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Abstract

In this work, we present the first study to
explore inference-time scaling on table rea-
soning tasks. We develop and evaluate two
post-training strategies to enable inference-
time scaling: distillation from frontier model
reasoning traces and reinforcement learning
with verifiable rewards (RLVR). For distillation,
we introduce a large-scale dataset of reason-
ing traces generated by DeepSeek-R1, which
we use to fine-tune LLMs into the Table-R1-
SFT model. For RLVR, we propose task-
specific verifiable reward functions and ap-
ply the GRPO algorithm to obtain the Table-
R1-Zero model. We evaluate our Table-R1-
series models across diverse table reasoning
tasks, including short-form QA, fact verifica-
tion, and free-form QA. Notably, the Table-
R1-Zero model matches or exceeds the per-
formance of GPT-4.1 and DeepSeek-R1, while
using only a 7B-parameter LLM. It also demon-
strates strong generalization to out-of-domain
datasets. Extensive ablation and qualitative
analyses reveal the benefits of instruction tun-
ing, model architecture choices, and cross-task
generalization, as well as emergence of essen-
tial table reasoning skills during RL training.

Model huggingface.co/Table-R1
Code github.com/Table-R1

1 Introduction

Reasoning large language models, such as Ope-
nAI’s o-series (Jaech et al., 2024; Pfister and Jud,
2025) and Deepseek’s R1 (Guo et al., 2025), have
demonstrated enhanced reasoning capabilities by
inference-time scaling, i.e., generating a reason-
ing chain of tokens that allow the model to “think”
before giving the final answer. Building on this
success, recent research has extended inference-
time scaling to various domains and tasks, includ-
ing multimodal reasoning (Huang et al., 2025a;
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FeTaQA

TabFact

WTQ

HiTab

ToTTo

QTSumm

R.W.InfoTabs

PHT

Feverous

TabMCQ

TabMWP

FinQA

Figure 1: Overall performance comparison between
Table-R1 and same-scale baselines on various table rea-
soning benchmarks. Both Table-R1-SFT and Table-
R1-Zero exhibit substantial performance improvements
over baselines, showing the effectiveness of our ap-
proach across both in- and out-of-domain benchmarks.

Xu et al., 2025), machine translation (Feng et al.,
2025b), agent-based tool use (Ouyang et al., 2025;
Jin et al., 2025), and information retrieval (Weller
et al., 2025; Zhuang et al., 2025).

However, applying inference-time scaling to
structure-dependent tasks—particularly table rea-
soning—remains largely unexplored. Table rea-
soning presents distinct challenges compared to
text-only tasks: it requires interpreting diverse cell
contents, aligning data across the table, and per-
forming multi-step reasoning with aggregation and
numerical operations (Deng et al., 2024; Wu et al.,
2025). These requirements are further complicated
by the need to process long and densely structured
tabular inputs (Zhao et al., 2023c; Nahid and Rafiei,
2024; Zhang et al., 2025b). Advancing LLMs’ rea-
soning capabilities over tabular tasks holds signifi-
cant promise for real-world applications, including
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data analysis (Zhao et al., 2024c), scientific report-
ing (Liang et al., 2024; Newman et al., 2024), and
decision-support systems (Handler et al., 2024).

In this work, we present the first study to ex-
plore inference-time scaling on table reasoning
tasks. Figure 2 presents the overview of our re-
search. We develop and systematically evaluate
two widely used post-training strategies to enable
inference-time scaling on table reasoning tasks: (1)
distilling from reasoning traces of frontier reason-
ing models, and (2) reinforcement learning with
verifiable rewards (RLVR). For the distillation ap-
proach, we curate and open-source a large-scale
table reasoning dataset containing reasoning traces
generated by DeepSeek-R1 and verifid by LLM-
based annotators. We fine-tune LLMs on this data
to obtain Table-R1-SFT. For the RLVR approach,
we design task-specific, verifiable reward functions
tailored to table reasoning and apply the Group Rel-
ative Policy Optimization (GRPO) algorithm (Shao
et al., 2024; Guo et al., 2025) to enable stable and
scalable reinforcement learning. This yields the
Table-R1-Zero model.

We evaluate Table-R1-series models on a wide
range of table reasoning tasks, including short-form
table QA, fact verification, and free-form table
QA. Our experiments demonstrate the effective-
ness of inference-time scaling for table reasoning.
The RLVR approach, in particular, exhibits better
performance and generalization capabilities, com-
pared to the distillation approach. Notably, our
Table-R1-Zero models achieve performance that is
competitive with advanced language models such
as GPT 4.1 and DeepSeek R1, despite using only a
7B-parameter LLM (i.e., Qwen2.5-7B) as the back-
bone. We further conduct comprehensive ablation
studies on instruction tuning benefits, model family
comparisons, and cross-task generalization, pro-
viding insights for future applications of inference-
time scaling in table reasoning. Our qualitative
analysis of model responses reveals that Table-
R1-Zero not only acquires multi-step reasoning
and reflection abilities like other reasoning models,
but also develops essential table-specific reasoning
skills such as semantic understanding, information
extraction, and arithmetic computation.

2 Related Work

2.1 Inference-Time Scaling

Recently, OpenAI’s o1 has demonstrated that scal-
ing inference-time computation can significantly
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Figure 2: An overview of our research and three re-
search questions investigated in this study.

enhance the reasoning abilities of large language
models (LLMs) on complex tasks (Jaech et al.,
2024). To leverage this, various inference-time
strategies have been explored, including the use of
Monte Carlo Tree Search (MCTS) for exploring
diverse reasoning trajectories (Feng et al., 2023; Qi
et al., 2024; Guan et al., 2025) and process reward
models (PRMs) that offer step-level feedback to
guide model outputs (Lightman et al., 2023; Yuan
et al., 2024). In parallel, supervised fine-tuning
(SFT) on reasoning traces has emerged as a practi-
cal post-training method, enabling LLMs to better
align generation with explicit chain-of-thought rea-
soning patterns (Wen et al., 2025; Muennighoff
et al., 2025; Ye et al., 2025).

Beyond supervised approaches, recent work
has introduced reinforcement learning from verifi-
able rewards (RLVR) as a promising post-training
paradigm for LLM reasoning (Guo et al., 2025;
Team et al., 2025; Team, 2025). In this setting,
models are directly optimized with rule-based re-
wards, allowing them to autonomously discover
effective reasoning strategies without explicit in-
termediate supervision. Subsequent studies have
improved RLVR training by incorporating dynamic
sampling, token-level policy gradients, and reward
normalization to enhance training stability and
sample efficiency (Yu et al., 2025b; Liu et al.,
2025; Xia et al., 2025). The RLVR paradigm has
demonstrated strong generalization across diverse
domains, including mathematical problem solv-
ing (Hu et al., 2025; Face, 2025), logical reason-
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ing games (Xie et al., 2025), vision-based reason-
ings (Huang et al., 2025b), and interactive agent
scenarios (Wang et al., 2025; Xia and Luo, 2025;
Feng et al., 2025a).

2.2 Table Reasoning
Reasoning over tabular data has long attracted atten-
tion due to its practical applications in real-world
scenarios such as data analysis. It encompasses
a variety of tasks, including short-form question
answering (Pasupat and Liang, 2015; Cheng et al.,
2022; Lu et al., 2023; Zhao et al., 2023d, 2024b;
Wu et al., 2025), fact verification (Chen et al., 2020;
Gupta et al., 2020), and free-form question answer-
ing (Nan et al., 2022; Zhao et al., 2023a). Earlier
research primarily focused on fine-tuning smaller
language models for specific tasks (Herzig et al.,
2020; Zhao et al., 2022; Liu et al., 2022). Recent
efforts have advanced the adaptation of LLMs for
table reasoning (Zhang et al., 2024a, 2025a; Su
et al., 2024; Zha et al., 2023; Su et al., 2024; Deng
et al., 2025), enabling more general-purpose capa-
bilities across task types. In parallel, several studies
have begun exploring agentic approaches to tackle
table reasoning tasks (Ye et al., 2023; Zhao et al.,
2024a; Nan et al., 2024; Yu et al., 2025a). Despite
these advances, the application and enhancement of
inference-time scaling for table reasoning remain
largely underexplored. Our study shows that 7B-
scale LLMs with inference-time scaling can match
the performance of frontier models such as GPT-
4.1. This finding highlights a promising direction
for advancing table reasoning.

3 Table-R1 Models

To systematically explore inference scaling in table
reasoning tasks, we develop two variants of Table-
R1 model, each leveraging a widely adopted post-
training strategy for inference-time scaling: (1)
Table-R1-SFT, trained via supervised fine-tuning
on reasoning traces generated by frontier reasoning
LLMs, and and (2) Table-R1-Zero, trained using
our developed RLVR approach tailored for table
reasoning tasks. The methodologies for each ap-
proach are detailed in the following subsections.

3.1 Training Data Collection
We construct the Table-R1 training dataset by inte-
grating three representative table reasoning tasks,
each introducing distinct reasoning challenges: (1)
Short-form Table QA, which requires models to
provide precise answers to questions grounded in

Task Dataset Samples

Short-form QA (TQA) WTQ (Pasupat and Liang, 2015) 13,706
HiTab (Cheng et al., 2022) 6,793

Fact Verification (TFV) TabFact (Chen et al., 2020) 20,740

Free-form QA (FF-TQA) FeTaQA (Nan et al., 2022) 7,324

Table 1: Overview of datasets collected in Table-R1
training data. For each dataset, we sample examples
from its training set.

tabular data; (2) Table Fact Verification, which re-
quires models to determine whether a given claim
is entailed by the table content; and (3) Free-form
Table QA, which requires models to produce open-
ended answers grounded in tabular information.
Each task contributes unique reasoning challenges,
and we select established datasets (presented in
Table 1) to ensure comprehensive coverage. All
datasets are preprocessed with the presence of veri-
fiable ground truths for reward computation to align
with the RLVR paradigm. More detailed explana-
tion of training data is presented in Appendix A.1.

3.2 Table-R1-SFT via Supervised Finetuning
To enable inference-time scaling in Table-R1-SFT,
we curate a new table reasoning dataset featuring
long CoT reasoning. Specifically, for each instance
in the raw training data described in the previous
subsection, we use DeepSeek-R1 (DeepSeek-AI
et al., 2025) to generate a long CoT response. The
response consists of a step-by-step reasoning pro-
cess followed by a final answer. We present the
prompts for response generation in Appendix C. To
ensure the quality and correctness of the training
data, we apply automated evaluators (detailed in
Section 4.2) to assess the final answers. Examples
with incorrect answers are filtered out. After this
verification step, we obtain a total of 33,601 high-
quality examples for SFT training. This dataset is
then used to train the Table-R1-SFT model.

3.3 Table-R1-Zero via RL Training
We describe the RLVR algorithm and the reward
design for training Table-R1-Zero as follows.

Reinforcement Learning with Verifiable Re-
wards (RLVR). We adapt Group Relative Policy
Optimization (GRPO) with recent improvements
introduced by DAPO (Yu et al., 2025b), including
both token-level loss computation and asymmetric
(decoupled) clipping. Notably, following recent
work (Hu et al., 2025; Liu et al., 2025; Xia et al.,
2025), we omit the KL penalty term present in
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the original GRPO (Jaech et al., 2024; Pfister and
Jud, 2025). We formally define the RL algorithm
applied in our study as follows:

For each input (q, a), the policy πθ samples a
group of G candidate responses {oi}Gi=1. Each
response receives a reward Ri as described in the
next paragraph. The group-normalized advantage
for the i-th response at time step t is:

Âi,t =
Ri − mean({Rj}Gj=1)

std({Rj}Gj=1)
. (1)

Our objective is optimized at the token level with
decoupled, asymmetric clipping:

JGRPO(θ) = E(q,a)∼D, {oi}Gi=1∼πθold
(·|q)

[
1∑G

i=1 |oi|

G∑

i=1

|oi|∑

t=1

min
(
ri,t(θ)Âi,t,

clip
(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
(2)

where the probability ratio ri,t(θ) is defined as:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (3)

This formulation enables stable and effective RL
fine-tuning for table reasoning with LLMs.

Reward Design. To facilitate effective RL train-
ing, we design verifiable reward signals tailored
to the characteristics of each table reasoning task.
Our reward framework consists of two components:
accuracy rewards and format rewards. Accuracy
rewards measure the correctness of model outputs.
We define task-specific reward functions as follows:

• TQA: The ground-truth is a short-answer list,
where each element contains several words. We
employ exact match to assign a reward of 1 for a
correct answer and 0 otherwise.

• TFV: The ground-truth is either “entailed” or
“refuted”. The reward is 1 if the predicted label
matches the ground-truth, and 0 otherwise.

• FF-TQA: The ground-truth is a sentence or para-
graph. We use the average of normalized BLEU
and ROUGE-L scores to reflect semantic overlap
between model output and reference answer.

This combination of rule-based and metric-based
evaluation ensures reward interpretability and ro-
bustness, mitigating instability and reward hacking.

In addition to accuracy, we encourage mod-
els—especially base models without instruction

tuning—to follow a strict response format speci-
fied by a system prompt. We introduce a cumula-
tive format reward incentivizing outputs that match
the required template: <think>. . . </think> <an-
swer>. . . </answer>, with the <answer> block con-
taining a JSON snippet of the form {"answer": ...}.
The format reward is computed by a deterministic
regular expression-based checker, which assigns
partial credit as outputs progressively satisfy struc-
tural requirements (e.g., tag presence, JSON struc-
ture, valid answer types), and awards full credit
for strictly conformant outputs. This dense and in-
terpretable reward guides base models to generate
well-structured, verifiable responses.

4 Experiment

In this section, we describe the experimental setup
and address three central research questions, pre-
senting the findings associated with each.

4.1 Table-R1 Model Training Details
All models are trained using the verl framework.
We initialize Table-R1 with Qwen2.5-7B-Instruct
and Llama-3.1-8B-Instruct models. For Table-R1-
SFT, training is conducted with a batch size of
256, a maximum sequence length of 20,480, and
ulysses_sequence_parallel_size set to 4. The learn-
ing rate is set to 1×10−5, and training is performed
for 3 epochs. For Table-R1-Zero, we use a batch
size of 256 and 16 rollouts per prompt under the
GRPO algorithm. It is trained for 2 epochs. The
learning rate is fixed at 1 × 10−6, sampling tem-
perature is 1.0, with a maximum prompt length of
4096 tokens and a maximum response length of
1024 tokens. The GRPO clipping parameters are
set to εlow = 0.2 and εhigh = 0.28. For validation
during training, inference is performed with tem-
perature 0.6 and top-p 1.0. All the experiments are
conducted on 4 NVIDIA A100 80GB GPUs.

4.2 Experiment Setup
Evaluation Benchmarks. To address the lack of
a unified evaluation framework for table reasoning,
we introduce a new benchmark suite encompassing
a wide range of datasets. For in-domain evaluation,
we use test sets from the same distributions as the
training data: WTQ (Pasupat and Liang, 2015) and
HiTab (Cheng et al., 2022) for TQA; TabFact (Chen
et al., 2020) for TFV; and FeTaQA (Nan et al.,
2022) for FF-TQA. To assess generalization of
Table-R1, we further conduct out-of-domain evalu-
ation on datasets that are not seen during training:
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Model
In-domain Performance Out-of-domain Performance

FF-TQA TFV TQA FF-TQA TFV TQA

FeTaQA TabFact WTQ HiTab ToTTo QTSum R.W. InfoTabs PHT Feverous TMCQ TMWP FinQA

Proprietary Models

GPT-4.1 25.1 86.5 68.0 84.7 20.4 45.7 21.0 90.5 88.2 87.7 92.0 77.0 74.0
GPT-4.1 mini 27.2 84.9 69.5 80.7 18.8 46.4 20.0 88.9 86.8 86.1 92.9 86.2 71.4

Open-source Models

LLMs
Qwen2.5-7B 21.0 72.2 54.8 61.8 16.0 39.5 19.3 78.6 70.7 74.6 87.4 85.0 66.4
Qwen2.5-32B 21.9 90.3 77.3 79.4 17.8 41.4 20.0 90.5 86.7 79.2 92.1 95.8 77.3
DeepSeek-V3 24.7 92.4 69.9 82.2 19.0 46.2 20.9 91.9 86.2 85.8 87.6 93.4 78.6

Reasoning LLMs
DeepSeek-R1-Distill-7B 19.1 79.6 57.8 46.2 10.7 37.2 18.0 85.7 87.1 77.5 80.9 94.0 66.8
QwQ-32B 23.8 91.5 85.4 81.6 19.4 41.9 19.6 91.0 87.8 80.1 90.7 99.4 76.2
DeepSeek-R1 26.2 90.8 79.6 82.4 18.5 43.8 19.9 90.4 87.5 76.0 93.3 99.0 75.8

Table-Specific LLMs
†TableBenchLLM (7B) 3.1 27.1 38.8 – 6.2 – – – – 42.3 – – –
†TableLLM-13B 10.8 69.0 66.3 6.3 5.4 – – – – 21.5 – – –
†TableLlama (7B) 39.0 82.6 35.0 64.7 20.8 – – – – 73.8 – – –
TableGPT2-7B 29.0 77.8 61.4 70.3 14.1 39.0 19.0 85.4 89.1 78.0 77.2 79.7 66.4
†∗TableGPT2-72B 32.3 85.4 71.5 75.6 22.7 – – – – 76.8 – – –

Table-R1 (Ours)

Llama-3.1 Series
Llama-3.1-8B-Instruct 21.7 74.1 52.3 58.2 16.5 31.6 18.1 84.1 82.5 78.3 49.5 72.0 57.1
Table-R1-SFT 26.0 91.1 83.8 81.8 13.7 36.6 16.6 89.8 85.8 79.4 90.8 89.0 64.3
Table-R1-Zero 32.7 87.6 81.2 81.4 22.3 30.2 17.7 87.9 91.6 80.2 68.6 84.6 62.3

Qwen2.5 Series
Qwen2.5-7B-Instruct 21.0 72.2 54.8 61.8 16.0 39.5 19.3 78.6 70.7 74.6 87.4 85.0 66.4
Table-R1-SFT 25.3 89.9 81.9 78.3 14.1 38.8 18.8 88.8 84.6 76.0 90.9 96.6 71.7
Table-R1-Zero 30.6 87.6 79.8 78.1 19.8 43.1 20.0 83.7 88.0 76.2 93.0 96.4 70.8

Table 2: Results on 13 table reasoning benchmarks spanning TQA, TFV, and FF-TQA tasks. For TQA, EM accuracy
is reported (with ambiguous cases re-evaluated by GPT-4.1 mini); for TFV, classification accuracy; for FF-TQA,
BLEU and ROUGE-L. Bold and underlined scores indicate the top-2 performances among open-source models. †:
Due to the context length limitations of most previous table-specific LLMs, it is challenging to conduct a fully fair
comparison. Therefore, for these models, we directly use the results as reported in their respective papers, which
may be based on sampled or filtered datasets. ∗: Model weight has not been released.

TabMCQ (Jauhar et al., 2016), TabMWP (Lu et al.,
2023), and FinQA (Chen et al., 2021) for TQA; In-
foTabs (Gupta et al., 2020), PubHealthTab (Akhtar
et al., 2022), and Feverous (Aly et al., 2021) for
TFV; ToTTo (Parikh et al., 2020), QTSumm (Zhao
et al., 2023b), and RotoWire (Wiseman et al., 2017)
for FF-TQA. We provide detailed descriptions of
the evaluated datasets and evaluated baseline
systems in Appendix A.2 and Appendix B.

Automated Evaluation System. For each evalu-
ated dataset, we use its test set for evaluation. For
the TQA task, we report Exact Match (EM) ac-
curacy. For TFV, we use classification accuracy.
For FF-TQA, we measure generation quality with
BLEU and ROUGE-L scores. Considering that EM
accuracy in short-answer TQA may underestimate

model performance due to formatting variations
or semantically equivalent but non-exact matches,
we further re-evaluate responses initially marked
incorrect by EM using the GPT-4.1 mini model,
with the prompt shown in Appendix C.

� RQ1: How effective is inference-time scal-
ing for table reasoning tasks?

To address RQ1, we conduct a comprehensive eval-
uation and summarize the key findings from the
results presented in Table 2 as follows:

4.3 Main Findings

General-Purpose LLMs vs. Reasoning LLMs.
We evaluate three pairs of general-purpose
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LLMs—with and without inference-time scaling
capabilities—on table reasoning tasks: Qwen2.5-
7B vs. DeepSeek-R1-Distill-7B, Qwen2.5-32B vs.
QwQ-32B, and DeepSeek-V3 vs. DeepSeek-R1.
While reasoning LLMs tend to outperform their
counterparts on the TQA benchmark, their results
on TFV and FF-TQA are mixed and not consis-
tently superior. This indicates that inference-time
scaling alone, without table-specific training, does
not provide a clear advantage for table reasoning
tasks. These findings underscore the importance of
specialized adaptation strategies, such as Table-R1,
for effective performance in this domain.

Table-R1 In-Domain Performance. Both Table-
R1-SFT and Table-R1-Zero achieve substantial im-
provements across all tasks. Specifically, Table-
R1-Zero-8B obtains a BLEU score of 32.7 on Fe-
TaQA for FF-TQA, significantly surpassing the
best among other models of 26.2 from Deepseek-
R1; Table-R1-SFT-8B reaches 91.1 accuracy on
TabFact for TFV, closely matching the leading 91.9;
and for TQA, our models achieve 83.8 and 81.8 on
WTQ and HiTab, respectively, which are compara-
ble to the best scores among other models of 85.4
and 84.7. These results consistently demonstrate
that Table-R1 models deliver robust gains and com-
petitive performance across diverse table reasoning
scenarios, validating the effectiveness and versatil-
ity of both SFT and RLVR training strategies.

Table-R1 Out-of-Domain Performance. Table-
R1 models exhibit strong generalization capabili-
ties on out-of-domain datasets. Across most out-of-
domain benchmarks, our models consistently out-
perform their respective initial baselines, demon-
strating the effectiveness of both SFT and R1-Zero
training methods for table reasoning. Notably,
Table-R1-Zero-7B achieves the best overall gen-
eralization among all variants. In contrast, we ob-
serve that supervised fine-tuning (SFT) leads to
weaker generalization compared to the R1-Zero
method, and models initialized from Llama tend
to generalize less effectively than those based on
Qwen. These results highlight the advantage of our
approach in improving table reasoning robustness
beyond the training distribution.

� RQ2: What contributes to the success of
RLVR methods in table reasoning tasks?

To address this research question, we present a
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Figure 3: Response length during Table-R1 training
across different models.

comprehensive analysis of Table-R1-Zero in the
following three subsections: the training dynamics,
a qualitative assessment of model responses, and an
exploration of the reasoning capacity boundaries.

4.4 Analysis of Training Dynamics

We conduct a detailed analysis of the training dy-
namics exhibited by our Table-R1 models across
various model backbones, including Qwen2.5 7B
and Llama-3.1 8B, under both base and instruct
configurations.

Figure 3 presents the evolution of response
length throughout reinforcement learning. Notably,
the base models consistently start with longer re-
sponses compared to their instruct counterparts.
During the initial stage of RL training, we observe
a sharp drop in response length, corresponding to
a phase of format acquisition—where the model
learns to produce outputs adhering to the expected
answer format. Subsequently, response length grad-
ually increases, with base models exhibiting a more
pronounced growth trajectory than instruct mod-
els. Among all four model variants, Table-R1-Zero-
Qwen2.5-7B-Instruct demonstrates the greatest sta-
bility, showing a smooth and moderate increase in
response length. In contrast, Table-R1-Zero-Llama-
3.1-8B displays considerable instability, ultimately
failing to acquire the desired response format. We
attribute this to the weaker instruction-following
capabilities of the Llama-3.1-8B base model.

Figure 4 illustrates the progression of model ac-
curacy over the course of RL training. We find
that instruct models consistently achieve higher
accuracy than their base versions throughout train-
ing. While base models start from a lower perfor-
mance baseline, they undergo a phase of format
adaptation, after which their accuracy trends con-
verge with those of instruct models. Interestingly,
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Figure 4: Accuracy and BLEU score dynamics across four table reasoning datasets during RLVR training. Results
are shown for all four Table-R1-Zero models, which are trained from Qwen2.5 7B or Llama-3.1 8B as initialization.

although Table-R1-Zero-Llama-3.1-8B exhibits un-
stable changes in response length, it still demon-
strates performance gains on most tasks, with the
exception of TabFact—a binary classification task.

Overall, these observations reveal that instruc-
tion tuning provides significant benefits in both sta-
bility and performance during RLVR training for ta-
ble reasoning tasks. The results further suggest that
initial format alignment and instruction-following
capability play critical roles in the successful adap-
tation of large language models to structured rea-
soning scenarios.

4.5 Reasoning Capacity Boundary

Understanding the upper limits of a model’s rea-
soning ability is crucial for evaluating the true
impact of RLVR on tabular reasoning tasks. In-
spired by prior studies on the boundaries of RLVR
method (Yue et al., 2025), we employ the pass@k
metric to quantify the model’s capacity. Specifi-
cally, pass@k measures the probability that at least
one out of k generated responses is correct, given
a fixed input prompt. This metric is particularly
well-suited for our setting, as it captures not only
the model’s accuracy, but also its ability to produce
diverse and plausible reasoning trajectories within
a limited number of attempts.

We systematically evaluate pass@k for k up to

32, both before and after RLVR training, on the
HiTab and WTQ datasets. As illustrated in Fig-
ure 8, RLVR training leads to a notable increase
in pass@k values throughout the evaluated range.
This improvement is consistent across different
datasets and model architectures, demonstrating
that RLVR enhances not only the likelihood of ob-
taining a correct answer on first attempt (pass@1),
but also the breadth of valid reasoning paths the
model can explore in a small sampling budget.

4.6 Qualitative Analysis

To gain deeper insights into how RLVR shapes
model behavior, we conduct a qualitative analysis
of model responses throughout the training pro-
cess. By examining the same set of representative
prompts across different RL training steps, we ob-
serve that the model not only internalizes general
R1-style reasoning characteristic, but also acquires
table-specific reasoning abilities critical for tabular
tasks, as illustrated in Figure 5 and Appendix D.1.

On the reasoning axis, we observe clear
progress toward sophisticated, multi-step reason-
ing: after RL training, the Table-R1-Zero model
decomposes complex queries into sequential sub-
tasks, explicitly outlining intermediate steps and
sometimes “rethinking” earlier conclusions to
check or correct errors. Such reflective patterns,
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Instruction:

Answer the question based on the provided table.




Question:

what was the total number of points scored by the tide in the 
last 3 games combined.


Ground_truth: 68

Date Opponent# Rank# Site TV Result Attendance

September 3 Tennessee–Chattanooga* #11 Legion Field • Birmingham, AL W 42–13 82,109

September 10 Vanderbilt #11 Bryant–Denny Stadium • Tuscaloosa, AL JPS W 17–7 70,123

September 17 at Arkansas #12 Razorback Stadium • Fayetteville, AR ABC W 13–6 52,089

September 24 Tulane* #11 Legion Field • Birmingham, AL W 20–10 81,421

October 1 Georgia #11 Bryant–Denny Stadium • Tuscaloosa, AL ESPN W 29–28 70,123

October 8 Southern Miss* #11 Bryant–Denny Stadium • Tuscaloosa, AL W 14–6 70,123

October 15 at Tennessee #10 Neyland Stadium • Knoxville, TN ESPN W 17–13 96,856

October 22 Ole Miss #8 Bryant–Denny Stadium • Tuscaloosa, AL ABC W 21–10 70,123

November 5 at LSU #6 Tiger Stadium • Baton Rouge, LA ESPN W 35–17 75,453

November 12 at #20 Mississippi State #6 Scott Field • Starkville, MS ABC W 29–25 41,358

November 19 #6 Auburn #4 Legion Field • Birmingham, AL ABC W 21–14 83,091

December 3 vs. #6 Florida #3 Georgia Dome • Atlanta, GA ABC L 23–24 74,751

January 2, 1995 vs. #13 Ohio State* #6 Citrus Bowl • Orlando, FL ABC W 24–17 71,195

1994 Alabama Crimson Tide Football Team

Step 0(Qwen2.5-7B-Instruct)

<think>



</think>



To find the total number of points scored by the Tide in the last 3 
games combined, I'll identify the games from November 19 to 
December 3, and then sum the points scored by the Tide in each of 
these games.




- November 19: #6 Auburn (Iron Bowl) - Result: W 21-14



- December 3: #6 Florida (SEC Championship Game) - Result: L 
23-24




- November 26: #20 Mississippi State - Result: W 29-25


Tide's points in these games: 21, 29, 23


<answer>
21, 29, 23
</answer>

(wrong: 
Selected a non-existent game from the table)


(wrong: 
Misunderstanding of the question, missed the total sum)


<think>



</think>



To find the total number of points scored by the Tide in the last 3 
games, I will examine the latest games in the schedule.





The last 3 games are:


1. December 3 vs. #6 Florida (SEC Championship Game)



3. The game before January 2, 1995, which is November 19 vs. #6 
Auburn (Iron Bowl)





Now I extract the scores for these games:


- Florida: 23


- Ohio State: 24






2. January 2, 1995 vs. #13 Ohio State (Florida Citrus Bowl)


- Auburn: 14 



Summing the scores: 23 + 24 + 14 = 50


So, the total number of points scored by the Tide is 50. 

<answer>
50 </answer>

(wrong: Opponent's score was mistakenly extracted)


(wrong: Arithmetic error,  
23 + 24 + 14 should be 61.)


Step 180(Mid-Step)

<think>



</think>



To determine the total number of points scored by the Tide in the 
last 3 games combined, we need to identify the last 3 games from 
the table and sum up the points scored by the Tide in those games.





The last 3 games are:


1. December 3 vs. #6 Florida (SEC Championship Game)





3. The game before January 2, 1995, which is November 19 vs. #6 
Auburn (Iron Bowl)





Let's extract the results for these games:


1. December 3 vs. #6 Florida: Result is L 23–24. The Tide scored 23 
points.










So, the total number of points scored by the Tide in the last 3 games 
combined is 68.



2. January 2, 1995 vs. #13 Ohio State (Florida Citrus Bowl)

2. January 2, 1995 vs. #13 Ohio State: Result is W 24–17. The Tide 
scored 24 points.


23 (Florida) + 24 (Ohio State) + 21 (Auburn) = 68


<answer>
68 </answer>

3. November 19 vs. #6 Auburn: Result is W 21–14. The Tide scored 21 
points.


Now, we sum the points scored in these games:



Step 378(Final Table-R1-Zero)

Figure 5: Illustration of the model’s reasoning progression across training steps. The example demonstrates how
reasoning quality evolves from superficial processing (Step 0), to partial column-aware reasoning (Step 180), and
finally to accurate multi-step inference with semantic and arithmetic understanding (Step 378).

rare at initialization, become prevalent with train-
ing, suggesting the verifiable reward encourages
explicit, auditable reasoning.

On the table-specific axis, we observe notable
improvements in three key areas. First, the model
develops column-aware reasoning: it accurately
identifies and references relevant table columns, of-
ten justifying its answer with explicit column men-
tions or by highlighting how information from mul-
tiple columns is synthesized. Second, the model
demonstrates enhanced semantic understanding of
natural language questions, especially in TQA set-
tings. It is able to correctly interpret nuanced ques-
tion intents (e.g., comparative, aggregative, or con-
ditional queries) and map them to the correspond-
ing table structures. Third, we note a marked in-
crease in arithmetic and temporal reasoning capa-

bilities. The model becomes more adept at perform-
ing arithmetic calculations over table entries and
reasoning over temporal sequences, both of which
are crucial for table reasoning tasks.

4.7 Ablation Studies on RLVR Training

� RQ3: How do various factors influence
the effectiveness of RLVR training in table
reasoning tasks?

To better understand the contributions of both SFT
and RLVR methods and to assess the robustness of
Table-R1 across different configurations, we con-
duct extensive ablation studies from three perspec-
tives: model-level, task-level, and explicit reason-
ing format. We detail our findings as follows.
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Model-level Ablation. We first analyze the ef-
fect of model initialization by comparing base
and instruct variants. Across all settings, instruct
models consistently outperform their base counter-
parts. We attribute this to the enhanced instruction-
following ability inherent to instruct models, which
enables faster adaptation to the explicit reasoning
formats required by table tasks and leads to more
stable training dynamics.

We next compare representative model architec-
tures—Qwen2.5 and Llama-3.1. Under identical
training regimes, Llama-3.1-8B-Instruct achieves
superior in-domain performance on table reason-
ing benchmarks compared to Qwen2.5-7B-Instruct,
indicating a stronger capacity for learning table-
specific reasoning. However, Qwen2.5 demon-
strates better out-of-domain generalization, sug-
gesting that model architecture and pretraining data
may influence the balance between in-domain ac-
curacy and cross-domain robustness.

Furthermore, we evaluate the effect of distil-
lation data by comparing our SFT models—fine-
tuned on table-specific DeepSeek-R1 distillation
data—against the official DeepSeek-R1 distilled
models. Our models not only surpass the offi-
cial versions, but also outperform larger-scale dis-
tilled models. This underscores the effectiveness
of domain-specific fine-tuning and the importance
of high-quality, task-aligned training data.

Task-level Ablation. To investigate cross-task
generalization, we train Table-R1 exclusively on
the TQA dataset and evaluate its performance on
TFV and FF-TQA tasks. Interestingly, models
trained solely on TQA exhibit notable performance
gains on TFV, indicating that the reasoning capa-
bilities required for TFV are closely aligned with
those developed for short-answer TQA. In con-
trast, no significant improvement is observed on
FF-TQA, likely due to the distinct reasoning and
answer generation skills required for free-form re-
sponses, which are not adequately covered by TQA
training. These results highlight the varying de-
grees of transferability among table reasoning tasks
and emphasize the need for targeted training to
achieve robust generalization.

Format Ablation. We assess the role of explicit
reasoning format supervision by removing the for-
mat reward during training. This ablation reduces
training stability and slightly lowers in-domain per-
formance. More notably, generalization suffers:
while TFV scores may improve, performance on

short-answer TQA and FF-TQA declines, some-
times even below baseline, indicating that format
supervision is crucial for transferable reasoning.

5 Conclusion

This work presents the first comprehensive study
on applying inference-time scaling to table reason-
ing tasks. Through extensive evaluation across 13
diverse benchmarks, we demonstrate that inference-
time scaling enables substantial improvements in
reasoning quality, with RLVR methods yielding
stronger generalization to out-of-domain tasks. Ab-
lation studies confirm the benefits of instruction
tuning, model architecture choice, and task compo-
sition in enhancing training effectiveness. Qualita-
tive analysis reveals that RLVR fosters the emer-
gence of structured, multi-step reasoning and table-
specific capabilities. We hope this work paves the
way for future research in structured reasoning.

Limitations

Several limitations remain that warrant future in-
vestigation: The SFT data was generated exclu-
sively using DeepSeek-R1. Additionally, the data
verification and filtering processes may have inad-
vertently removed difficult or high-quality training
examples. Future research could explore incorpo-
rating outputs from other reasoning LLMs, such
as QwQ-32B, to enhance distillation performance
and data diversity. Furthermore, in Section 4.4, we
observe that models initialized from the LLaMA-
3.1-8B backbone exhibit unstable training dynam-
ics during RLVR fine-tuning, including inconsis-
tent acquisition of the desired output format and
significant fluctuations in response length. While
instruct-tuned variants mitigate some of these is-
sues, the underlying causes of instability—such as
sensitivity to initialization, reward sparsity, or opti-
mization hyperparameters—remain underexplored.
Future work could investigate strategies to improve
the robustness and generalizability of RLVR for
structured reasoning tasks.
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A Dataset Details

A.1 Detailed Explanation of Training Data
Our training data originates from four benchmark datasets: WTQ, HiTab, TabFact, and FeTaQA.

Training Data for RLVR. For WTQ, HiTab, and FeTaQA, we used their complete training sets. For
TabFact, which has a very large training set (> 90, 000 samples), we implemented a difficulty-based
filtering process to create a more focused and challenging subset. Specifically, we used Qwen2.5-7B-
Instruct to generate 16 candidate responses for each sample. We retained all samples with a pass rate of
≤ 7/16 and randomly sampled 10, 000 instances from those with a pass rate between 8/16 and 15/16.
This resulted in a final set of 20, 740 samples for TabFact. After constructing the prompts, we filtered
out any instances where the prompt length exceeded 4096 tokens. This final, combined dataset (48, 563
samples) was used for RLVR training.

Training Data for SFT. We used the RLVR dataset as a starting point. We then generated reasoning
traces for each sample using DeepSeek-R1 and applied a stringent quality-control filter to retain only
high-quality examples. For WTQ, HiTab, and TabFact, we kept only the samples where the generated
answer was an exact match to the ground truth. For FeTaQA, we kept samples where the average of
BLEU and ROUGE-L scores was ≥ 0.35. This resulted in a high-quality SFT dataset of 33, 601 samples.

The data volumes at each stage are summarized below, as shown in Table 3.

Dataset Raw Samples Samples for RLVR Samples for SFT (Filtered)

WTQ 14,152 13,706 9,524
HiTab 7,301 6,793 4,170
TabFact 92,283 20,740 16,006
FeTaQA 7,326 7,324 3,901

Total 121,062 48,563 33,601

Table 3: The data volumes at each stage.

Table 4 provides detailed statistics on the SFT data. Notably, the quality filtering significantly reduces
the average response-to-prompt length ratio (from 1.73 to 1.49 overall). This aligns with the common ob-
servation that incorrect or lower-quality reasoning traces are often longer and more convoluted, reinforcing
the effectiveness of our filtering strategy.

Dataset /
Length (Chars)

Min
Prompt

Max
Prompt

Avg.
Prompt

Min
Resp.

Max
Resp.

Avg.
Resp.

Avg. Resp/Prompt Ratio
(Before/After Filtering)

WTQ 625 14,192 2,114.67 465 28,023 2,356.26 1.78 / 1.45
HiTab 694 10,264 3,251.17 526 32,630 2,827.42 1.57 / 1.12
TabFact 624 8,906 1,767.64 529 28,762 2,474.04 1.76 / 1.61
FeTaQA 473 13,793 1,656.14 546 28,661 1,982.57 1.71 / 1.53

Overall 473 14,192 2,037.17 465 32,630 2,427.45 1.73 / 1.49

Table 4: Detailed statistics on the SFT data.
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A.2 Information of Evaluated Table Reasoning Datasets

Task Category Task Name Dataset Task Description Metric

Training

Table QA WTQ, HiTab QA over flat or hierarchical tables Acc.
Free-form QA FeTaQA Generate long-form answers from tables BLEU
Table Fact Verification TabFact Verify factual correctness based on a table Acc.

In-Domain

Table QA WTQ, HiTab In-domain table QA evaluation Acc.
Table Fact Verification TabFact In-domain fact verification evaluation Acc.
Free-form QA FeTaQA Evaluate long-form generation quality BLEU

Out-of-Domain

Table QA TabMCQ, TMWP, FinQA Multiple-choice and word problem QA Acc.
Numerical Reasoning QA FinQA, TABMWP Financial and numerical table QA Acc.
Table Fact Verification InfoTabs, PHT, Feverous Health and factual judgment from tables Acc.
Free-form QA ToTTo, Qtsumm, R.W. Table-to-text generation from highlights BLEU/R-L

Table 5: Overview of datasets used in training and evaluation.

B Experiment Setup

B.1 Baseline Systems

We benchmark our approach against a comprehensive set of strong baselines, encompassing both propri-
etary and open-source models. Among proprietary models, we include GPT-4.1 and GPT-4.1 mini. For
open-source baselines, we evaluate general purpose LLMs from the Qwen2.5 and LLaMA3 series, reason-
ing models such as Deepseek-R1, its official distilled variant, our SFT model distilled from Deepseek-R1
on table reasoning data (as described in Section 3.2), and QwQ-32B, as well as table-oriented models
including TableLlama, TableLLM, and TableBenchLLM.

B.2 Inference Setup

For all open-source models, inference is performed using the vLLM framework, while for closed-source
models, the official OpenAI API is utilized. The maximum output length is set to 2048 tokens for most
models. However, for reasoning models, this limit is increased to 18,000 tokens to accommodate their
long chain-of-thought generation. The temperature is set to 0.6 and the top-p value to 0.95. All inference
processes are conducted on four NVIDIA A100-80G GPUs.

B.3 Evaluated Model Configuration

Model Citation Version

GPT-4.1 OpenAI (2024) gpt-4.1-2025-04-14
GPT-4.1 mini OpenAI (2024) gpt-4.1-mini-2025-04-14

Qwen2.5-7B Team (2024) Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B Team (2024) Qwen/Qwen2.5-14B-Instruct
Qwen2.5-32B Team (2024) Qwen/Qwen2.5-32B-Instruct
QwQ-32B Team (2025) Qwen/QwQ-32B
Llama-3.1-8B Touvron et al. (2023) meta-llama/Llama-3.1-8B-Instruct

DeepSeek-R1-7B Guo et al. (2025) deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-14B Guo et al. (2025) deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
DeepSeek-R1-32B Guo et al. (2025) deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
DeepSeek-R1 Guo et al. (2025) deepseek-ai/DeepSeek-R1

TableGPT2-7B Su et al. (2024) TableGPT/TableGPT2-7B
TableLLM-13B Zhang et al. (2024b) RUCKBReasoning/TableLLM-13B
TableLlama-7B Zhang et al. (2023) osunlp/TableLlama
TableBenchLLM Zhang et al. (2024b) Multilingual-Multimodal-NLP/TableLLM-Llama3.1-8B

Table 6: Model List.
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C Prompts

System prompt used to guide structured response generation

A conversation between User and Assistant. The user asks a question, and the assistant solves it. The assistant first
thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here </answer>.

Prompt Template for TQA

Instruction: This is a short-answer table QA task. Answer the question based on the provided table.

Table
Table Title: {table_title}
Table Content: {table_repr (markdown / html)}

Question: {question}

Answer Format:
The final answer should be concise and use the following format:

‘‘‘json
{

"answer": ["answer1", "answer2", ...]
}
‘‘‘

Prompt Template for TFV

Instruction: This is a table fact verification task. The goal is to determine whether the given statement is entailed or
refuted by the table.

Table
Table Title: {table_title}
Table Content: {table_repr (markdown / html)}

Statement: {statement}

Answer Format:
The final answer should be either "entailed" or "refuted" and use the following format:

‘‘‘json
{

"answer": "entailed" or "refuted"
}
‘‘‘

Prompt Template for Free-Form TQA

Instruction: This is a free-form table QA task. Answer the question based on the provided table.

Table
Table Title: {table_title}
Table Content: {table_repr (markdown / html)}

Question: {question}

Answer Format:
The final answer should be a sentence and use the following format:

‘‘‘json
{

"answer": "your_generated_sentence_here"
}
‘‘‘
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Prompt Template for LLM-as-a-Judge

You are given two answers for a short-answer Table QA task: response and ground_truth.

- response: This is the LLM’s answer to the task. It may include reasoning steps and a final answer.
- ground_truth: A list of short answers, typically 2-3 word noun phrases or numbers.

Your task is to determine whether the response is fully correct, using these rules:
- Noun phrases: Considered correct if meaning matches ground_truth regardless of wording.
- Numbers: Considered correct if numerically close (tolerance < 0.01).
- Every ground_truth item must be matched in the response. Order doesn’t matter.

Your output must be in the following format:

‘‘‘json
{

"judgement": "correct" or "incorrect"
}
‘‘‘

Do not provide any explanation or additional output.

Input:
Response: {response}
Ground_truth: {ground_truth}

Evaluate and output the judgement.

D Analysis

D.1 Qualitative Analysis Cases
D.2 Reasoning Capacity Boundary
D.3 Ablation Studies
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<think>


</think>


To find the proportion of other workers in the food service sector in northern Ontario, I'll look for the "food service" row and the "other workers" column in 
the northern Ontario section. 



The table shows 55.0% for the food service sector in northern Ontario, under the "other workers" column. 

<answer>55.0%</answer>

(wrong: Wrong value taken from a mismatched 
row-column pair from french-language workers.)



<think>


</think>


The question asks for the proportion of workers in the restaurant and 
food services sector in Northern Ontario that were "other agri-food 
workers



The table does not include a row explicitly named “restaurant and food 
services,” 

In the “Northern Ontario” section, there are two columns�

The phrase “other agri-food workers” is slightly ambiguous. I interpret it 
here as referring to french-language workers who are not in the main 
agri-food stream, 

 

but the row labeled “food service” likely refers to the same 
category.

� french-language workers
� other workers

so I decide to use the "french-language workers" 
column.

In the row "food service", under Northern Ontario and “french-language 
workers”, the value is 55.0%.

<answer>55.0%</answer>

(wrong: Semantic interpretation error, misunderstood “other 
agri-food workers” as “french-language workers.”)



<think>


</think>



To determine the proportion of workers who have worked in the 
restaurant and food services sector that were "other agri-food workers" 
in northern Ontario, we need to look at the "food service" row under the 
"northern ontario" column for "other workers."



From the table, 

The question specifically asks for the proportion of workers who have 
worked in the restaurant and food services sector that were "other agri-
food workers" in northern Ontario. 

So, the proportion of workers who have worked in the restaurant and 
food services sector that were other agri-food workers in northern 
Ontario is 58.1%.






we can see the "food service" row has the following data 
for northern Ontario:

- French-language workers: 55.0%
- Other workers: 58.1%

This information is provided in the 
"other workers" column for the "food service" row under the northern 
Ontario section.

<answer>58.1%</answer>

Instruction:

Answer the question based on the provided 
table.




Question:

In northern ontario, what proportion of 
workers who have worked in the restaurant 
and food services sector was other agri-food 
workers?



Ground_truth: 58.1%

Sub-groups of the Agri-food Industry

Eastern Ontario Northern Ontario

French-lang. Other Workers French-lang. Other Workers

Percent Percent Percent Percent

Input and Service Supply 2.9 2.1 2.9 1.3

Food, Beverage, and Tobacco 9.7 6.0 3.0 3.3

Food Retail and Wholesale 35.3 31.3 39.1 37.3

Food Service 52.1 60.6 55.0 58.1

Agri-food industry sub-groups for workers aged 15 years 

Step 0(Qwen2.5-7B-Instruct)

Step 180(Mid-Step) Step 378(Final Table-R1-Zero)

Figure 6: Qualitative Analysis Case Example for TQA tasks
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Player Span Start Tries Conv Pens Drop

Vaea Anitoni 1992 - 2000 44 26 0 0 0

Paul Emerick 2003 - 2012 49 17 0 0 0

Todd Clever 2003 - 51 11 0 0 0

Philip Eloff 2000 - 2007 34 10 0 0 0

Takudzwa Ngwenya 2007 - 27 10 0 0 0

Chris Wyles 2007 - 35 10 14 22 1

David Fee 2002 - 2005 28 9 0 0 0

Mike Hercus 2002 - 2009 45 9 90 76 4

Riaan van Zyl 2003 - 2004 12 9 0 0 0

United States National Rugby Union TeamInstruction:


This is a table fact verification task. The goal of this task is to 
distinguish whether the given statement is entailed or refuted 
by the given table.



Statement: 

riann van zyl have the shortest time span on the united state 
national rugby union team and tie with 3 others for the 
smallest number of tries




Ground_truth: entailed

<think>


 
</think>






First, let's check the duration span for Riaan van Zyl. According to the table, his span is 2003-2004, which is 1 year.


Next, let's compare this with other players. Todd Clever (2003-) and Chris Wyles (2007-) have ongoing spans, so they are 
not the shortest.



For other players, Philip Eloff (10 tries), Chris Wyles (10 tries), and Takudzwa Ngwenya (10 tries) also have 10 tries each.


So, Riaan van Zyl does have the shortest span, 

Now, let's check the number of tries for Riaan van Zyl. He has 9 tries.


but he does not tie with 3 others for the smallest number of tries, as 3 
others have more tries than him.

<answer>refuted</answer>

(wrong: Incorrect count of players with the fewest tries.)


(wrong: Conclusion error.)

<think>


To verify the statement "riann van zyl have the shortest time span 
on the united state national rugby union team and tie with 3 others 
for the smallest number of tries," we need to analyze the "span" 
and "tries" columns for each player in the table.





First, let's look at the "span" column to determine the shortest time 
span:





1. vaea anitoni: 1992 - 2000 (8 years)


2. paul emerick: 2003 - 2012 (9 years)


3. todd clever: 2003 - (ongoing, so we consider the start year 
2003)


4. philip eloff: 2000 - 2007 (7 years)


5. takudzwa ngwenya: 2007 - (ongoing, so we consider the start 
year 2007)


6. chris wyles: 2007 - (ongoing, so we consider the start year 
2007)


7. david fee: 2002 - 2005 (3 years)


8. mike hercus: 2002 - 2009 (7 years)


9. riaan van zyl: 2003 - 2004 (1 year)






The next shortest spans are:





- david fee: 3 years


- vaea anitoni: 8 years


- philip eloff: 7 years


- mike hercus: 7 years


- others: 9 years or more






From the above, the shortest time span is 1 year, which is for riaan 
van zyl. 

So, riaan van zyl has the shortest time span of 1 year, and ties with 
david fee for the second shortest span of 3 years.





Next, let's look at the "tries" column to determine the smallest 
number of tries:





1. vaea anitoni: 26 tries


2. paul emerick: 17 tries


3. todd clever: 11 tries


4. philip eloff: 10 tries


5. takudzwa ngwenya: 10 tries


6. chris wyles: 10 tries






Based on the analysis, the statement "riann van zyl have the 
shortest time span on the united state national rugby union team 
and tie with 3 others for the smallest number of tries" is correct.



7. david fee: 9 tries

8. mike hercus: 9 tries

9. riaan van zyl: 9 tries 



The smallest number of tries is 9, which is shared by david fee, 
mike hercus, and riaan van zyl. Therefore, riaan van zyl ties with 3 
others (david fee, mike hercus) for the smallest number of tries.

<answer>entailed</answer>




</think>




Step 0(Qwen2.5-7B-Instruct)

Step 378(Final Table-R1-Zero)

Figure 7: Qualitative Analysis Case Example for TFV tasks
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Figure 8: Pass@k performance on WTQ and HiTab.

Model
In-domain Performance Out-of-domain Performance

FF-TQA TFV TQA FF-TQA TFV TQA

FeTaQA TabFact WTQ HiTab ToTTo QTSum R.W. InfoTabs PHT Feverous TMCQ TMWP FinQA

Model-level Ablation

Base vs. Instruct
Qwen2.5-7B 18.2 67.7 51.0 55.2 9.4 37.8 16.4 74.5 75.0 74.1 78.7 80.3 58.4
Table-R1-Qwen2.5-7B 29.8 87.3 78.5 75.2 15.9 38.1 18.2 87.9 91.6 78.4 84.8 94.4 61.2
Qwen2.5-7B-Instruct 21.0 72.2 54.8 61.8 16.0 39.5 19.3 78.6 70.7 74.6 87.4 85.0 66.4
Table-R1-Qwen2.5-7B-Instruct 30.6 87.6 79.8 78.1 19.8 43.1 20.0 83.7 88.0 76.2 93.0 96.4 70.8

Model Architecture Comparison
Llama-3.1-8B 10.2 21.2 35.0 44.7 6.8 18.6 10.9 21.6 26.8 19.4 68.9 43.1 21.9
Table-R1-Llama-3.1-8B 30.4 50.3 61.5 76.3 19.8 33.5 18.0 50.0 69.7 50.6 93.1 56.8 19.3
Llama-3.1-8B-Instruct 21.7 74.1 52.3 58.2 16.5 31.6 18.1 84.1 82.5 78.3 49.5 72.0 57.1
Table-R1-Llama-3.1-8B-Instruct 32.7 87.6 81.2 81.4 22.3 30.2 17.7 87.9 91.6 80.2 68.6 84.6 62.3

SFT on Domain-Specific Data
DeepSeek-R1-7B 19.1 79.6 57.8 46.2 10.7 37.2 18.0 85.7 87.1 77.5 80.9 94.0 66.8
Table-SFT-Qwen2.5-7B 25.3 89.9 81.9 78.3 14.1 38.8 18.8 88.8 84.6 76.0 90.9 96.6 71.7
Table-SFT-Llama-3.1-8B 26.0 91.1 83.8 81.8 13.7 36.6 16.6 89.8 85.8 79.4 90.8 89.0 64.3

Task-level Ablation

Cross-task Generalization
Table-R1-TQA-Qwen2.5-7B 14.1 86.2 79.2 77.4 16.5 36.4 19.8 89.7 89.9 82.7 93.5 96.1 65.9
Table-R1-TQA-Llama-3.1-8B 12.3 83.9 81.7 81.0 17.2 26.9 19.2 87.3 87.2 77.1 80.3 82.8 58.6
Table-SFT-TQA-Qwen2.5-7B 13.3 87.7 79.8 77.0 13.4 27.6 18.1 88.5 87.1 78.0 90.1 95.7 69.0
Table-SFT-TQA-Llama-3.1-8B 9.6 88.8 82.4 80.5 10.3 20.6 12.6 89.1 90.4 82.1 89.9 86.9 62.9

Format Ablation

Effect of Format Reward
Table-R1-Explicit-Qwen2.5-7B 29.0 85.8 76.0 73.2 13.6 37.2 14.8 87.5 88.8 81.0 52.5 91.3 49.6
Table-R1-Qwen2.5-7B 30.6 87.6 79.8 78.1 19.8 43.1 20.0 83.7 88.0 76.2 93.0 96.4 70.8

Table 7: Ablation study results on model-level, task-level, and formats.
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