
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20552–20571
November 4-9, 2025 ©2025 Association for Computational Linguistics

LILaC: Late Interacting in Layered Component Graph for
Open-domain Multimodal Multihop Retrieval

Joohyung Yun
POSTECH

Republic of Korea
jhyun@dblab.postech.ac.kr

Doyup Lee
DirectorLabs
United States

doyup@directorlabs.ai

Wook-Shin Han *

POSTECH
Republic of Korea

wshan@dblab.postech.ac.kr

Abstract

Multimodal document retrieval aims to retrieve
query-relevant components from documents
composed of textual, tabular, and visual ele-
ments. An effective multimodal retriever needs
to handle two main challenges: (1) mitigate the
effect of irrelevant contents caused by fixed,
single-granular retrieval units, and (2) support
multihop reasoning by effectively capturing se-
mantic relationships among components within
and across documents. To address these chal-
lenges, we propose LILaC, a multimodal re-
trieval framework featuring two core innova-
tions. First, we introduce a layered component
graph, explicitly representing multimodal infor-
mation at two layers—each representing coarse
and fine granularity—facilitating efficient yet
precise reasoning. Second, we develop a late-
interaction-based subgraph retrieval method,
an edge-based approach that initially identi-
fies coarse-grained nodes for efficient candi-
date generation, then performs fine-grained rea-
soning via late interaction. Extensive experi-
ments demonstrate that LILaC achieves state-of-
the-art retrieval performance on all five bench-
marks, notably without additional fine-tuning.
We make the artifacts publicly available at
github.com/joohyung00/lilac.

1 Introduction

Multimodal retrieval is a rapidly advancing re-
search area, crucial for enhancing modern informa-
tion retrieval systems (Li et al., 2022a, 2023; Rad-
ford et al., 2021). Early studies primarily focused
on multimodal component retrieval, where compo-
nents such as text, tables, and images had limited
or no explicit relationships (Talmor et al., 2021;
Chang et al., 2022). Recently, however, there has
been an emerging shift toward open-domain mul-
timodal document retrieval, where closely related
components of various modalities are grouped to-
gether as a unified document, such as webpages or

* Corresponding author.

In the mausoleum built by the Mughal emperor who
married Mumtaz Mahal, how many slender minarets
surround the central dome?

Shah Jahan commissioned many
monuments, including the Red
For and the Taj Mahal, where
his favorite consort Mumtaz
Mahal is entombed.

The picture captures a
classic, head-on view of
the Taj Mahal in Agra,
India. The ivory-white
marble mausoleum dominates
the scene with its large
central onion dome.

Four

Shah Jahan Taj Mahal

Te
xt

R
A

G
V

is
R

A
G

Shah Jahan commissioned
many monuments, including
the Red Fort, Shah Jahan
Mosque and the Taj Mahal,
where his favorite
consort Mumtaz Mahal is
entombed.

M
u

lt
im

o
d

al
D

o
cu

m
e

n
ts

The Taj Mahal is an
ivory white marble
mausoleum on the right
bank of the
river Yamuna in Agra,
India.

TextRAG Retriever

VisRAG Retriever

Minarets? Not a word
about them!

I see Shah
Jahan…

but no trail
to follow!

Lo
ss

y
Su

m
m

ar
iz

at
io

n
Lo

ss
 o

f
H

yp
er

lin
ks

Everything's
crammed
into one

screenshot!

Figure 1: Challenges of TextRAG approaches and Vis-
RAG approaches. (a) Incorrect summarization may re-
sult in possible information loss in TextRAG. (b) In-
sufficient retrieval granularity in VisRAG. (c) Limited
multihop reasoning due to loss of links in VisRAG.

PDFs (Yu et al., 2024; Cho et al., 2024). Such mul-
timodal documents can be viewed as collections
of potentially interconnected components (e.g., via
hyperlinks as shown with Taj Mahal in Figure 1),
each belonging to one of multiple modalities, in-
cluding text, tables, or images.

Recent approaches in multimodal document re-
trieval have increasingly adopted VisRAG-based
methodologies, which unify diverse modalities by
treating them primarily as visual content, typically
represented through screenshots such as a page of
a PDF file (Yu et al., 2024; Faysse et al., 2024; Cho
et al., 2024). By casting multimodal retrieval as es-
sentially an image retrieval problem, these methods
leverage advanced vision-based embedding models
to preserve multimodal information.

This paradigm emerged largely as a response
to the limitations of earlier TextRAG-based ap-
proaches, which predominantly relied on textual
retrieval by converting visual data into textual sum-
maries (Yu et al., 2023b; Asai et al., 2023; Yan
et al., 2024; Yang et al., 2023; Yu et al., 2023a;

20552

https://github.com/joohyung00/lilac

Luo et al., 2023). Although effective in leverag-
ing mature text retrieval systems, these methods
inherently struggled to represent visual content ad-
equately, resulting in potential information loss and
reduction in retrieval effectiveness. For example, in
Figure 1, the textual summary of the Taj Mahal’s
image omits the word minarets, which was crucial
for answering the query in this context.

Despite their conceptual advances, current mul-
timodal retrieval approaches, including VisRAG,
still face two crucial limitations:

(1) Insufficient consideration of retrieval gran-
ularity. Effective retrieval demands explicitly set-
ting an optimal granularity of information rep-
resentation (Chen et al., 2024). Existing Vis-
RAG methods, however, typically adopt a fixed,
single-granular approach—generally at the full-
page screenshot level—which may include mul-
tiple components irrelevant to the query. Empiri-
cally, we observed that a single screenshot typically
comprises an average of three distinct components.
Consequently, the portion of query-relevant infor-
mation within each screenshot is relatively small,
inevitably leading to diminished embedding qual-
ity and retrieval effectiveness. Thus, granularity-
aware retrieval remains largely unaddressed within
multimodal document retrieval settings. For exam-
ple, in Figure 1(b), VisRAG struggles because the
query-relevant information constitutes only a small
portion of the screenshot’s content.

(2) Limited capability for multihop reason-
ing. Multimodal document retrieval inherently re-
quires reasoning about complex intra- and inter-
document relationships among components. Ef-
fective multihop reasoning critically depends on
capturing these relationships, as within-document
retrieval often necessitates integrating complemen-
tary information distributed across multiple modal-
ities to fully represent an entity. Likewise, inter-
document retrieval typically demands traversing
semantic connections between related documents.
Existing VisRAG-based approaches, however, in-
dependently embed and retrieve individual screen-
shots via nearest-neighbor search, thereby over-
looking essential interdependencies among com-
ponents. Moreover, these methods disregard inher-
ent structural connections within the same docu-
ment, such as associations among screenshots orig-
inating from the same page or hyperlinks explic-
itly linking different components. Although some
multimodal component retrieval methods have in-
troduced multihop reasoning capabilities (Yang

et al., 2023), they largely focus on distractor-based
closed-domain settings and rely heavily on online
reasoning with Large Language Models, signifi-
cantly limiting their generalization to open-domain
multimodal document retrieval scenarios. For in-
stance, in Figure 1(c), VisRAG struggles with mul-
tihop reasoning because it does not utilize the struc-
tural link from Shah Jahan to Taj Mahal.

To address the challenges, we propose LILaC, an
effective multimodal retrieval approach with two
novel ideas:

(1) Layered component graph construction.
We first represent the multimodal document cor-
pus as a layered component graph, explicitly de-
signed to capture multimodal information at two
distinct granularities. This layered graph structure
leverages edges to explicitly encode relationships
among components within and across documents,
thus inherently facilitating effective multihop rea-
soning. Additionally, we utilize a layered represen-
tation, enhancing retrieval efficiency and effective-
ness. The coarse-grained layer—where textual con-
tent is represented as paragraphs, tables as whole
entities, and images in their entirety—provides
contextual understanding suitable for broad can-
didate generation. While in the fine-grained layer—
where paragraphs are extracted into sentences, ta-
bles into discrete rows, and images into detected
visual objects—enables precise reasoning by de-
composing content into finer units. Edges in the
coarse-grained layer capture semantic associations
among components, while edges connecting coarse-
grained nodes to their fine-grained subcomponents
represent hierarchical containment relationships.

(2) Late-interaction-based subgraph retrieval
in layered graph. At online time, LILaC retrieves
a query-relevant subgraph from the layered com-
ponent graph. A key challenge in this step is the
combinatorial explosion of candidate subgraphs,
resulting from the extensive number of nodes and
edges distributed across both granularity layers (Hu
et al., 2024). To efficiently manage this complex-
ity, we propose a traversal-based subgraph retrieval
method on the layered component graph. Specif-
ically, we first decompose the original query to
identify an initial candidate node set at the coarse-
grained layer. We then iteratively perform beam
search by traversing connected edges from these
initial candidates, dynamically computing rele-
vance scores at each step. Crucially, since explic-
itly computing scores for all potential edges would
be computationally prohibitive, we leverage the

20553

layered structure of both the graph and query de-
composition. In particular, edge scores are com-
puted dynamically via late interaction between the
fine-grained subqueries and the fine-grained nodes
associated with each candidate edge, effectively
utilizing node-level embeddings.

In summary, we make three key contributions:
(1) We introduce a layered graph structure captur-
ing multimodal documents at dual granularities,
effectively supporting multihop reasoning. (2) We
propose an efficient yet effective subgraph retrieval
method leveraging late interaction between decom-
posed queries and fine-grained components. (3)
Extensive experiments demonstrate that our ap-
proach achieves state-of-the-art retrieval accuracy
on all five benchmarks, notably using only pre-
trained models without additional fine-tuning.

2 Preliminary
In this paper, we address multimodal document re-
trieval, defined as the task of retrieving a ranked
list of multimodal components relevant to a given
natural language query. Formally, a retrieval corpus
D comprises a collection of multimodal documents
{D1, D2, . . . , Dkdoc}. Each multimodal document
D = [C1, . . . , Ckcomp] is a sequence of multimodal
components. A multimodal component C may be-
long to one of three distinct modalities
• Paragraph P : a sequence of tokens, forming

an unstructured text segment.
• Table T : a structured matrix with rows Ti in-

dexed by row number i.
• Image I: a tensor I ∈ Rw×h×a, with w, h, and
a denote the width, height and the number of
channels, respectively.

Given a natural language query Q, a retrieval cor-
pus D and a link mapping L, the retrieval task
aims to produce a ranked list of components R =
[C1, . . . , Cnret]. The goal is for the ranked list R to
contain the ground truth set of relevant components
Cgt1 , . . . , Cgtr .

The link mapping L = C → D represents the
association or hyperlink relationships between in-
dividual components C and their respective mul-
timodal documents D, similar to hyperlinks com-
monly used in webpages and PDF files.

3 Related Work

3.1 Multimodal Document Retrieval
Early multimodal retrieval methods primarily
used a text-centric strategy, converting all compo-

nents—paragraphs, tables, and figures—into plain
text, thus losing essential visual cues (Yang et al.,
2023; Yu et al., 2023a; Luo et al., 2023; Park et al.,
2025). Later approaches maintained separate em-
bedding spaces for text and images, encoding each
modality independently and merging their scores
heuristically (Mei et al., 2025; Riedler and Langer,
2024). However, these methods struggle with rea-
soning across modalities due to disjoint embed-
dings.

Recent work pushes modality unification a
step further through VisRAG pipelines: docu-
ments are rasterized into page- or region-level
screenshots, so that paragraphs, tables, and im-
ages alike are embedded in a single visual space.
VisRAG demonstrates end-to-end vision-based re-
trieval–augmented generation, while ColPali in-
troduces a late-interaction vision–language model
that produces multi-vector page embeddings. De-
spite their strengths, VisRAG approaches inherit
some limitations. (i) Fixed granularity: retrieval
granularity is fixed as full-page screenshots, which
may contain query-irrelevant context. (ii) Limited
multihop reasoning: current pipelines treat each
screenshot independently, ignoring the dependen-
cies between components.

3.2 Granularity of Retrieval
Previous studies have explored retrieval gran-
ularity across various modalities. In text re-
trieval, DenseXRetrieval demonstrates improved
retrieval accuracy using finer sentence- and
proposition-level units (Chen et al., 2024).
Mix-of-granularity dynamically selects the op-
timal granularity tailored to each query (Zhong
et al., 2024), while RAPTOR starts from sentences
and recursively clusters and summarizes them into
coarser units (Sarthi et al., 2024). For table modal-
ity, OTT-QA segments tables into header-plus-row
units for targeted row-level retrieval (Herzig et al.,
2021). However, granularity in multimodal docu-
ment retrieval remains largely unexplored.

3.3 Multimodal Embedder Models
Recently, multimodal embedders and their corre-
sponding benchmarks (Jiang et al., 2024; Wei et al.,
2024) have emerged as active research areas due
to the limitations of traditional uni- or cross-modal
embedders in dynamic retrieval scenarios. Un-
like conventional unimodal embedders (Karpukhin
et al., 2020; Reimers and Gurevych, 2019), mul-
timodal approaches specifically address dynamic

20554

?

𝐷1

𝒟

𝑄
Query

Decomposition

?

?

(a) Layered Component Graph Construction

Component
Tree

Generation

𝐷2

𝐷3

Inter-
Component

Edge
Generation

(b) LLM-driven Query Decomposition

(c) Late-interaction-based
Subgraph Retrieval

Initial
Candidate

Node
Search

One-hop
Node

Expansion

Modality
Classification

?

?

?
𝑄

Edge-level
Late

Interaction𝑞1

𝑞2

𝑞1

𝑞2

𝑚1

𝑚2

× (𝑛𝑖−1)

𝒢

𝒢0

𝒢𝑛𝑖

𝑛𝑖 = 1
𝑏 = 2

Figure 2: Overview of LILaC. (a) A layered component graph is constructed by organizing multimodal documents
into coarse- and fine-grained layers. (b) The query is decomposed, followed by modality classification for each
subquery. (c) LILaC dynamically retrieves a query-relevant subgraph through iterative beam-search traversal.

settings characterized by retrieval tasks guided by
explicit modality instructions. Advanced models
such as MMEmbed, UniME, and mmE5 leverage sophis-
ticated multimodal language models along with
modality-specific fine-tuning, significantly improv-
ing retrieval performance under clear modality in-
structions (Lin et al., 2024; Gu et al., 2025; Chen
et al., 2025). However, existing multimodal embed-
ders predominantly focus on training at the compo-
nent level, leaving the effective use of these models
for multimodal document retrieval largely unex-
plored. Furthermore, scenarios involving retrieval
tasks without explicit instructions or with ambigu-
ous contexts have yet to be thoroughly investigated.

4 Proposed Method

We propose LILaC, a novel retrieval algorithm uti-
lizing a layered component graph and traversal
method to retrieve a query-relevant subgraph. As
shown in Figure 2, it consists of two stages: (i) Lay-
ered Graph Construction organizes multimodal
documents into a layered component graph with
explicit intra- and inter-document edges. (ii) Late-
interaction-based Subgraph Retrieval iteratively
traverses the layered graph in an edge-wise manner.
To score an edge using node-level embeddings, it
uses late interaction between the decomposed sub-
queries and low-layer subcomponents of an edge.

4.1 Layered Component Graph Construction
In the offline phase, LILaC constructs a layered
graph structure G, called the layered component
graph, from the multimodal document set D and
the associated link mapping L. The graph is de-
signed to represent relationships among compo-
nents while also allowing each component to be
expressed via fine-grained constituent elements. It
comprises two distinct layers explicitly designed

to represent semantic relationships among multi-
modal components, offering two primary advan-
tages. First, the top layer supports multihop re-
trieval by explicitly modeling relationships be-
tween components and documents, enabling iden-
tification of relevant contexts. Second, the lower
layer facilitates precise, fine-grained reasoning by
further decomposing components into finer sub-
components (defined in Definition 2), thus provid-
ing detailed context for accurate retrieval. In ad-
dition, the edges explicitly encode two relations
among these nodes: (i) hierarchical containment,
which links coarse components to fine-grained sub-
components; and (ii) navigational relations, which
preserve potential cross-component affinity (both
intra- and cross-document) without prematurely
committing to a specific semantic.
Definition 1 (Layered Component Graph). We
define a layered component graph as G =
(V,E, λ, τ), where V is a set of vertices. A ver-
tex v belongs to one of the two layers, determined
by the layer map λ : V → {0, 1}, where 0 and 1
corresponds to the coarse-grained and fine-grained
nodes, respectively.

V0 = Vpara ∪ Vtbl ∪ Vimg

V1 = Vsent ∪ Vrow ∪ Vobj

We denote each vertex set - Vpara: para-
graphs, Vtbl: tables, Vimg: images, Vsent: sen-
tences, Vrow: table rows, Vobj: visual objects de-
tected in images. The type map τ : V →
{para, tbl, img, sent, row, obj} refines the vertex
set V into the six disjoint categories. The edge set
E ⊆ V × V is the union E = E0 ∪ E↓ where

E0 =
{
(u, v) ∈ V 2

0 }
E↓ =

{
(u, v) | u ∈ V0, v ∈ V1}

E0 captures relationships between the macro com-
ponents, while E↓ captures the containment of a

20555

macro component of its subcomponent.
Definition 2 (Subcomponent). Let C be a multi-
modal component. A subcomponent c ∈ S(C) is
defined in a modality-specific manner:
• Paragraph. For a paragraph P =
[p1, . . . , pksent] consisting of sentences,
each sentence pj is a subcomponent.

• Table. Let T = [T0;T1; . . . ;Tkrow] where T0 is
the header row. For every data row Ti (1 ≤
i ≤ krow), the two-row segment ti = [T0; Ti]
is a subcomponent.

• Image. Given an image tensor I ∈ Rw×h×a

and an object detector that returns a bounding
box (x1, y1, x2, y2), the corresponding patch

i = I[x1 : x2, y1 : y2, :]
is a subcomponent.

Layered component graph G is constructed in
two steps. First, LILaC builds a component tree for
each component C within D. A component tree is
a two-level tree structure with the root representing
the component itself and its children representing
the subcomponents, which are extracted differently
depending on the modality of the component. The
roots and leaves of these trees form the nodes of
V0 and the nodes of V1, respectively, while the
parent–child links correspond to the edges in E↓.
For a paragraph P , LILaC utilizes a Sentence-aware
Transformer (SaT) model to split it into a set of
sentences. A table T is parsed to generate a set of
table segments. Lastly, a multimodal LLM is used
to detect objects within I . LILaC then generates an
edge (C, c) ∈ E↓ for c ∈ S(C).

In the next step, LILaC generates the inter-
component edges E0 using both inherent structural
relationships and hyperlink-based connections. For
every document D ∈ D, a clique is formed among
its components:
Eintra = {(Ci, Cj)|Ci ̸= Cj , Ci, Cj ∈ D} (1)

To enable cross-document multihop reasoning,
LILaC then follows the link mapping L. For each
pair (C,D) ∈ L, it connects C to every component
in the linked document D.

Einter = {(C,C ′)|(C,D) ∈ L, C ′ ∈ D} (2)
The inter-component edge set for the top layer is
therefore E0 = Eintra∪Einter. Finally, every node
v ∈ V receives an embedding v = f(v) from a
pre-trained multimodal encoder f .

4.2 Late-interaction-based Subgraph
Retrieval

During the online phase, LILaC retrieves a query-
relevant subgraph G′ from the layered component

graph G given a query Q. This retrieval faces two
key challenges: (1) Direct identification of an opti-
mal subgraph from all possible candidates is com-
putationally infeasible due to a combinatorial ex-
plosion (Hu et al., 2024). In particular, the layered
component graph contains numerous edges, mak-
ing explicit embedding of all edges prohibitively
expensive in terms of space and computation. (2)
Queries often lack explicit modality instructions,
causing ambiguity for multimodal embedders, par-
ticularly in complex multihop scenarios (Wei et al.,
2024). To address these, we introduce a two-step
retrieval strategy: (i) LLM-driven query decompo-
sition, which explicitly generates modality-specific
subqueries, and (ii) Late-interaction-guided graph
traversal, a beam-search traversal method dynami-
cally scoring edges based on fine-grained interac-
tions within the low-level nodes.

4.2.1 LLM-driven Query Decomposition
Given a potentially complex query Q, LILaC first
leverages an LLM to explicitly decompose Q into
simpler modality-specific subqueries. Specifically,
we utilize a zero-shot prompting strategy to gener-
ate a small set of subqueries:

{q1, . . . , qksub} = LLM(Q; promptdec) (3)

Each subquery is then classified into a modality
label mj ∈ {text, table, image} with a second
prompt:

mj = LLM(qj ; promptmod) (4)

Using these labels, we obtain modality-specific
embeddings qj = f(qj ; mj) for every subquery,
while the original query is embedded coarsely as
Q = f(Q; ε) to seed the initial candidate search.
We denote the set of embedded subqueries as
Qsub = {q1, . . . ,qksub}. Full prompt templates ap-
pear in §F.

4.2.2 Late-interaction-guided Graph
Traversal

At inference time, LILaC searches for a subgraph
G′ ⊆ G that best matches the query. LILaC main-
tains a beam of size b and iteratively identify a
candidate subgraph Gt = (Vt, Et, λ, τ) consisting
of b edges. Initially, to efficiently narrow the search
space from numerous candidate nodes, LILaC iden-
tifies a set of top-b top-level nodes V0 most relevant
to the query.

V0 =
b

argmax
C∈V0

sim
(
Q,C

)
, E0 = {} (5)

20556

LILaC then initiates iterative traversal of the
graph starting from these candidate nodes. In each
iteration, LILaC first expands the candidate nodes
via one-hop traversal to consider adjacent nodes,
dynamically computing query-relevance scores
for all edges formed by these expansions. Subse-
quently, only the top-b scored edges are retained
for the next iteration forming subgraph, and their
constituent nodes become the new set of candidate
nodes, forming Gi = (Vi, Ei, λ, τ). After the final
iteration ni, LILaC returns the top-nret nodes from
the final subgraph Gni .

?

?

0.2 0.3 0.8 0.7 0.3

𝑞1; 𝑚1

𝑞2; 𝑚2

0.5 0.6 0.8 0.7 0.3

0.1 0.2 0.2 0.3 0.1

?

?

𝑞1; 𝑚1

𝑞2; 𝑚2

𝑠𝑐𝑜𝑟𝑒 𝑒1, 𝑄 = 1.5

𝑠𝑐𝑜𝑟𝑒 𝑒1, 𝑄 = 1.1

𝐶1 𝐶2

𝐶2𝐶3

𝑒2

𝑒1

𝐶2

𝐶2𝐶1

0.7 0.6 0.2 0.3 0.1

0.5 0.6 0.8 0.7 0.3

0.1 0.2 0.2 0.3 0.1

𝒒1

𝒒2

𝒒1

𝒒2

𝑒1
𝐶1 𝐶2 𝐶3 𝐶2

𝑠 𝑒1; 𝑸𝑠𝑢𝑏 = 1.5 𝑠 𝑒2; 𝑸𝑠𝑢𝑏 = 1.1

𝑒2
(a) (b)

Figure 3: An example case of edge-level late interaction.

Late Interaction Edge Scoring. As previously
discussed, naively calculating edge scores nega-
tively impacts both effectiveness and efficiency.
Specifically, this is because (1) subqueries, each
potentially targeting distinct modalities, must accu-
rately align with the relevant nodes, and (2) embed-
ding all edges within the layered graph is inefficient
due to their vast number.

To efficiently address these issues, LILaC em-
ploys a late interaction strategy, scoring each edge
on-the-fly with fine-grained evidence. LILaC ex-
tends the standard token-level late interaction to
operate at the node-subquery level, by matching
decomposed subqueries against the subcomponents
contained within an edge. Let an edge be e =
(Cα, Cβ) and Se = S(Cα)∪S(Cβ). LILaC gathers
every subcomponent that could provide evidence
on either side of the edge in the set Se.

s(e;Qsub) =
∑

q∈Qsub

max
c∈Se

sim
(
f(c),q

)
. (6)

The inner max selects, for each sub-query q, the
single most relevant sub-component c incident to
the edge, while the outer sum ensures every sub-
query contributes exactly once. Figure 3 shows
two example cases of late interaction scoring. This
scoring approach is designed to reflect practical
scenarios where each subquery specifically tar-
gets fine-grained details located within particu-
lar subcomponents. By aggregating the maximum

similarity scores across these detailed elements,
rather than relying solely on coarse component
embeddings, LILaC effectively prioritizes precise,
subcomponent-level matches. This strategy en-
hances retrieval accuracy by focusing directly on
relevant information, reducing the noise introduced
by broader, less relevant contexts.

We introduce two special cases of edge scoring:
(i) Isolated nodes. If a component C has no ex-
plicit neighbor, we introduce a dummy edge (C, ε)
so that C can still be considered. (ii) One-sided
matches. If an edge score s(e;Q) equals the best
single-node score of one endpoint, we return only
that node to avoid including irrelevant neighbors.
Refer to Figure 3 (b) for a specific example.

5 Experiments
5.1 Experimental Setups

Datasets & Evaluation Metrics. We
evaluate on total five benchmarks. Three
are VisRAG-extended open-domain VQA
datasets—MP-DocVQA (Tito et al., 2023) (in-
dustrial documents), SlideVQA (Tanaka et al.,
2023)(presentation slides with multi-hop queries),
and InfoVQA (Mathew et al., 2022) (infographics).
For a realistic webpage retrieval setting, we extend
multimodal QA benchmarks (MultimodalQA (Tal-
mor et al., 2021), MMCoQA (Li et al., 2022b))
using M3DocRAG’s methodology (Cho et al., 2024).
Specifically, we reconstruct webpages from URLs
annotated in each component label. MultimodalQA
comprises 3,235 webpages, each averaging
approximately 37 components, corresponding
to about 12 PDF pages. MMCoQA comprises 453
webpages, each averaging approximately 32
components, 11 PDF pages.

Following VisRAG, we evaluate retrieval using
Mean Reciprocal Rank at 10 (MRR@10). Addi-
tionally, we include Recall@3 to assess whether
the retrieval component successfully captures rele-
vant information within the top three components,
aligning with VisRAG’s experimental design that
inputs three components to the generation model.
Further details are explained in § E.2.

Compared Methods. We employ two SOTA
methods of VisRAG approaches - VisRAG, which
directly encodes document images via VLMs (Yu
et al., 2024), and ColPali, which employs late-
interaction multi-vector embeddings from docu-
ment images (Faysse et al., 2024). We additionally
compare with NV-Embed-v2, a SOTA TextRAG

20557

Algorithm Embedder Type
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10

NV-Embed-v2 Text 67.85 61.91 88.49 79.55 86.21 80.86 60.19 67.86 46.16 41.45

VisRAG-Ret
Image

83.25 75.55 91.55 84.30 92.76 86.22 50.08 55.08 27.63 23.75
ColPali 80.71 74.86 89.39 81.55 88.30 82.76 58.73 65.05 36.24 32.33

LILaC (w/ mmE5)
Multimodal

61.25 55.30 77.52 68.80 75.09 69.86 54.79 59.02 48.88 40.30
LILaC (w/ UniME) 77.83 71.42 84.35 77.93 82.28 75.27 58.52 61.44 49.63 42.97
LILaC (w/ MM-Embed) 83.59 78.75 92.81 84.43 93.17 86.83 69.07 75.28 55.80 50.77

Table 1: Retrieval accuracy (Recall@3 (R@3) and MRR@10) of LILaC and its competitors on five benchmarks. The
best score in each column is in bold. The in-domain fine-tuned settings are colored in orange .

Algorithm MLLM
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

EM F1 EM F1 EM F1 EM F1 EM F1

NV-Embed-v2 Qwen2.5-VL 7B 56.51 63.16 53.77 64.41 60.72 63.40 37.23 43.85 28.05 34.67

VisRAG-Ret MiniCPM V2.6 54.31 68.86 43.88 62.37 50.83 57.55 28.18 34.01 21.51 27.87
VisRAG-Ret Qwen2.5-VL 7B 65.34 72.24 55.03 66.13 60.16 61.93 22.24 25.55 16.69 20.90
ColPali Qwen2.5-VL 7B 64.46 71.16 53.77 64.54 58.07 60.38 23.59 27.37 18.07 22.30

LILaC (w/ mmE5) Qwen2.5-VL 7B 52.96 59.53 50.89 59.07 50.12 53.12 40.72 47.46 33.90 40.38
LILaC (w/ UniME) Qwen2.5-VL 7B 62.43 69.40 53.05 62.89 53.39 56.86 43.42 49.72 33.39 40.12
LILaC (w/ MM-Embed) Qwen2.5-VL 7B 65.48 72.42 55.57 66.32 60.91 62.87 44.57 51.97 36.31 43.22

Table 2: End-to-end accuracy (EM and F1) of LILaC and its competitors for the 5 benchmarks. The best score in
each column is in bold. Generation results corresponding to in-domain fine-tuned settings are colored in orange .

method reported by VisRAG. It utilizes a 7.85B
model for embedding textualized components.

Applied Multimodal Embedding Models. We
use three multimodal embedders: MM-Embed (Lin
et al., 2024), UniME (Gu et al., 2025) and
mmE5 (Chen et al., 2025). Details about the em-
bedding models can be further found in § D.

5.2 Retrieval Accuracy Comparison

We evaluated retrieval accuracies using Recall@3
(R@3) and MRR@10 across five benchmarks. Ta-
ble 1 summarizes the retrieval performance of
LILaC and competing methods. Our results indicate
that LILaC achieves state-of-the-art (SOTA) per-
formance on all five benchmarks. Notably, LILaC
outperforms the previous VisRAG SOTA mod-
els, VisRAG-Ret and ColPali, by substantial mar-
gins of 14.24% and 11.62% in R@3, and 15.75%
and 11.74% in MRR@10, on average, respec-
tively. These performance gains are especially
prominent on datasets that inherently require fine-
grained and multihop reasoning (MultimodalQA
and MMCoQA), where the relative improvements in
average Recall@3 reached 60.68% and 31.49%,
and MRR@10 improved by 59.90% and 45.92%,
respectively.

Our analysis highlights two key findings: (i) Tex-
tRAG of NV-Embed-v2, consistently shows the low-
est retrieval accuracy on visually-dependent VQA
datasets that include plots and charts, highlighting

inherent limitations in handling visual modalities.
(ii) VisRAG methods notably struggle in webpage
retrieval settings (MultimodalQA, MMCoQA), under-
performing even when compared to the text-based
NV-Embed-v2. Specifically, the stronger VisRAG
model, ColPali, showed accuracy drops against
NV-Embed-v2, with reductions of 10.70% in Re-
call@3 and 20.96% in MRR@10.

5.3 End-to-end Accuracy Comparison

We conducted end-to-end question answering (QA)
experiments to analyze the impact of retrieval ac-
curacy on downstream QA performance. The re-
trieved results were directly input into a multimodal
LLM generator for answer generation, primarily us-
ing the Qwen2.5-VL 7B model (Yang et al., 2024).
We limited the number of retrieved units fed into
the generator to 3, consistent with the experimental
setup of VisRAG. We additionally provide the re-
sults from MiniCPM V2.6 for comprehensive com-
parison, following the original VisRAG pipeline.
Applied prompts are detailed in § F.

Table 2 shows that LILaC achieves SOTA end-
to-end accuracy on every benchmark, with aver-
age EM and F1 scores of 52.56% and 59.36%,
respectively. This represents substantial improve-
ments of 18.67% and 19.62% compared to the pre-
viously best-performing VisRAG setup, VisRAG
with Qwen2.5-VL, which scored 44.29% in EM
and 49.62% in F1. Overall, the end-to-end QA

20558

Embedder Model Variant
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10

mmE5

LILaC (w/o LCG & QD) 48.90 43.97 75.91 68.13 65.60 58.55 42.99 46.92 41.22 34.51
LILaC (w/o QD) 60.81 55.02 74.14 67.58 67.70 60.01 45.15 51.12 44.18 36.62
LILaC 61.25 55.35 76.80 68.99 68.91 61.18 54.78 59.32 48.54 40.22

UniME

LILaC (w/o LCG & QD) 52.12 45.31 81.47 71.22 83.57 77.07 47.68 49.06 45.78 38.41
LILaC (w/o QD) 77.83 71.27 83.45 75.70 85.11 78.01 52.18 54.01 47.11 39.85
LILaC 77.83 71.39 84.35 77.93 85.53 78.81 58.43 61.32 49.45 42.91

MM-Embed

LILaC (w/o LCG & QD) 75.80 69.09 92.80 82.19 90.39 83.71 61.10 67.35 47.94 43.75
LILaC (w/o QD) 82.23 77.75 92.27 83.20 92.17 85.53 63.19 69.91 50.18 45.59
LILaC 83.59 78.75 92.81 84.43 93.17 86.83 69.07 75.28 55.80 50.77

Table 3: Ablation study analyzing retrieval accuracy (Recall@3 and MRR@10) of different LILaC variants. Best
scores per embedder and dataset are highlighted in bold (LCG = Layered Component Graph, QD = Query Decompo-
sition).

accuracy trends closely align with retrieval accu-
racy. However, a notable exception arises. Inter-
estingly, despite LILaC (w/ mmE5) having ap-
proximately 8.97% lower retrieval accuracy (R@3)
compared to NV-Embed-v2, its EM score surpasses
NV-Embed-v2 by 19.71%. This divergence high-
lights the significant information loss inherent to
TextRAG methods, which convert visual content
entirely into text, underscoring the importance of
preserving visual modalities for effective QA.

5.4 Ablation Study

We performed an ablation study to assess the in-
dividual contributions of each key component in
our framework to retrieval accuracy. Specifically,
we evaluated two variants of LILaC across all three
multimodal embedding models. LILaC (w/o QD)
is a variant of LILaC without its query decompo-
sition module, adn thus not incorporating the late
interaction score mechanism. It instead incorpo-
rates a two-stage retrieval approach on the layered
graph: it first selects the top b-nearest neighbor
components at the coarse level, and then reranks
these components by considering subcomponent-
level relevance scores. LILaC (w/o LCG & QD)
further discards the layered component graph (LCG)
structure. It directly applies a k-nearest neighbor
search on individual top-layer components without
leveraging finer-grained subcomponents.

Table 3 indicates that incorporating the layered
component graph to the simple baseline (LILaC
(w/o LCG & QD)) shows notable average improve-
ments—7.33% in R@3 and 10.13% in MRR@10.
Further integrating query decomposition with the
late interaction mechanism to LILaC (w/o QD)
completes the LILaC algorithm, yielding incremen-
tal gains of 3.19% in R@3 and 4.7% in MRR@10.
While these improvements seem modest, closer

inspection reveals significant benefits in datasets
requiring complex multihop reasoning, particu-
larly MultimodalQA and MMCoQA. Specifically, in-
corporating QD improves R@3 by an average of
7.40% and MRR@10 by 10.70% for these two
datasets. Overall, LILaC is demonstrated to be a
generalizable method, evidenced by its consistent
performance improvements across all multimodal
datasets and embedding models. This robust trend
underscores LILaC’s ability to universally enhance
retrieval performance across a variety of multi-
modal embedding scenarios.

5.5 Algorithm Execution Time

Figure 4 (a) shows the average retrieval and gen-
eration times for each algorithm. LILaC is approx-
imately 20.76% slower than VisRAG, yet 18.24%
faster than ColPali. Despite employing a unigranu-
lar retrieval approach, ColPali’s runtime remained
slower due to its inherent complexity from multi-
vector embedding methods. Notably, both VisRAG
methods had longer generation times compared to
ours. VisRAG required 1.70×, and ColPali 1.15×
times our average generation runtime, primarily
because their pixel-heavy image inputs increased
MLLM inference times.

Figure 4 (b) presents the detailed runtime break-
down for LILaC, showing a total average runtime of
3,047 ms. Remarkably, the late-interaction-based
subgraph retrieval step accounts for only about 48
ms (approximately 1.5% of the total runtime). The
major performance bottleneck lies in the query de-
composition phase, averaging 1,423 ms. Since this
step relies on advanced reasoning with the compu-
tationally heavy Qwen2.5 72B model, future im-
provements in runtime efficiency could be realized
by utilizing lighter models, thus balancing speed
and retrieval accuracy more effectively.

20559

NV-Embed-v2 VisRAG ColPali LILaC
0

500

1000

1500

2000

2500

3000

3500
Ti

m
e

(m
s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(m

s)

1424

91 130
48

1356

(a) Average runtime (b) Breakdown of LILaC

Figure 4: (a) Comparison of average algorithm execu-
tion times across different methods, and (b) detailed
runtime breakdown of LILaC.

LLM Params DAcc (%) R@3 (%) Time (ms)

Qwen2.5
8B 63.29 59.01 258

72B 72.23 62.43 1849

Llama3.1
7B 58.11 57.44 336

70B 66.34 61.24 1731

Table 4: Query decomposition analysis result on
MultimodalQA and MMCoQA datasets.

5.6 Query Decomposition Analysis
We evaluate the query decomposition module in
isolation and its impact on retrieval accuracy. Be-
cause benchmarks do not provide gold subqueries,
we approximate decomposition quality via the Jac-
card similarity between the predicted modality set
M̂(q) (union of modalities assigned to generated
subqueries) and the gold modality set M⋆(q) de-
rived from ground-truth components (where q is
a query). Specifically, the score for a query q is

J(q) = |M̂(q)∩M⋆(q)|
|M̂(q)∪M⋆(q)| , and the final accuracy is

obtained by averaging over all queries.
We compare Qwen2.5 (8B, 72B) and Llama3.1

(7B, 70B) using the prompts of §F, keeping all
other components fixed. In table 4, we report (i)
decomposition accuracy, (ii) Recall@3 (R@3),
and (iii) decomposition runtime (time (ms)) on
MultimodalQA and MMCoQA, as they are the only
datasets with M⋆(q) labeled.

We notice that the LLM-driven decomposition
attains reasonable accuracy of 72.23%, and also
that larger models improve both decomposition
and retrieval at higher latency. Notably, decomposi-
tion accuracy and Recall@3 are strongly correlated
across model variants (Pearson ρ=0.954), under-
scoring that better query decomposition directly
benefits retrieval.

5.7 Additional Experiments
Additional experiments were conducted, but are
detailed in the appendix due to space limitations.

These include (i) parameter sensitivity (§ E.4), (ii)
analysis of offline layered component graph con-
struction runtime (§ E.5), and (iii) a comparison of
retrieval accuracy across different embedder mod-
els (§ E.6).

6 Conclusion
We presented LILaC, a multimodal retrieval frame-
work designed to address the limitations of exist-
ing methods by incorporating layered component
graph and late-interaction-based subgraph retrieval.
Our layered graph construction explicitly captures
semantic relationships among multimodal compo-
nents, facilitating effective multihop reasoning. The
late-interaction retrieval method dynamically eval-
uates fine-grained component relevance, signifi-
cantly enhancing retrieval accuracy, yet efficient.
LILaC’s usage of pretrained multimodal encoders
allows it to inherit the improvements from newer
off-the-shelf embeddings. Extensive experiments
confirm that LILaC consistently outperforms state-
of-the-art approaches across all five benchmarks,
also demonstrating its broad applicability and ef-
fectiveness in open-domain multimodal retrieval.

7 Limitations

Our current approach focuses on effectively harmo-
nizing pre-trained multimodal models to achieve
enhanced retrieval performance without additional
fine-tuning. Consequently, the accuracy of our re-
trieval method significantly depends on the quality
of subcomponent extraction. Also, although our re-
trieval accuracy surpasses existing methods, there
remains substantial room for improvement in end-
to-end generation tasks.

Acknowledgements

This work was partly supported by the National Re-
search Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (RS-2025-00517736,
50%), Institute of Information & communications
Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. RS-
2024-00509258, Global AI Frontier Lab, 30%) (No.
RS-2018-II181398, Development of a Conversa-
tional, Self-tuning DBMS, 10%) (No. RS-2024-
00454666, Developing a Vector DB for Long-Term
Memory Storage of Hyperscale AI Models, 5%),
and Basic Science Research Program through the
National Research Foundation of Korea Ministry
of Education(No. RS-2024-00415602, 5%).

20560

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Yingshan Chang, Mridu Narang, Hisami Suzuki, Gui-
hong Cao, Jianfeng Gao, and Yonatan Bisk. 2022.
Webqa: Multihop and multimodal qa. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 16495–16504.

Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu,
Ziliang Zhao, Furu Wei, and Zhicheng Dou. 2025.
mme5: Improving multimodal multilingual embed-
dings via high-quality synthetic data. arXiv preprint
arXiv:2502.08468.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu,
Kaixin Ma, Xinran Zhao, Hongming Zhang, and
Dong Yu. 2024. Dense x retrieval: What retrieval
granularity should we use? In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 15159–15177.

Jaemin Cho, Debanjan Mahata, Ozan Irsoy, Yujie
He, and Mohit Bansal. 2024. M3docrag: Multi-
modal retrieval is what you need for multi-page
multi-document understanding. arXiv preprint
arXiv:2411.04952.

Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani,
Gautier Viaud, Céline Hudelot, and Pierre Colombo.
2024. Colpali: Efficient document retrieval with vi-
sion language models. In The Thirteenth Interna-
tional Conference on Learning Representations.

Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun
Wang, Yanzhao Zhang, Dingkun Long, Yingda
Chen, Weidong Cai, and Jiankang Deng. 2025.
Breaking the modality barrier: Universal embed-
ding learning with multimodal llms. arXiv preprint
arXiv:2504.17432.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and
Julian Martin Eisenschlos. 2021. Open domain ques-
tion answering over tables via dense retrieval. arXiv
preprint arXiv:2103.12011.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan,
Chen Ling, and Liang Zhao. 2024. Grag: Graph
retrieval-augmented generation. arXiv preprint
arXiv:2405.16506.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz,
Yingbo Zhou, and Wenhu Chen. 2024. Vlm2vec:
Training vision-language models for massive
multimodal embedding tasks. arXiv preprint
arXiv:2410.05160.

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In
EMNLP (1), pages 6769–6781.

Dongxu Li, Junnan Li, and Steven Hoi. 2023. Blip-
diffusion: Pre-trained subject representation for con-
trollable text-to-image generation and editing. Ad-
vances in Neural Information Processing Systems,
36:30146–30166.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022a. Blip: Bootstrapping language-image
pre-training for unified vision-language understand-
ing and generation. In International conference on
machine learning, pages 12888–12900. PMLR.

Yongqi Li, Wenjie Li, and Liqiang Nie. 2022b. Mm-
coqa: Conversational question answering over text,
tables, and images. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4220–
4231.

Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi,
Jimmy Lin, Bryan Catanzaro, and Wei Ping. 2024.
Mm-embed: Universal multimodal retrieval with mul-
timodal llms. arXiv preprint arXiv:2411.02571.

Haohao Luo, Ying Shen, and Yang Deng. 2023. Unify-
ing text, tables, and images for multimodal question
answering. Association for Computational Linguis-
tics.

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthe-
nis Karatzas, Ernest Valveny, and CV Jawahar. 2022.
Infographicvqa. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 1697–1706.

Lang Mei, Siyu Mo, Zhihan Yang, and Chong Chen.
2025. A survey of multimodal retrieval-augmented
generation. arXiv preprint arXiv:2504.08748.

Sungho Park, Joohyung Yun, Jongwuk Lee, and Wook-
Shin Han. 2025. Helios: Harmonizing early fusion,
late fusion, and llm reasoning for multi-granular
table-text retrieval. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 32424–
32444.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PmLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

20561

Monica Riedler and Stefan Langer. 2024. Beyond text:
Optimizing rag with multimodal inputs for industrial
applications. arXiv preprint arXiv:2410.21943.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh
Khanna, Anna Goldie, and Christopher D Manning.
2024. Raptor: Recursive abstractive processing for
tree-organized retrieval. In The Twelfth International
Conference on Learning Representations.

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav,
Yizhong Wang, Akari Asai, Gabriel Ilharco, Han-
naneh Hajishirzi, and Jonathan Berant. 2021. Mul-
timodalqa: Complex question answering over text,
tables and images. arXiv preprint arXiv:2104.06039.

Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku
Hasegawa, Itsumi Saito, and Kuniko Saito. 2023.
Slidevqa: A dataset for document visual question
answering on multiple images. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13636–13645.

Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny.
2023. Hierarchical multimodal transformers for mul-
tipage docvqa. Pattern Recognition, 144:109834.

Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu,
Ge Zhang, Jie Fu, Alan Ritter, and Wenhu Chen.
2024. Uniir: Training and benchmarking univer-
sal multimodal information retrievers. In European
Conference on Computer Vision, pages 387–404.
Springer.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Qian Yang, Qian Chen, Wen Wang, Baotian Hu, and
Min Zhang. 2023. Enhancing multi-modal multi-hop
question answering via structured knowledge and
unified retrieval-generation. In Proceedings of the
31st ACM International Conference on Multimedia,
pages 5223–5234.

Bowen Yu, Cheng Fu, Haiyang Yu, Fei Huang, and
Yongbin Li. 2023a. Unified language representation
for question answering over text, tables, and images.
arXiv preprint arXiv:2306.16762.

Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Jun-
hao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
Xu Han, Zhiyuan Liu, and 1 others. 2024. Vis-
rag: Vision-based retrieval-augmented generation
on multi-modality documents. arXiv preprint
arXiv:2410.10594.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023b. Augmentation-adapted retriever improves
generalization of language models as generic plug-in.
arXiv preprint arXiv:2305.17331.

Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan
Zhang, and Zengchang Qin. 2024. Mix-of-
granularity: Optimize the chunking granularity for
retrieval-augmented generation. arXiv preprint
arXiv:2406.00456.

20562

Appendix

A Software and Data Licenses

The licenses for the software and datasets used in
this paper as follows:
• VisRAG-Ret: Apache-2.0
• ColPali: PaliGemma License, MIT License
• MiniCPM-v2.6: Apache-2.0
• Qwen2.5-VL 7B: Apache-2.0
• Qwen2.5 72B: Qwen
• MM-Embed: CC-BY-NC-4.0
• NV-Embed-v2: CC-BY-NC-4.0
• UniME: MIT License
• mmE5: MIT License
All software and datasets were used strictly for

research purposes and were not utilized in any non-
research contexts, particularly for commercial ap-
plications.

B AI Assistants

We implemented our code efficiently using
ChatGPT-o3 (Jaech et al., 2024), enabling rapid de-
bugging and effective error resolution. Additionally,
we revised our paper using ChatGPT-4.5, which
helped us enhance sentence clarity and readability
through iterative rephrasing.

C Reproducibility Statement

VisRAG-Ret was reproduced using the official code
available at VisRAG official github.
ColPali and NV-Embed-v2 were implemented

applying their official model cards introduced
in ColPali huggingface and NV-Embed-v2
huggingface, respectively. The source code, data,
and other artifacts for LILaC have been made avail-
able at our github repository.

D Model Details

(Multimodal) Large language models:
• Qwen2.5 72B: 72B parameters
• Qwen2.5-VL 7B: 7B parameters
• MiniCPM-v2.6: 8.1B parameters

Text embedders
• NV-Embed-v2: 7.85B parameters

Cross-modal embedders:
• ColPali: 3B parameters
• VisRAG-Ret: 3.43B parameters

Multimodal embedders:
• MM-Embed: 8.18B parameters

• UniME: 7.57B parameters
• mmE5: 10.6B parameters

MM-Embed is fine-tuned via modality-aware hard
negative mining (Lin et al., 2024). UniME is en-
hanced with textual discriminative knowledge dis-
tillation and instruction-tuned hard negatives (Gu
et al., 2025). mmE5 leverages synthetic multilingual
data for robust cross-modal alignment (Chen et al.,
2025).

E Experiment Supplementaries

E.1 Hardware and Software Settings

All our experiments were conducted on a system
with an Intel Xeon Gold 6230 GPU @ 2.10GHz,
1.5TB of RAM, and four NVIDIA RTX A6000
GPUs.

E.2 Implementation Details

We set the default hyperparameters for all exper-
iments as beam width b = 30 and number of iter-
ations ni = 1. Additionally, for the ablation study
that exclusively uses the layered graph structure
without late interaction, we also maintained an iden-
tical beam width (b = 30) to ensure a fair compari-
son.

All experiments were conducted with ‘temper-
ature = 0’ and ‘do_sample = False’. To further
ensure fair comparison, we aligned the ratio of
components between the VisRAG methods and
our approach to approximately 1:3, as justified
by the empirical observation that a typical screen-
shot in our datasets encompasses roughly three
distinct multimodal components. Specifically, the
MultimodalQA dataset contains 39,093 screenshots
and 122,521 components, and the MMCoQA dataset
comprises 5,175 screenshots and 14,493 compo-
nents, both yielding a component-to-screenshot ra-
tio close to 3:1.

E.3 Benchmark Details

MP-DocVQA: It is a multimodal visual question
answering benchmark designed for industrial doc-
uments. It includes challenging questions that re-
quire extracting and reasoning over textual and vi-
sual information such as tables, figures, and charts
found in documents. The development set contains
591 questions sourced from a corpus of 741 multi-
modal document pages.
SlideVQA: It focuses on extracting information

from presentation slides and often requires mul-
tihop reasoning across multiple slides. It empha-

20563

https://github.com/OpenBMB/VisRAG
https://huggingface.co/vidore/colpali
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/nvidia/NV-Embed-v2
https://github.com/joohyung00/lilac

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

MRR@10
Recall@3
Total Time

0
250
500
750
1000
1250
1500

Ti
m

e
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

250

500

750

1000

1250

1500

Ti
m

e
(m

s)

(a) Beam width (b) Number of
iterations

Figure 5: Change in retrieval accuracy with varying
parameter values.

sizes the capability to handle diverse layouts and
structured textual information commonly found in
presentations. The SlideVQA development set com-
prises 556 questions, with the corpus containing
1,284 slide pages.

InfoVQA: It targets visual question answering
on infographics, which blend images, charts, and
textual descriptions. This dataset presents complex
multimodal reasoning tasks where models must
interpret visual elements combined with succinct
textual explanations. Its development set includes
718 questions drawn from a corpus of 459 info-
graphic pages.
MultimodalQA: It refers to the extended version

of MultimodalQA, with its extension methodology
introduced in M3DocRAG (Cho et al., 2024). The
dataset covers a wide variety of document types,
including texts, images, and tables, requiring com-
plex multihop reasoning across multiple documents.
Its evaluation set comprises 2,441 questions from
over 3,368 PDF documents totaling approximately
41,005 pages.

MMCoQA: It is a conversational multimodal
question-answering dataset aimed at testing a sys-
tem’s ability to handle multimodal information
across multiple turns in a conversational context.
This dataset is also an extension of the MMCoQA
dataset, which originally operates in a distractor
setting. It involves coherent, multi-turn question se-
quences requiring integration of information from
text, images, and tables. The dataset includes 5,753
questions organized into 1,179 conversational dia-
logues. Its corpus consists of 218,285 textual pas-
sages, 10,042 tables, and 57,058 images.

E.4 Parameter Sensitivity

We explored the impact of varying the beam width
b (∈ {1, 2, 3, 4, 5, 10, 20, 30}) on the retrieval ac-
curacies. As depicted in Figure 5 (a), retrieval ac-
curacy increased monotonically with larger beam
widths, showing a significant improvement of
34.6% in R@3 when expanding from the mini-
mum of 1 to 30. This trend highlights the benefit

of wider beam searches, enabling more compre-
hensive and accurate graph traversal. Interestingly,
despite these substantial accuracy gains, the overall
execution time increased only marginally (2.8%),
indicating that graph traversal itself does not con-
stitute the main computational bottleneck.

Figure 5 (b) presents retrieval accuracy as a func-
tion of iteration count ni, varied from 0 to 2. We
observed a modest yet meaningful 2.93% improve-
ment in R@3 when transitioning from zero to one
iteration. This accuracy gain primarily results from
enabling multihop reasoning, which is inherently
unavailable at ni = 0. While the overall increase
might appear limited, it is particularly relevant to
datasets explicitly requiring complex multihop rea-
soning, such as MultimodalQA and MMCoQA.

We further analyzed how varying key hyperpa-
rameters—beam width b and the number of itera-
tions ni—affect the accuracy of LILaC across the
five different datasets. We provide comprehensive
plots illustrating the sensitivity and robustness of
our method concerning these parameters in Fig-
ure 6.

E.5 Layered Component Graph Construction
Overhead

Theoretical complexity. We analyze the offline cost
of building G (cf. Definition 1). Let n be the num-
ber of documents, c the average number of com-
ponents per document, and s the average number
of subcomponents per component. The total cost
decomposes as

Tbuild = Tnodes + Tedges + Tembed

Node generation. We enumerate components in
each document and extract subcomponents for ev-
ery component; we also add the containment links
(C, c) to E↓. Enumerating all components across
the corpus costs O(nc), and extracting & linking
subcomponents costs O(ncs):

Tnodes = O(nc) +O(ncs)

Edge generation. Within a document, we form
the intra-document clique over c components, yield-
ing Θ(c2) edges per document and O(nc2) overall.
Across documents, we follow the link mapping L;
with a hash map for document lookup, retrieving
targets is O(1) per link and contributes the same
order. Hence

Tedges = O(nc2)

20564

Step 20% 40% 60% 80% 100%

Node Generation 2m 8s 3m 53s 6m 20s 8m 29s 10m 20s
Edge Generation 38s 1m 6s 1m 46s 2m 18s 2m 54s
Embedding Generation 24m 27s 47m 44s 1h 15m 31s 1h 40m 42s 2h 2m 43s

Total 27m 13s 52m 43s 1h 23m 37s 1h 51m 29s 2h 15m 57s

Table 5: Average offline construction time by corpus fraction.

Model Params Recall@3 (%) MRR@10 (%)

MM-Embed 8B 78.89 75.18

UniME (LLaVA-OneVision) 7B 69.83 65.30

mmE5-mllama (instruct) 11B 62.54 57.83

QQMM-embed 8B 66.09 62.00

LLaVE
0.5B 56.59 51.76

2B 62.01 57.09

7B 67.14 62.13

VLM2Vec (Qwen2-VL)
2B 47.57 42.58

7B 53.24 47.68

Table 6: Retrieval accuracy compared with different pretrained embedders.

Embedding generation. We embed all compo-
nent and subcomponent nodes using f , which
scales with their counts:

Tembed = O(nc) +O(ncs)

Summing the terms gives

Tbuild = O(ncs+ nc2)

In typical regimes where c, s ≪ n, the offline con-
struction is approximately linear in n. The embed-
ding term is usually dominant; importantly, it is
fully offline, cacheable, and parallelizable across
documents.

Empirical runtime. To validate the scalabil-
ity, we measured average wall-clock time for each
construction stage on increasing corpus fractions
(20% / 40% / 60% / 80% / 100%), holding the en-
coder f and batching fixed. Results are shown in
Table 5. They closely follow the above analysis,
exhibiting near-linear growth in n and revealing
embedding as the primary bottleneck. At 100%
of the data, total build time is 2h 15m 57s; em-
bedding accounts for ∼90.23% of the cost, with
node and edge generation contributing ∼7.60%
and ∼2.13%, respectively. We emphasize that the
offline cost can be further reduced via batching,
sharding, and incremental updates when documents
are added or modified.

E.6 Comparison of Diverse Embedders

To probe how biases in pretrained embeddings
manifest in retrieval, we hold the LILaC pipeline
fixed and vary only the multimodal embed-
der. We evaluate seven families—MM-Embed,
UniME (LLaVA-OneVision-7B-LoRA-Res336),
mmE5-mllama (11B, instruct), QQMM-embed,
LLaVE (0.5B/2B/7B), and VLM2Vec (Qwen2-VL;
2B/7B)—and report Recall@3 and MRR@10.

In Table 6, we observe a consistent scaling trend:
within LLaVE, Recall@3 improves by +9.5% rela-
tive from 0.5B to 2B (62.01−56.59 over 56.59)
and a further +8.2% from 2B to 7B; within
VLM2Vec, 7B exceeds 2B by +11.9%. Overall, the
top performers are MM-Embed, UniME, and LLaVE-
7B. These results indicate that LILaC’s retrieval
quality is sensitive to the inductive biases of the
underlying encoder, yet benefits directly from
stronger, larger models.

E.7 Algorithm Execution Runtime: Further
Analysis

We conducted an in-depth examination of runtime
efficiency. Specifically, we compared the overall
execution time of our proposed method, LILaC,
against other baseline algorithms across all datasets.
We further broke down LILaC’s runtime into indi-
vidual components (such as retrieval, reranking,
and LLM refinement) to clearly identify perfor-
mance bottlenecks and highlight the efficiency of

20565

different pipeline stages. Detailed results are shown
in Figure 7.

F Prompt Templates

We present detailed examples of the specific
prompt templates used in our experiments. These
prompts correspond to three key tasks: OBJECT

DETECTION, QUERY DECOMPOSITION, MODAL-
ITY SELECTION and ANSWER GENERATION. For
each task, we provide clear instructions, expected
input-output formats, and task-specific heuristics.

20566

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

(g) MP-DocVQA: b (h) MP-DocVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

250

500

750

1000

1250

1500

Ti
m

e
(m

s)
0 1 2

Number of Iterations
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

250

500

750

1000

1250

1500

Ti
m

e
(m

s)

(g) SlideVQA: b (h) SlideVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

250

500

750

1000

1250

Ti
m

e
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

250

500

750

1000

1250

Ti
m

e
(m

s)
(g) InfoVQA: b (h) InfoVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

500

1000

1500

2000

Ti
m

e
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

500

1000

1500

2000

Ti
m

e
(m

s)

(g) MultimodalQA: b (h) MultimodalQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

500

1000

1500

Ti
m

e
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

500

1000

1500

Ti
m

e
(m

s)

(g) MMCoQA: b (h) MMCoQA: ni

Figure 6: Parameter-sensitivity analysis for each dataset: effect of beam width b (left) and number of iterations ni

(right).

20567

NV-Embed-v2 VisRAG ColPali LILaC
0

500

1000

1500

2000

2500

3000

Ti
m

e
(m

s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

250

500

750

1000

1250

1500

1750

Ti
m

e
(m

s) 1037

68 95
8

1695

(a) MP-DocVQA runtime comparison (b) LILaC’s runtime breakdown on MP-DocVQA

NV-Embed-v2 VisRAG ColPali LILaC
0

500

1000

1500

2000

Ti
m

e
(m

s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

200

400

600

800

1000

1200

1400

Ti
m

e
(m

s)

1354

92 112
7

779

(c) SlideVQA runtime comparison (d) LILaC’s runtime breakdown on SlideVQA

NV-Embed-v2 VisRAG ColPali LILaC
0

500

1000

1500

2000

2500

3000

Ti
m

e
(m

s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(m

s)

1248

77 102
10

1539

(e) InfoVQA runtime comparison (f) LILaC’s runtime breakdown on InfoVQA

NV-Embed-v2 VisRAG ColPali LILaC
0

2000

4000

6000

8000

10000

Ti
m

e
(m

s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(m

s)

1955

122 182 119

1292

(g) MultimodalQA runtime comparison (h) LILaC’s runtime breakdown on MultimodalQA

NV-Embed-v2 VisRAG ColPali LILaC
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(m

s)

Retrieval
Generation

Query
Decomp.

Modality
Est.

Query
Embed.

Traversal Generation
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(m

s)

1525

96 159 96

1473

(i) MMCoQA runtime comparison (j) LILaC’s runtime breakdown on MMCoQA

Figure 7: Comparison of algorithm execution time (i.e., runtime) for each algorithm per dataset (left) and LILaC’s
runtime breakdown per dataset (right).

20568

OBJECT DETECTION

Instruction:
Detect all objects in the image and return ONLY a JSON list of {class, bbox_2d: [x1, y1,
x2, y2]}. Do NOT include markdown or extra text.

Image: {image}
Output:

QUERY DECOMPOSITION

Instruction:
You are a retrieval-oriented query decomposer.

Goal – Produce the smallest set (1 – 5) of component-targeting sub-queries.
Each sub-query must describe one retrievable component (sentence, paragraph, table row, figure,
etc.) whose embedding should be matched.
Together, the sub-queries must supply all the information needed to answer the original question.

Guidelines:
1. Entity & noun-phrase coverage: Every noun phrase and named entity that appears in the original
question must appear at least once across the entire set of sub-queries (you may distribute them).
Keep each phrase exactly as written.
2. One-component rule: A sub-query should reference only the facts expected to co-occur within
the same component. If two facts will likely be in different components, put them in different
sub-queries.
3. No unnecessary splitting: If the whole answer can be found in a single component, return only
one sub-query.
4. De-contextualize: Rewrite pronouns and implicit references so every sub-query is understandable
on its own.
5. Keyword distribution: Spread constraints logically (e.g., one sub-query for “light rail completion
date”, another for “city with a large arched bridge from the 1997 Australia rugby-union test
match”).
6. Remove redundancy: Merge duplicate or paraphrased sub-queries before you output.
7. Ordering for dependencies: If the answer to one sub-query is needed for another, place the
prerequisite first.
8. Output format: Return only a JSON array of strings — no keys, explanations, or extra text.

Question: {question}
Output:

20569

MODALITY SELECTION

Instruction:
You are a modality selector for multimodal QA.

Task:
Given the single sub-question below, choose the one modality that is most appropriate for obtaining
its answer.

Allowed modalities:
• text: unstructured prose (paragraphs, sentences, propositions)
• table: structured rows/columns (spreadsheets, stats tables, infoboxes)
• image: visual information (photos, posters, logos, charts)

Heuristics:
1. Numeric totals, percentages, year-by-year figures → table
2. Visual appearance, colours, logos, “what does . . . look like” → image
3. Definitions, roles, biographies, causal explanations, quotes → text
4. If two modalities could work, pick the one that will yield the answer fastest.

Output format:
Return only the modality label on a single line – exactly text, table, or image.
No JSON, no additional text.

Subquery: {subquery}
Output:

20570

ANSWER GENERATION

Instruction:
Using the f_answers() API, return a list of answers to the question based on retrieved webpage
components. A retrieved component can be a passage, a table, or an image. Strictly follow the
format of the example below and keep the answer short. For yes/no questions, respond only with
f_answers(["yes"]) or f_answers(["no"]).

Example:

[Passage]
Document title: South Asia
The current territories of Afghanistan, Bangladesh, Bhutan, Maldives, Nepal, India, Pakistan, and
Sri Lanka form South Asia. The South Asian Association for Regional Cooperation (SAARC) is an
economic cooperation organisation established in 1985 that includes all eight nations comprising
South Asia.

[Passage]
Document title: UK Joint Expeditionary Force
The UK Joint Expeditionary Force (JEF) is a United Kingdom-led expeditionary force which may
include Denmark, Finland, Estonia, Latvia, Lithuania, the Netherlands, Sweden, and Norway. It is
distinct from the Franco-British Combined Joint Expeditionary Force.

[Table]
Document title: Lithuanian Armed Forces — Current operations
Deployment | Organization | Operation | Personnel
Somalia | EU | Operation Atalanta | 15
Mali | EU | EUTM Mali | 2
Afghanistan | NATO | Operation Resolute Support | 29
Libya | EU | EU Navfor Med | 3
Mali | UN | MINUSMA | 39
Iraq | CJTF | Operation Inherent Resolve | 6
Central African Republic | EU | EUFOR RCA | 1
Kosovo | NATO | KFOR | 1
Ukraine | — | Training mission | 40

Question: Among the Lithuanian Armed Forces’ current operations, which deployment involves
fewer personnel: Kosovo, or the deployment in the nation that, along with six others, constitutes
the sub-continent of South Asia?
Answer: The South Asia passage shows Afghanistan is part of that region. The table
lists 29 personnel in Afghanistan and only 1 in Kosovo, so f_answers(["Kosovo"]).

Using the images and texts given, answer the question below in a single word or phrase.

{retrieved components}

Question: {question}
Answer:

20571

