michelle, Steven, Jerry - The meeting must include all three.

Meeting Duration: 1 hour - The meeting requires a contiguous 60-minute slot.

Work Hours: 9:00 to 17:00 (Monday) - The meeting must start and end within these working hours. This acts as a global
constraint.

Individual Schedules (Existing Meetings/Blocked Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Monday (note this
constraint ends at the end of the workday).

While the problem states "Note there exists a solution," this isn’t a constraint in itself; it’s a guarantee that a feasible solution
exists given the constraints. The actual constraints are the schedules, meeting duration, and working hours.

Generated Plan:

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday

2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-15:30, 16:00-16:30

3. Determine Common Availability: Looking for 1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30

4. Prioritize Earliest Time Slot: The earliest 1-hour slot is 14:30-15:30

5. Ensure Solution Exists: The slot 14:30-15:30 works for all three.

6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday, 14:30 - 15:30

Verification:

The plan demonstrates significant improvement compared to the initial plan. It correctly identifies individual availabilities and
successfully finds the two viable one-hour slots: 9:30-10:30 and 14:30-15:30. It avoids exploring irrelevant shorter slots. The
plan is well-structured and clearly explains each step. It’s on the verge of providing the correct solution. However, it has not
yet explicitly stated the final answer (the prioritized earliest time slot) which is a key part of the task. Therefore, while much
improved, it doesn’t quite merit a top score due to this omission.

Score: 95

Table 9: Examples of verification generated by the verification agent given generated plan and constraints. This
example illustrates the verification process for calendar scheduling from NATURAL PLAN
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Category Problem Statement Generated Plan

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday
————
2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30,
16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-
15:30, 16:00-16:30
————
3. Determine Common Availability: Looking for
1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-
13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30
————
4. Prioritize Earliest Time Slot: The earliest 1-hour
slot is 14:30-15:30
————
5. Ensure Solution Exists: The slot 14:30-15:30
works for all three.
————
6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday,
14:30 - 15:30

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.

You leave Bayview at 9:00 AM and travel 22 minutes
to Golden Gate Park, arriving at 9:22 AM. You meet
Barbara from 9:22 AM – 10:52 AM, fulfilling the
90-minute requirement.

Trip
Planning

You plan to visit 4 European cities for 12 days in total.
You only take direct flights to commute between
cities. You plan to stay in Budapest for 6 days. You
plan to stay in Reykjavik for 5 days. You would like
to meet your friends at Reykjavik between day 6 and
day 10 to tour together. You want to spend 2 days in
Milan. You are going to attend a wedding in Milan
between day 10 and day 11. You would like to visit
Porto for 2 days.
————
Here are the cities that have direct flights:
Budapest and Reykjavik, Reykjavik and Milan, Bu-
dapest and Milan, Milan and Porto.
————
Find a trip plan of visiting the cities for 12 days by
taking direct flights to commute between them.

Day 1-6: Arriving in Budapest and visit Budapest
for 6 days.
Day 6: Fly from Budapest to Reykjavik.
Day 6-10: Visit Reykjavik for 5 days.
Day 10: Fly from Reykjavik to Milan.
Day 10-11: Visit Milan for 2 days.
Day 11: Fly from Milan to Porto.
Day 11-12: Visit Porto for 2 days.

Table 10: Examples of generated plans by PlanGEN (Best of N ) given problem statement. These examples illustrate
the plan generation for all three task categories from NATURAL PLAN
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Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?

Plan to solve the problem:

1. Identify the relevant physics principle: This problem involves the energy-time uncertainty principle, which states that the
product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) is greater than or equal to h-bar/2 (ℏ/2). The
uncertainty in time is related to the lifetime of the states. To clearly distinguish the energy levels, the energy difference between
them must be greater than the uncertainty in their energies.

2. Relate lifetimes to time uncertainty: The lifetimes given (10−9 s and 10−8 s) represent the uncertainties in the time for each
state (∆t1 and ∆t2). We need to consider which lifetime is more restrictive for resolving the energy levels. Since we want to
*clearly* distinguish them, we should use the *smaller* lifetime as the relevant ∆t. This is because the shorter lifetime leads to
a larger energy uncertainty, making the levels harder to resolve.

3. Calculate the minimum energy difference: Use the energy-time uncertainty principle (∆E ∗∆t ≥ ℏ/2) with the smaller
lifetime to calculate the minimum resolvable energy difference (∆E). We can approximate this by setting ∆E ∗∆t ≈ ℏ/2.
We’ll need the value of ℏ (Planck’s constant divided by 2π) in eV·s.

4. Compare the calculated ∆E with the choices: Compare the calculated minimum resolvable energy difference (∆E) with the
given options (A) through (D). The correct answer will be the option that is *greater* than the calculated ∆E, ensuring that the
energy difference is large enough to resolve the two levels.

5. Select the correct answer: Based on the comparison in step 4, choose the option that represents an energy difference greater
than the minimum resolvable energy difference.

Plan Execution:

1. Identify the relevant physics principle: The energy-time uncertainty principle (∆E ∗∆t ≥ ℏ/2) governs this situation.

2. Relate lifetimes to time uncertainty: The shorter lifetime, 10−9 s, is the relevant ∆t because it leads to a larger energy
uncertainty, making resolution more difficult. So, ∆t = 10−9 s.

3. Calculate the minimum energy difference:
We have ∆E ∗∆t = ℏ/2. We need ℏ in eV·s. ℏ = 6.582× 10−16 eV·s.
∆E = (ℏ/2)/∆t
∆E = (6.582× 10−16 eV·s/2)/(10−9 s)
∆E = 3.291× 10−7 eV
This is approximately 3× 10−7 eV.

4. Compare the calculated ∆E with the choices: We need an energy difference greater than 3× 10−7 eV to clearly resolve the
levels.
(A) 10−11 eV - Too small
(B) 10−8 eV - Too small
(C) 10−9 eV - Too small
(D) 10−4 eV - Large enough

5. Select the correct answer: Option (D) is the only one significantly larger than the calculated minimum energy difference.

Answer: D

Table 11: Examples of generated plans by PlanGEN (Best of N ) given physics problem. The example illustrates the
plan generation and it’s execution for physics problem from GPQA
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<Entire Document>

Question: What is the percentage change in cash flow hedges in 2011 compare to the 2010?

Plan to solve the problem:

1. Locate the information on cash flow hedges: Search the document for "cash flow hedges" or similar terms related to derivative
instruments used for hedging cash flows. Focus on sections discussing derivative instruments, hedging activities, and related
notional amounts.

2. Identify the notional amounts for 2011 and 2010: Once the relevant section is found (Note 2i), extract the notional amounts of
the cash flow hedges specifically for fiscal year 2011 and fiscal year 2010.

3. Calculate the percentage change: Use the formula for percentage change: [(Notional Amount 2011 - Notional Amount 2010) /
Notional Amount 2010] * 100. This will provide the percentage change in cash flow hedges from 2010 to 2011.

Plan Execution:

1. Locate the information on cash flow hedges: The information on cash flow hedges was located in a section discussing
derivative instruments and hedging activities. Specifically, it was found within a sentence detailing the notional amounts of
various hedging instruments.

Code (if needed):
“‘python
# No code needed for this step.
“‘
Result: Information on cash flow hedges located successfully.

2. Identify the notional amounts for 2011 and 2010: The notional amounts for cash flow hedges were identified as $153.7 million
for 2011 and $139.9 million for 2010.

Code (if needed):
“‘python
# No code needed for this step.
“‘
Result: 2011 notional amount: $153.7 million; 2010 notional amount: $139.9 million.

3. Calculate the percentage change:

Code (if needed):
“‘python
notional_2011 = 153.7
notional_2010 = 139.9
percentage_change = ((notional_2011 - notional_2010) / notional_2010) * 100
rounded_percentage_change = round(percentage_change, 1)
print(f"{rounded_percentage_change}%")
“‘

Answer: 9.9%

Table 12: Examples of generated plans by PlanGEN (Best of N ) given financial reasoning problem. The example
illustrates the plan generation and it’s execution for problem from DocFinQA
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Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Plan for Solving the IMO Problem:
1. Problem Understanding: The problem defines a recursive sequence ‘x_n’ based on an initial value ‘a’, and a related sequence
‘y_n’ based on ‘x_n’. The goal is to find the largest ‘k’ such that ‘y_1’, ‘y_2’, ..., ‘y_k’ can all be prime numbers for some choice
of ‘a’.
2. Key Information and Variables:
‘a’: A positive integer, the starting value for the sequence ‘x_n’. This is the variable we need to choose optimally.
‘x_n’: Defined recursively as ‘x_1 = a’ and ‘x_(n+1) = 2x_n + 1’.
‘y_n’: Defined as ‘y_n = 2^(x_n) - 1’. This is the sequence we need to check for primality.
‘k’: The length of the subsequence of ‘y_n’ consisting only of primes. We want to maximize this.
3. Problem Type and Method: This is a number theory problem involving sequences, primality, and recursion. The method will
involve a combination of:
Analyzing the structure of ‘x_n’ and ’y_n’: Finding a closed-form expression for ’x_n’ in terms of ’a’ and ‘n‘ will be crucial.
This will help us understand the structure of ‘y_n’.
Primality testing/properties: We’ll need to leverage known properties of prime numbers, particularly those related to Mersenne
primes (primes of the form 2^p - 1, where p is prime).
Case analysis/exploration: We might need to explore small values of ‘a’ and ‘k’ to identify patterns and formulate conjectures.
Proof by contradiction: To establish the largest possible ‘k‘, we may need to assume a larger value is possible and derive a
contradiction.
4. Solution Process:
Step 1: Derive a closed-form expression for ‘x_n‘. The recursive definition suggests a linear recurrence relation. We can solve it
to express ‘x_n‘ directly in terms of ‘a‘ and ‘n‘.
Step 2: Substitute ‘x_n‘ into the definition of ‘y_n‘. This gives us a formula for ‘y_n‘ in terms of ‘a‘ and ‘n‘.
Step 3: Analyze the primality conditions for ‘y_n‘. Given that ‘y_n‘ has the form 2^m - 1, we know that for ‘y_n‘ to be prime,
‘m‘ (which is ‘x_n‘) must itself be prime. This suggests focusing on values of ‘a‘ that lead to prime values of ‘x_n‘.
Step 4: Explore small values of ‘a‘ and ‘k‘. This helps to identify patterns and limitations on the possible values of ‘k‘.
Step 5: Investigate divisibility properties. Consider the factors of ‘y_n‘ and how they might relate to previous terms in the
sequence. Look for patterns in the factors that might prevent multiple consecutive ‘y_n‘ from being prime.
Step 6: Formulate a conjecture for the maximum ‘k‘. Based on the observations from the previous steps, propose a value for the
maximum ‘k‘.
Step 7: Prove the conjecture. Use a proof by contradiction. Assume a larger ‘k‘ is possible and demonstrate that this leads to a
contradiction based on the divisibility properties of ‘y_n‘. This will establish the proposed value of ‘k‘ as the maximum.

Plan Execution:
1. Closed-form for xn: The recurrence relation xn+1 = 2xn + 1 with x1 = a can be solved as follows:
x2 = 2a+ 1
x3 = 2(2a+ 1) + 1 = 4a+ 3 = 22a+ 22 − 1
x4 = 2(4a+ 3) + 1 = 8a+ 7 = 23a+ 23 − 1
By induction, we can show that xn = 2n−1a+ 2n−1 − 1 = 2n−1(a+ 1)− 1.
2. yn in terms of a and n: Substituting the expression for xn into yn = 2xn − 1, we get yn = 22

n−1(a+1)−1 − 1.
3. Primality of yn: For yn to be prime, xn must be prime. Let xn = pn, where pn is a prime number.
4. Exploring small values:
If a = 1, x1 = 1, y1 = 21 − 1 = 1, which is not prime.
If a = 2, x1 = 2, y1 = 22 − 1 = 3, which is prime.
x2 = 2(2) + 1 = 5, y2 = 25 − 1 = 31, which is prime.
x3 = 2(5) + 1 = 11, y3 = 211 − 1 = 2047 = 23 · 89, which is not prime. So, for a = 2, k = 2.
5. Divisibility:
If x1 = a is prime, say a = p, then x2 = 2p+ 1. If x2 is also prime, then y1 and y2 are potentially Mersenne primes. However,
x3 = 2(2p + 1) + 1 = 4p + 3. If p = 2, x3 = 11, and y3 is not prime. If p = 3, x2 = 7, x3 = 15, which is not prime. If
p = 5, x2 = 11, x3 = 23, x4 = 47, x5 = 95, which is not prime.

If k = 3, we need x1 = a, x2 = 2a + 1, and x3 = 4a + 3 to all be prime. If a = 2, x1 = 2, x2 = 5, x3 = 11. But
y3 = 211 − 1 = 2047 = 23 · 89, which is not prime.

6. Conjecture: The largest possible k is 2.
7. Proof: We have shown that for a = 2, y1 and y2 are prime. We need to show that y3 cannot be prime. x3 = 4a+ 3. If a ≡ 2
(mod 3), then 4a + 3 ≡ 4(2) + 3 ≡ 11 ≡ 2 (mod 3). If a ≡ 1 (mod 3), then 4a + 3 ≡ 4(1) + 3 ≡ 7 ≡ 1 (mod 3). If
a ≡ 0 (mod 3), then 4a+3 ≡ 3 ≡ 0 (mod 3). So, if a > 3 and a ≡ 0 (mod 3), then x3 is divisible by 3 and greater than 3,
so it is not prime. If a = 3, x3 = 15, not prime. If a = 2, x3 = 11, and y3 = 2047 = 23 · 89.

So the final answer is 2 .

Table 13: Examples of generated plans by PlanGEN (Best of N ) given maths problem. The example illustrates the
plan generation and it’s execution for problem from OlympiadBench (MATH)
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