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Abstract

Multilingual large language models (MLLMs)
are able to leverage in-context learning (ICL) to
achieve high performance by leveraging cross-
lingual knowledge transfer without parameter
updates. However, their effectiveness is highly
sensitive to example selection, particularly in
multilingual settings. Based on the findings
of existing work, three key factors influence
multilingual ICL: (1) semantic similarity, (2)
linguistic alignment, and (3) language-specific
performance. However, existing approaches
address these factors independently, without
explicitly disentangling their combined impact,
leaving optimal example selection underex-
plored. To address this gap, we propose bal-
anced multi-factor ICL (BMF-ICL), a method
that quantifies and optimally balances these
factors for improved example selection. Ex-
periments on mCSQA and TYDI across four
MLLMs demonstrate that BMF-ICL outper-
forms existing methods. Further analysis high-
lights the importance of incorporating all three
factors and the importance of selecting exam-
ples from multiple languages.

1 Introduction

Multilingual large language models (MLLMs)
leverage cross-lingual knowledge transfer by learn-
ing from text in diverse languages (Conneau and
Lample, 2019; Conneau et al., 2020; Xue et al.,
2021; Scao et al., 2022). In-context learning (ICL)
further enhances performance by selecting a small
number of examples from candidate sets, leading
to high accuracy on various tasks without param-
eter updates (Liu et al., 2022). A key approach to
enhance the ability for the cross-lingual transfer
is to select examples from multilingual candidate
pools. Since ICL performance heavily depends on
which examples are chosen, the example selection
strategy is crucial (Perez et al., 2021; Zhao et al.,
2021; Lu et al., 2022; Koike et al., 2024; Hida et al.,
2024; Oba et al., 2024; Kaneko et al., 2025).

Figure 1: Our proposed method, BMF-ICL, selects mul-
tilingual examples for ICL by considering three factors:
semantic similarity, linguistic alignment, and language-
specific performance.

According to existing work on example selec-
tion in multilingual ICL, three main factors influ-
ence effectiveness: (1) semantic similarity, (2) lin-
guistic alignment, and (3) language-specific per-
formance. Selecting examples semantically sim-
ilar to the input often improves performance (Nie
et al., 2023; Tanwar et al., 2023; Liu et al., 2022).
Using examples from languages that are morpho-
logically and grammatically similar to the target
language can lead to stronger knowledge trans-
fer (Johnson et al., 2017; Pires et al., 2019; Ya-
mashita et al., 2020; Winata et al., 2022; Dolicki
and Spanakis, 2021). Furthermore, inference per-
formance varies by language, and leveraging data
from high-resource languages like English can
boost results in low-resource languages (Winata
et al., 2021; Etxaniz et al., 2024).

While these three factors are integral to multi-
lingual ICL, existing research typically does not
combine them together. Moreover, existing work
has two limitations that prevent them from combin-
ing these factors: the lack of quantified selection
criteria, and the absence of explicit differentiation
among the factors. The languages, for example,
are often selected heuristically, either based on
language groups and geographic regions for lin-
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guistic alignment (Nguyen et al., 2024; Winata
et al., 2022), or based on per-language data sizes
in MLLM training data for language-specific per-
formance (Winata et al., 2021; Nie et al., 2023).
Additionally, existing studies typically use multi-
lingual sentence embeddings (Conneau et al., 2020)
that do not explicitly distinguish between semantic
similarity and linguistic alignment, making it im-
possible to optimize the balance between them (Nie
et al., 2023).

In this study, we propose a method called bal-
anced multi-factor ICL (BMF-ICL), a method that
defines explicit metrics for semantic similarity, lin-
guistic alignment, and language-specific perfor-
mance in multilingual in-context learning (MICL),
then selects examples by optimally balancing these
factors. Figure 1 presents an overview of BMF-
ICL, which considers three scores for multilingual
example selection. Specifically, we quantify each
factor as follows:

(1) Semantic similarity: We employ LaBSE
(Feng et al., 2022), a language-agnostic
sentence embedding model to score the
similarity between the input and candidate
examples.

(2) Linguistic alignment: We use lang2vec (Lit-
tell et al., 2017), which captures morpholog-
ical and grammatical features, to assess how
closely the input language aligns with the can-
didate language.

(3) Language-specific performance: We com-
pute the likelihood of producing the correct
answer for each language when the MLLM is
provided with the candidate example’s inputs.

To select examples while balancing these three
scores, we take their weighted sum and optimize
the weights on development data.

We evaluate both existing approaches and our
proposed method on two benchmark datasets,
mCSQA (Sakai et al., 2024) and TYDI (Clark
et al., 2020). The experimental results across four
MLLMs demonstrate that BMF-ICL consistently
achieves the highest accuracy compared to exist-
ing methods. Further analysis highlights the im-
portance of considering all three factors jointly.
Notably, in over 95% of the cases, the proposed
method selects examples from two or more lan-
guages, demonstrating the performance benefits
derived from multilingual data.

Figure 2: An overview of how BMF-ICL computes
semantic similarity, linguistic alignment, and language-
specific performance scores to select multilingual exam-
ples.

2 Balanced Multi-Factor In-Context
Learning (BMF-ICL)

We first explain ICL, followed by a discussion of
the proposed method for example selection, which
takes into account the scores of semantic similarity,
linguistic alignment, and language-specific perfor-
mance, and comprehensively considers these fac-
tors. Figure 2 illustrates how BMF-ICL calculates
these three scores.

2.1 In-Context Learning
Let x be an input text and y be an output text gener-
ated by the LLM with parameters θ. In ICL, given a
task definition text d, the set of examples E , and the
input text x, the LLM generates y by maximizing
the following conditional probability:

y = argmax
ŷ

P (ŷ | d, E , x; θ) (1)

Our goal is to construct the set of examples E in
a way that maximizes the model’s performance or
the quality of the generated text. Specifically, E is
composed of k example pairs, drawn from a pool
that contains source and reference texts (S, R).

E = {(s(i), r(i)) ∈ (S,R)}ki=1 (2)

Here, s(j) and r(j) (j = 1, . . . , k) are the top k
instances ranked by a selection method.

2.2 Example Selection via Multi-Factor
We propose a balanced approach to example se-
lection by integrating three key factors for MICL.
Specifically, we select the top k instances from the
example pool to form E according to the highest
weighted sum of the following three scores:

score(j) = α score
(j)
sem +β score

(j)
lag +γ score

(j)
per,

(3)
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where score
(j)
sem represents the semantic similarity

between the input text and the source text, score(j)lag
represents the linguistic similarity between the in-
put text and the source text, and score

(j)
per reflects

the model’s performance in generating the refer-
ence text from the source text in the target lan-
guage. The scalar coefficients 0 ≤ α, β, γ satisfy
α+ β + γ = 1.

Semantic similarity To calculate the semantic
similarity between input text x and source texts
s(i) in the example pool, let h(x) and h(s(j)) be
their sentence embeddings. We use LaBSE (Feng
et al., 2022)1 as the multilingual sentence embed-
ding model. LaBSE learns multilingual embed-
dings through contrastive learning over large-scale
parallel data, enabling consistent semantic similar-
ity computation across languages.2 The semantic
similarity score score(j)sem for the j-th source text is
then defined by the cosine similarity:

score(j)sem = cos(h(x),h(s(j))). (4)

Linguistic alignment To calculate the linguistic
similarity, let e(lx) and e(ls(j)) be linguistic em-
beddings corresponding to the languages lx (the
language of x) and ls(j) (the language of s(j)).
We use fasttext-langdetect (Joulin et al., 2016b,a)3

to detect the languages of the input texts and the
source texts. The linguistic embeddings e(lx) and
e(ls(j)) are obtained from lang2vec (Littell et al.,
2017),4 which encodes typological, geographical,
and phylogenetic properties of languages.

The linguistic similarity score score(j)lag for the
j-th source text is defined as:

score(j)lag = cos(e(lx), e(ls(j))). (5)

Language-specific performance Finally, we
measure the model’s performance in each language

1https://huggingface.co/sentence-transformers/
LaBSE

2Although LaBSE is itself a multilingual sentence encoder
and may still encode language-specific features, it is trained
with a contrastive objective that prioritizes semantic equiva-
lence and does not explicitly model grammatical or typological
properties. Hence, we regard it as a practical proxy for seman-
tic similarity. Our goal is not perfect disentanglement between
semantics and language-specific structure, but rather to sep-
arate the factors as much as feasible; the experiments show
that even this partial separation is sufficient to yield consistent
gains.

3https://pypi.org/project/
fasttext-langdetect/

4https://www.cs.cmu.edu/~dmortens/projects/7_
project/

by evaluating how well it generates the reference
text r(j) from the source text s(j). The likelihood
of r(j) given s(j) serves as a standard proxy for gen-
eration capability in LLM evaluation (Zellers et al.,
2019; Alzahrani et al., 2024; Hida et al., 2024) and
thus provides a practical signal of language-specific
performance. For a target language ltgt, we define
the sub-dataset (Sltgt ,Rltgt) as follows:

(Sltgt ,Rltgt) = {(s′, r′) ∈ (S,R) | ls′ = ltgt}.
(6)

Here, ltgt can be any language present in the can-
didate examples. We define the model’s inference
ability for each language per(lt) for language lt as
the average log-likelihood of each reference text r′

given its corresponding source text s′:

per(lt) =
1

|Slt |
∑

(s′,r′)∈(Slt
,Rlt

)

1

|r′|

|r′|∑

i=1

logP (r′i | d, s′; θ)

(7)

For the j-th source text in the example pool, the
performance score score(j)per is given by:

score(j)per = per(ls(j)) (8)

By combining these three scores in Eq. (3), our
method aims to select examples that simultaneously
capture semantic similarity, linguistic alignment,
and model performance, thereby improving the
overall effectiveness of in-context learning.

3 Experiments

3.1 Settings

Dataset Many multilingual datasets are con-
structed by translating a single-language dataset
into multiple other languages, resulting in parallel
content across languages. This setup diverges from
realistic scenarios in which data distributions vary
by language and also prevents the assessment of
potential synergies gained from multilingual ICL.
Therefore, we use two multilingual datasets, each
originally developed in its own language rather
than through translation.

mCSQA (Sakai et al., 2024)5 contains mul-
tilingual commonsense question-answering data
in a multiple choice format for 8 languages.
TYDI (Clark et al., 2020) is a question-answering

5https://huggingface.co/datasets/yusuke1997/
mCSQA
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dataset covering 11 typologically diverse languages.
We frame the task as gold passage generation,
where both the context and question are provided,
and the model is required to generate the answer.

Table 4 in Appendix A shows the data size and
language group for each language in mCSQA and
TYDI. In both datasets, we generate answers and
evaluate them based on exact-match accuracy.

Model We explore both open-weight and closed-
weight models. Specifically, we use Llama
4 (Meta AI, 2025),6 Aya (Üstün et al., 2024),7

gpt-3.5-turbo-0125 (GPT-3.5) (Brown et al.,
2020), and gpt-4-turbo-2024-04-09 (GPT-4) as
multilingual LLMs. We use eight NVIDIA A100
GPUs for our experiments.

ICL Setup We use the training sets from mC-
SQA and TYDI as example pools. To determine
the optimal prompt configuration, we vary the num-
ber of examples (2, 4, 8, and 16) and test four
different prompts. The prompts are based on ex-
isting research (Robinson et al., 2022) and prompt
guidelines.8 Across these experiments, mCSQA
and TYDI achieved the best performance with 8
examples9 using the following prompts:

Prompt for mCSQA

Answer the question.
Question: [Question of Example 1]
a. [Choice A of Example 1]
b. [Choice B of Example 1]
c. [Choice C of Example 1]
d. [Choice D of Example 1]
e. [Choice E of Example 1]
Answer: [Answer of Example 1]

.

.

.
Question: [Question of Example 8]
a. [Choice A of Example 8]
b. [Choice B of Example 8]
c. [Choice C of Example 8]
d. [Choice D of Example 8]
e. [Choice E of Example 8]
Answer: [Answer of Example 8]
Question: [Question of Input]
a. [Choice A of Input]
b. [Choice B of Input]
c. [Choice C of Input]
d. [Choice D of Input]
e. [Choice E of Input]
Answer:

6https://huggingface.co/meta-llama/
Llama-4-Maverick-17B-128E-Instruct

7https://huggingface.co/CohereForAI/aya-23-8B
8https://huggingface.co/docs/transformers/v4.

37.0/en/tasks/prompting
9The results for 2, 4, and 16 are presented in Appendix E

Prompt for TYDI

Answer the question using the context.
Context: [Context of Example 1]
Question: [Question of Example 1]
Answer: [Answer of Example 1]
Context: [Context of Example 2]
Question: [Question of Example 2]
Answer: [Answer of Example 2]

.

.

.
Context: [Context of Example 7]
Question: [Question of Example 7]
Answer: [Answer of Example 7]
Context: [Context of Example 8]
Question: [Question of Example 8]
Answer: [Answer of Example 8]
Context: [Context of Input]
Question: [Question of Input]
Answer:

Weight Selection for BMF-ICL We explore all
combinations of α, β, and γ in Equation 3 from 0
to 1 in increments of 0.1, ensuring α + β + γ =
1. We divide the training sets into four folds and,
for each LLM, select the weight combination10

that attains the best average performance in four-
fold cross-validation on the mCSQA and TYDI
datasets.11 These selected weights, together with
the 8-example prompt configuration, define our
final method for BMF-ICL.

Baseline Following previous work (Winata et al.,
2021; Etxaniz et al., 2024), we evaluate our ap-
proach against a range of baselines under two ICL
settings: one where the example candidates include
the target language, and one where they do not.12

The motivation for using cross-lingual prompting is
that, when there are no suitable example candidates
in the target language, it becomes possible to select
helpful examples from other languages. In both set-
tings, we use 8 examples for ICL, consistent with
our proposed method.
• With target-language examples:

– Random-ICL: We randomly select 8 exam-
ples (source text and reference text) from
the target language candidate set for each
evaluation instance. We report the average
scores of three experimental runs.

– Etxaniz et al. (2024): We translate both the
input and examples into English, which is

10We show specific weights in Appendix C.
11Although the baseline does not tune any weights, both

methods draw examples from the same gold-labeled pool. Our
method simply performs cross-validation within that pool to
tune its weights, and therefore relies on no additional data.

12See Appendix F for a performance comparison of
heuristic vs. lang2vec language choices. This language-
selection–only analysis is omitted from the main results, yet
lang2vec still outperforms the heuristic.
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en zh fr de ja nl pt ru

w/ TL

Random-ICL 74.1 56.7 73.1 77.8 68.9 76.3 75.2 49.1
Etxaniz et al. (2024) – 57.2 74.5 79.5 67.9 79.3 78.1 48.0
Nguyen et al. (2024) – 57.3 73.7 78.0 69.4 77.3 79.4 49.8
BMF-ICL 74.8 60.8 † 76.5 † 80.6 † 70.2 † 79.1 80.2 51.1 †

w/o TL

Non-ICL 67.5 52.3 68.1 66.7 60.9 68.8 65.7 43.9
Winata et al. (2021) – 53.7 69.5 74.0 63.8 72.8 66.6 45.0
Winata et al. (2022) 68.2 53.7 69.7 68.8 64.2 71.1 66.5 45.0
Nie et al. (2023) 69.9 54.3 69.7 72.5 65.2 71.4 67.0 45.6
BMF-ICL 71.1 † 55.0 70.1 74.5 66.1 74.4 † 67.8 47.6 †

(a) Llama 4.

en zh fr de ja nl pt ru

w/ TL

Random-ICL 61.1 37.1 59.0 63.9 46.6 60.1 65.0 33.6
Etxaniz et al. (2024) - 37.0 61.5 66.5 46.0 64.0 66.7 32.9
Nguyen et al. (2024) - 38.8 60.1 62.9 47.0 63.9 68.4 34.0
BMF-ICL 61.7 42.9 † 63.0 † 67.8 † 47.2 63.7 67.9 35.0 †

w/o TL

Non-ICL 44.9 25.0 44.3 32.7 25.1 39.1 37.7 22.9
Winata et al. (2021) - 29.5 48.9 55.1 35.5 47.0 40.9 26.8
Winata et al. (2022) 47.5 30.0 49.0 40.2 35.5 45.7 39.7 25.6
Nie et al. (2023) 49.0 31.3 48.6 50.3 36.9 49.1 40.3 27.7
BMF-ICL 52.1 † 31.3 50.6 † 54.5 37.5 53.3 † 42.0 † 30.3 †

(b) Aya.

en zh fr de ja nl pt ru

w/ TL

Random-ICL 79.7 65.1 79.1 83.8 78.5 83.3 79.5 55.7
Etxaniz et al. (2024) - 65.8 80.1 85.1 77.3 85.8 83.0 54.5
Nguyen et al. (2024) - 65.2 79.5 84.5 79.0 83.1 84.1 56.6
BMF-ICL 80.4 68.5 † 82.3 † 86.1 † 80.1 † 85.7 85.5 † 58.0 †

w/o TL

Non-ICL 77.2 64.0 78.3 81.2 76.3 81.6 77.7 52.9
Winata et al. (2021) - 64.1 78.4 82.1 76.0 83.8 77.6 52.8
Winata et al. (2022) 77.0 63.9 78.5 81.0 76.5 82.0 78.0 53.3
Nie et al. (2023) 78.8 64.1 78.7 82.0 77.3 81.0 78.5 53.3
BMF-ICL 79.2 65.1 † 78.5 83.1 † 78.4 † 83.5 78.8 55.0 †

(c) GPT-3.5.

en zh fr de ja nl pt ru

w/ TL

Random-ICL 82.2 68.8 79.3 83.5 78.8 83.5 80.0 53.3
Etxaniz et al. (2024) - 67.5 79.9 84.7 76.2 84.8 81.9 52.9
Nguyen et al. (2024) - 70.1 81.1 84.3 78.1 84.0 83.3 53.7
BMF-ICL 83.3 † 71.7 † 82.5 † 85.0 80.8 † 86.5 † 86.6 † 55.8 †

w/o TL

Non-ICL 79.7 66.0 75.4 81.9 76.0 82.3 78.1 50.3
Winata et al. (2021) - 65.2 76.0 83.0 75.1 82.8 79.0 49.7
Winata et al. (2022) 78.2 65.6 75.8 82.3 76.5 82.6 79.0 50.5
Nie et al. (2023) 81.9 67.7 78.1 83.2 77.0 82.5 79.2 51.9
BMF-ICL 81.3 69.0 † 79.6 † 83.2 78.3 † 83.0 80.3 † 53.0 †

(d) GPT-4.

Table 1: Results for baseline ICL methods and our method on mCSQA across the four LLMs. Red and blue indicate
scores lower and higher than Random-ICL or Non-ICL. The top half of each table shows results with the target
language in the example pool (“w/ TL”), and the bottom half without (“w/o TL”). † indicates statistically significant
differences between the highest and second highest score in each LLM according to McNemar’s test (p < 0.01).

dominant in the model’s training data, and
feeds them into the MLLM for ICL.13

– Nguyen et al. (2024): This baseline gener-
ates pseudo-reference texts in the target lan-
guage by leveraging examples from a high-
resource language, then pairs them with the
original target-language source text to cre-

13Following the original translation setting, we use four
examples from the FLORES-200 dataset (Costa-jussà et al.,
2022), prepending each sentence with its language name (e.g.,
English: Mary did not slap the green witch.).

ate ICL examples.14

• Without target-language examples:
– Non-ICL: A zero-shot baseline that provides

only the input text (no examples).
– Winata et al. (2021): This baseline provides

English examples to the MLLM while per-
forming inference on the input in the target
language. We randomly sample examples

14Following their approach, we use English as the high-
resource language and randomly sample examples from the
candidate set.
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en ar bn fi id ja sw ko ru te th

w/ TL

Random-ICL 70.9 64.8 63.6 70.7 70.3 71.9 63.4 68.8 63.5 64.1 60.6
Etxaniz et al. (2024) – 63.3 62.6 72.0 70.8 71.2 62.4 68.1 63.0 61.3 60.3
Nguyen et al. (2024) – 64.7 64.4 73.0 70.9 71.8 63.2 67.8 63.9 61.7 61.0
BMF-ICL 72.0 † 65.6 66.2 † 74.3 † 72.2 † 73.7 † 64.2 69.2 65.1 † 64.9 63.7 †

w/o TL

Non-ICL 62.8 57.9 51.5 62.0 61.2 61.2 54.2 63.3 53.3 54.4 55.6
Winata et al. (2021) – 59.4 52.3 63.6 63.0 62.4 54.7 63.7 54.3 55.1 56.4
Winata et al. (2022) 62.6 60.8 52.8 62.6 65.0 63.2 55.3 64.1 55.7 55.7 56.6
Nie et al. (2023) 65.5 60.5 53.5 63.8 65.4 63.8 55.7 64.9 59.1 56.0 56.8
BMF-ICL 66.3 64.9 † 55.8 † 65.9 † 67.9 † 65.6 † 55.9 65.5 61.4 † 58.0 † 58.7 †

(a) Llama 4.
en ar bn fi id ja sw ko ru te th

w/ TL

Random-ICL 59.3 57.0 56.3 67.0 62.0 63.4 58.7 61.7 59.3 60.1 54.3
Etxaniz et al. (2024) - 56.3 55.5 69.1 61.1 62.2 56.0 60.3 60.1 53.1 52.7
Nguyen et al. (2024) - 57.8 56.0 70.1 62.4 63.1 57.3 61.1 59.6 53.9 54.0
BMF-ICL 62.5 † 59.9 † 59.5 † 71.5 † 63.5 † 65.8 † 60.0 † 61.2 60.9 61.3 † 58.9 †

w/o TL

Non-ICL 40.5 47.5 31.5 45.6 37.8 33.9 36.6 45.7 38.0 37.5 40.1
Winata et al. (2021) - 50.2 32.5 48.4 40.3 35.4 37.8 46.0 39.7 39.0 41.4
Winata et al. (2022) 45.1 53.3 33.1 47.0 43.9 36.1 39.1 46.7 40.5 40.4 42.5
Nie et al. (2023) 49.0 51.7 34.2 48.2 44.7 36.6 39.6 48.8 50.1 40.0 42.2
BMF-ICL 50.6 † 55.4 † 40.2 † 52.6 † 46.8 † 40.1 † 40.3 50.4 † 53.8 † 46.4 † 48.5 †

(b) Aya.
en ar bn fi id ja sw ko ru te th

w/ TL

Random-ICL 75.9 68.2 66.8 72.3 73.8 75.6 65.4 71.9 65.3 65.8 63.3
Etxaniz et al. (2024) - 66.3 65.7 73.2 75.0 75.0 65.2 71.5 64.2 64.8 63.5
Nguyen et al. (2024) - 67.7 68.0 74.2 74.6 75.5 65.7 70.7 65.8 65.1 64.0
BMF-ICL 76.1 68.0 69.1 † 75.5 † 76.0 † 77.1 † 66.0 72.6 66.9 † 66.5 65.8 †

w/o TL

Non-ICL 72.3 62.3 60.1 69.0 71.3 72.9 61.7 70.8 59.9 61.6 62.3
Winata et al. (2021) - 63.3 60.8 70.1 72.8 74.0 62.0 71.3 60.6 62.0 62.9
Winata et al. (2022) 70.1 64.0 61.3 69.3 74.1 74.8 62.2 71.5 62.2 62.2 62.6
Nie et al. (2023) 72.6 64.2 61.7 70.5 74.3 75.4 62.6 71.8 63.0 62.8 63.0
BMF-ICL 73.0 68.9 † 62.5 71.6 † 76.9 † 76.6 † 62.6 72.0 64.6 † 63.0 63.1

(c) GPT-3.5.
en ar bn fi id ja sw ko ru te th

w/ TL

Random-ICL 80.1 69.2 65.1 73.0 75.1 76.0 64.0 72.0 66.4 66.0 65.0
Etxaniz et al. (2024) - 68.3 65.5 73.8 74.7 75.5 63.0 72.8 65.0 66.6 65.5
Nguyen et al. (2024) - 69.3 66.0 74.0 76.0 75.9 63.5 71.7 67.8 65.4 66.3
BMF-ICL 80.7 71.5 † 66.0 75.7 † 76.6 76.4 64.2 74.8 † 67.6 66.3 67.1

w/o TL

Non-ICL 77.3 63.0 62.2 70.7 74.3 72.9 62.0 70.1 62.7 64.1 61.7
Winata et al. (2021) - 63.9 64.0 71.6 74.6 73.2 62.5 71.1 63.9 65.0 62.7
Winata et al. (2022) 78.6 64.1 64.8 71.2 74.9 74.2 62.8 70.7 64.5 64.7 62.2
Nie et al. (2023) 79.1 64.5 65.0 71.1 74.7 74.1 63.1 71.3 64.0 65.3 63.1
BMF-ICL 80.5 † 66.8 † 66.1 † 72.5 75.1 75.9 † 63.7 71.8 65.7 † 65.8 64.5 †

(d) GPT-4.

Table 2: Results for baseline ICL methods and our method on TYDI across the four LLMs. Red and blue indicate
scores lower and higher than Random-ICL or Non-ICL. The top half of each table shows results with the target
language in the example pool (“w/ TL”), and the bottom half without (“w/o TL”). † indicates statistically significant
differences between the highest and second highest score in each LLM according to McNemar’s test (p < 0.01).

from the English candidate set.
– Winata et al. (2022): We randomly select

examples for ICL from a pool across various
languages excluding the target language.

– Nie et al. (2023): We use XLM-based (Con-
neau et al., 2020) multilingual sentence
embeddings to select examples in high-
resource languages similar to the input text
in a low-resource language. Following pre-
vious work, we use English, German, and
Chinese as high-resource languages for mC-
SQA, and English and Arabic for TYDI.

3.2 Experimental Results

Table 1 and Table 2 present the test set results on
the mCSQA and TYDI datasets, for the four LLMs.
The upper half of each table represents the setting
where instances of the target language are included
in the example candidates, while the lower half
represents the setting where they are not included.

Comparisons with baselines show that BMF-
ICL consistently achieves the best performance
on mCSQA (in 28/32 cases) when target-language
examples are included and also (in 27/32 cases)
when they are not. On TYDI, it attains the high-
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Figure 3: Results of the ablation study. Semantic simi-
larity, linguistic alignment, and language-specific per-
formance are denoted as SS, LA, and LP, respectively.

est performance in 39/44 cases under the target-
language-included setting and in 42/44 cases under
the target-language-excluded setting. These find-
ings confirm that BMF-ICL achieves state-of-the-
art performance overall. Its improvements are ob-
served across all four tested LLMs, indicating that
BMF-ICL is not heavily model-dependent. Further-
more, BMF-ICL does not exhibit poor performance
on any particular language. Notably, the method is
more effective in cases where the target language
is not included among the example candidates. In
contrast, existing approaches are not always bet-
ter than the Random-ICL or Non-ICL baselines,
particularly in the target-language-included setting,
underscoring the challenge of achieving stable im-
provements without quantitative optimization.

4 Analysis

4.1 Ablation Study

To assess the importance of each factor in BNF-
ICL, we conducted an ablation study by removing
one factor at a time. For example, to assess the
impact of semantic similarity, we set α = 0 in
Equation 3 and optimize the remaining weights β
and γ.15 Figure 3 displays the ablation results un-
der the setting where the target language is included
among the candidate examples for both mCSQA
and TYDI, averaged over the four MLLMs.

15The results with all weights set to 1 are shown in Ap-
pendix D.

mCSQA TYDI

All SS LA LP All SS LA LP

1 0.04 0.00 0.10 0.11 0.01 0.01 0.01 0.04
2 0.18 0.01 0.32 0.31 0.13 0.11 0.11 0.18
3 0.32 0.43 0.25 0.27 0.28 0.19 0.30 0.29
4 0.25 0.31 0.15 0.21 0.31 0.21 0.28 0.21
5 0.10 0.16 0.08 0.07 0.13 0.30 0.18 0.11
6 0.07 0.07 0.06 0.02 0.08 0.10 0.09 0.09
7 0.03 0.03 0.03 0.01 0.05 0.07 0.02 0.06
8 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01

Table 3: The proportion of instances with each language
type count within the 8 examples of BMF-ICL. All repre-
sents the results of a method that considers three factors
with optimized weights. SS, LA, and LP represent re-
sults considering only semantic similarity, linguistic
alignment, and language-specific performance, respec-
tively.

Across all languages, performance declines
whenever one of the three factors is excluded, in-
dicating the importance of jointly considering all
three. In mCSQA, 7 out of 8 languages, and in
TYDI, 8 out of 11 languages, exhibited the largest
drop when the semantic similarity factor was re-
moved. This suggests that, as in monolingual set-
tings (Liu et al., 2022), providing semantically sim-
ilar examples contributes to performance improve-
ment in multilingual settings. Additionally, within
closely-related language groups such as en–de–nl
or fr–pt, linguistic alignment plays a crucial role
leading to pronounced performance declines com-
pared to other languages when removed.

4.2 The Diversity of Languages in the
Examples

BMF-ICL demonstrates improved performance
through cross-linguistic knowledge transfer, as clar-
ified in our study. For further analysis, we exam-
ined how many distinct language types are included
among the 8 examples in each ICL prompt. Based
on these counts, we then computed the propor-
tion of test instances associated with each distinct
language-type count. We report results for two set-
tings: (i) BMF-ICL optimized with all three factors,
and (ii) ablation settings where only one factor is
set to 1 in Eq. (3), while the others are set to 0,
allowing us to assess each factor’s impact on lan-
guage diversity.

Table 3 shows the distribution of distinct
language-type counts for examples selected by
BMF-ICL when the target language is included
among the candidates. The All column represents
results considering all weights, while SS, LA, and
PL correspond to each factor used in isolation. Un-
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der All, the most frequently selected diversity level
is three languages in mCSQA and four in TYDI,
indicating that BMF-ICL naturally favors multilin-
gual examples. Furthermore, the semantic simi-
larity factor (SS) tends to yield higher language
diversity than the other two factors, underscoring
its particular importance for encouraging more var-
ied language selection.

5 Related Work

Etxaniz et al. (2024) showed that translating low-
resource language inputs and examples into En-
glish improves LLM performance compared to di-
rect inference in the original language. This ap-
proach leverages the English-centric training of
most LLMs, but may not fully capture linguistic,
cultural, or societal norms. Additionally, using
translated examples for ICL risks information loss
or distortion, as LLMs struggle with accurately
conveying cultural or societal nuances (Yao et al.,
2023; Tenzer et al., 2024; Intrator et al., 2024).

Winata et al. (2021) discovered that providing
English examples for ICL improves LLM inference
for both English and non-English tasks, though
English was heuristically chosen. Winata et al.
(2022) showed that randomly sampling from a
multilingual dataset outperforms selecting exam-
ples based on geographical or linguistic proxim-
ity. However, the role of semantic alignment and
language-specific capacity in example selection re-
mains unclear in the original work.

Nie et al. (2023) introduced a method that uses
multilingual sentence embeddings (Conneau et al.,
2020) to select examples in high-resource lan-
guage similar to the input text in low-resource lan-
guage. The multilingual sentence embeddings do
not explicitly distinguish between semantic and lin-
guistic similarity, making it impossible to adjust
their optimal balance for ICL examples. More-
over, this study focuses on only masked language
models such as mBERT (Devlin et al., 2019) and
XLM (Conneau et al., 2020) rather than LLMs.

To leverage unlabeled datasets in low-resource
languages, Nguyen et al. (2024) address the data
scarcity in low-resource languages using instances
from diverse high-resource languages as ICL exam-
ples to create synthetic data from unlabeled datasets
in low-resource languages, which are then used as
ICL examples in a low-resource setting. However,
this method does not consider the similarity be-
tween the input and example texts.

The following studies have proposed MICL
methods specialized for binary classification tasks.
Tanwar et al. (2023) proposed a method that uses
multilingual sentence embeddings (Reimers and
Gurevych, 2020) to retrieve similar texts in another
language as examples for ICL in a cross-lingual
setting. This method explicitly presents cross-
lingual label correspondences (e.g., In French,

“bad” means “mal”). Cahyawijaya et al. (2024) in-
troduced query alignment for ICL, selecting exam-
ples from parallel data with source texts that match
the input language and target texts in high-resource
languages. This method used multilingual sentence
embeddings (Reimers and Gurevych, 2019, 2020)
to measure the similarity between the input text
and the source texts in the parallel data, selecting
semantically similar texts as examples. The labels
from the high-resource language are used directly,
avoiding translation errors. Unlike these existing
studies, which focus on binary classification tasks,
our study applies ICL methods to more general
generative tasks.

Qin et al. (2023) introduced a method that pro-
cesses inputs in languages other than English by
using the prompt Let’s think in English step by step!
to enable step-by-step reasoning in English. This
method consistently improves the performance in
languages other than English. Shi et al. (2023) also
demonstrate that step-by-step reasoning enhances
the multilingual capabilities of MLLMs. Unlike
our research, which focuses on multilingual knowl-
edge transfer through examples in ICL, this study
emphasizes multilingual knowledge transfer within
the reasoning process.

6 Conclusion

In this paper, we propose BMF-ICL, an approach
for multilingual example selection in ICL for
MLLMs. BMF-ICL quantifies and balances three
key factors: semantic similarity, linguistic align-
ment, and language-specific performance. By lever-
aging LaBSE (Feng et al., 2022) embeddings for
semantic similarity, lang2vec (Littell et al., 2017)
for linguistic alignment, and MLLM likelihoods
for language-specific performance, BMF-ICL opti-
mally selects examples through a weighted scoring
mechanism. Experimental results on the mCSQA
and TYDI datasets, using four different MLLMs,
demonstrated that BMF-ICL consistently achieves
higher accuracy than existing methods.
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Limitations

We demonstrated the effectiveness of the proposed
method by conducting large-scale experiments in
various languages; however, this does not guarantee
performance improvements in all languages. As
future work, it would be worthwhile to validate
the method on a broader range of tasks beyond
question answering. On the other hand, since there
are not many multilingual datasets created from
scratch for each language, this is an aspect that
needs to be considered from the dataset creation
stage.

Ethical Considerations

mCSQA (Sakai et al., 2024) is a dataset that re-
flects common sense across different cultures, and
our experimental results indicate that the proposed
method enhances the understanding of common
sense within each culture by leveraging multilin-
gual information. Therefore, it also has the poten-
tial to positively impact safety-related tasks such
as social biases, morality, and ethics (Kaneko et al.,
2022, 2024; Kaneko and Baldwin, 2024; Anan-
taprayoon et al., 2023; Hämmerl et al., 2023),
where multicultural factors play a significant role.
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mCSQA TYDI
Language group Train Valid Test Train Valid Test

Arabic (ar) Semitic - - - 23.0k 1.3k 1.4k
Bengali (bn) Indo-Aryan - - - 10.7k 0.3k 0.3k
Chinese (zh) Sinitic 12.2k 1.5k 1.5k - - -
English (en) Germanic 10.9k 1.3k 1.3k 9.2k 1.0k 1.0k
Finnish (fi) Finnic - - - 15.2k 2.0k 2.0k
French (fr) Romance 8.0k 1.0k 1.0k - - -
German (de) Germanic 12.5k 1.5k 1.5k - - -
Indonesian (id) Malayo-Polynesian - - - 14.9k 1.8k 1.8k
Japanese (ja) Japonic 11.7k 1.4k 1.4k 16.2k 1.7k 1.7k
Kiswahili (sw) Bantu - - - 17.6k 2.2k 2.2k
Korean (ko) Koreanic - - - 10.9k 1.6k 1.7k
Dutch (nl) Germanic 12.2k 1.5k 1.5k - - -
Portuguese (pt) Romance 12.7k 1.5k 1.5k - - -
Russian (ru) Slavic 6.6k 0.8k 0.8k 12.8k 1.6k 1.6k
Telugu (te) Dravidian - - - 24.5k 2.4k 2.5k
Thai (th) Tai - - - 11.3k 2.2k 2.2k

Table 4: Dataset statistics and language groups for mCSQA and TYDI.

A Dataset Statistics

Table 4 shows the data size and language groups
for mCSQA (Sakai et al., 2024) and TYDI (Clark
et al., 2020).

B Prompts

The following are four candidate prompts for mC-
SQA in English; each instruction is translated into
the corresponding target language.

Prompt 1 for mCSQA

Answer the question.
Question: [Question of Example 1]
a. [Choice A of Example 1]
b. [Choice B of Example 1]
c. [Choice C of Example 1]
d. [Choice D of Example 1]
e. [Choice E of Example 1]
Answer: [Answer of Example 1]

.

.

.
Question: [Question of Example 8]
a. [Choice A of Example 8]
b. [Choice B of Example 8]
c. [Choice C of Example 8]
d. [Choice D of Example 8]
e. [Choice E of Example 8]
Answer: [Answer of Example 8]
Question: [Question of Input]
a. [Choice A of Input]
b. [Choice B of Input]
c. [Choice C of Input]
d. [Choice D of Input]
e. [Choice E of Input]
Answer:

Prompt 2 for mCSQA

Provide a response to the question.
Question: [Question of Example 1]
a. [Choice A of Example 1]
b. [Choice B of Example 1]
c. [Choice C of Example 1]
d. [Choice D of Example 1]
e. [Choice E of Example 1]
Answer: [Answer of Example 1]

.

.

.
Question: [Question of Example 8]
a. [Choice A of Example 8]
b. [Choice B of Example 8]
c. [Choice C of Example 8]
d. [Choice D of Example 8]
e. [Choice E of Example 8]
Answer: [Answer of Example 8]
Question: [Question of Input]
a. [Choice A of Input]
b. [Choice B of Input]
c. [Choice C of Input]
d. [Choice D of Input]
e. [Choice E of Input]
Answer:

Prompt 3 for mCSQA

Please answer the question.
Question: [Question of Example 1]
a. [Choice A of Example 1]
b. [Choice B of Example 1]
c. [Choice C of Example 1]
d. [Choice D of Example 1]
e. [Choice E of Example 1]
Answer: [Answer of Example 1]

.

.

.
Question: [Question of Example 8]
a. [Choice A of Example 8]
b. [Choice B of Example 8]
c. [Choice C of Example 8]
d. [Choice D of Example 8]
e. [Choice E of Example 8]
Answer: [Answer of Example 8]
Question: [Question of Input]
a. [Choice A of Input]
b. [Choice B of Input]
c. [Choice C of Input]
d. [Choice D of Input]
e. [Choice E of Input]
Answer:
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Prompt 4 for mCSQA

Respond to the question.
Question: [Question of Example 1]
a. [Choice A of Example 1]
b. [Choice B of Example 1]
c. [Choice C of Example 1]
d. [Choice D of Example 1]
e. [Choice E of Example 1]
Answer: [Answer of Example 1]

.

.

.
Question: [Question of Example 8]
a. [Choice A of Example 8]
b. [Choice B of Example 8]
c. [Choice C of Example 8]
d. [Choice D of Example 8]
e. [Choice E of Example 8]
Answer: [Answer of Example 8]
Question: [Question of Input]
a. [Choice A of Input]
b. [Choice B of Input]
c. [Choice C of Input]
d. [Choice D of Input]
e. [Choice E of Input]
Answer:

The following are four candidate prompts for
TYDI in English; each instruction is translated into
the corresponding target language.

Prompt 1 for TYDI

Answer the question using the context.
Context: [Context of Example 1]
Question: [Question of Example 1]
Answer: [Answer of Example 1]
Context: [Context of Example 2]
Question: [Question of Example 2]
Answer: [Answer of Example 2]

.

.

.
Context: [Context of Example 7]
Question: [Question of Example 7]
Answer: [Answer of Example 7]
Context: [Context of Example 8]
Question: [Question of Example 8]
Answer: [Answer of Example 8]
Context: [Context of Input]
Question: [Question of Input]
Answer:

Prompt 2 for TYDI

Provide an answer to the question based on the context.
Context: [Context of Example 1]
Question: [Question of Example 1]
Answer: [Answer of Example 1]
Context: [Context of Example 2]
Question: [Question of Example 2]
Answer: [Answer of Example 2]

.

.

.
Context: [Context of Example 7]
Question: [Question of Example 7]
Answer: [Answer of Example 7]
Context: [Context of Example 8]
Question: [Question of Example 8]
Answer: [Answer of Example 8]
Context: [Context of Input]
Question: [Question of Input]
Answer:

Prompt 3 for TYDI

Please give an answer to the question using the provided
context.
Context: [Context of Example 1]
Question: [Question of Example 1]
Answer: [Answer of Example 1]
Context: [Context of Example 2]
Question: [Question of Example 2]
Answer: [Answer of Example 2]

.

.

.
Context: [Context of Example 7]
Question: [Question of Example 7]
Answer: [Answer of Example 7]
Context: [Context of Example 8]
Question: [Question of Example 8]
Answer: [Answer of Example 8]
Context: [Context of Input]
Question: [Question of Input]
Answer:

Prompt 4 for TYDI

Please answer the question by utilizing the context.
Context: [Context of Example 1]
Question: [Question of Example 1]
Answer: [Answer of Example 1]
Context: [Context of Example 2]
Question: [Question of Example 2]
Answer: [Answer of Example 2]

.

.

.
Context: [Context of Example 7]
Question: [Question of Example 7]
Answer: [Answer of Example 7]
Context: [Context of Example 8]
Question: [Question of Example 8]
Answer: [Answer of Example 8]
Context: [Context of Input]
Question: [Question of Input]
Answer:

C The Weights of the Three Factors

Table 5 shows weights for semantic similarity with
weight α, linguistic alignment with weight β, and
language-specific performance with weight γ in
Equation 3 in BMF-ICL for each language in the
mCSQA and TYDI datasets.

D BMF-ICL with Uniform Weights

Table 6 shows the extent to which performance
degrades when the weights α, β, and γ of BMF-
ICL are all set to one third, difference compared
to the performance of MBF-ICL with optimized
weights. From the experimental results, it can be
observed that optimizing the weights across all
settings contributes to performance improvement.

E Few-shot Results with 2, 4, and 16
Examples

Table 7 and Table 8 show BMF-ICL performance
for the 2-, 4-, and 16-shot settings on both mCSQA
and TYDI.
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Aya Llama 4 GPT-3.5 GPT-4

Language α β γ α β γ α β γ α β γ

Chinese 0.4 0.4 0.2 0.5 0.3 0.2 0.6 0.2 0.2 0.7 0.1 0.2
English 0.5 0.3 0.2 0.6 0.2 0.2 0.7 0.1 0.2 0.8 0.0 0.2
French 0.4 0.3 0.3 0.5 0.2 0.3 0.6 0.1 0.3 0.7 0.0 0.3
German 0.4 0.5 0.1 0.5 0.4 0.1 0.6 0.3 0.1 0.7 0.2 0.1
Japanese 0.4 0.3 0.3 0.5 0.2 0.3 0.6 0.1 0.3 0.7 0.0 0.3
Dutch 0.4 0.4 0.2 0.5 0.3 0.2 0.6 0.2 0.2 0.7 0.1 0.2
Portuguese 0.6 0.1 0.3 0.7 0.0 0.3 0.8 0.0 0.2 0.9 0.0 0.1
Russian 0.5 0.3 0.2 0.6 0.2 0.2 0.7 0.1 0.2 0.8 0.0 0.2

(a) mCSQA.

Aya Llama 4 GPT-3.5 GPT-4

Language α β γ α β γ α β γ α β γ

Arabic 0.5 0.4 0.1 0.6 0.3 0.1 0.7 0.2 0.1 0.8 0.1 0.1
Bengali 0.4 0.1 0.5 0.5 0.0 0.5 0.6 0.0 0.4 0.7 0.0 0.3
English 0.6 0.3 0.1 0.7 0.2 0.1 0.8 0.1 0.1 0.9 0.0 0.1
Finnish 0.4 0.3 0.3 0.5 0.2 0.3 0.6 0.1 0.3 0.7 0.0 0.3
Indonesian 0.4 0.2 0.4 0.5 0.1 0.4 0.6 0.0 0.4 0.7 0.0 0.3
Japanese 0.6 0.2 0.2 0.7 0.1 0.2 0.8 0.0 0.2 0.9 0.0 0.1
Kiswahili 0.4 0.4 0.2 0.6 0.2 0.2 0.6 0.2 0.2 0.7 0.1 0.2
Korean 0.5 0.4 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.8 0.1 0.1
Russian 0.5 0.4 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.8 0.1 0.1
Telugu 0.4 0.2 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.7 0.0 0.3
Thai 0.4 0.2 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.7 0.0 0.3

(b) TYDI.

Table 5: The weights for semantic similarity (SS) with weight α, linguistic alignment (LA) with weight β, and
language-specific performance (LP) with weight γ in BMF-ICL for every language with each LLM in the mCSQA
and TYDI datasets.

F Lang2vec vs. Heuristic Language
Choice

To assess whether our continuous, lang2vec truly
offers an advantage over simpler heuristics, we
ran a focused ablation on mCSQA for German
and Dutch. Because existing studies (Winata et al.,
2021; Etxaniz et al., 2024) almost invariably choose
English as the example pool’s language, we run
our mCSQA experiments with English and target
languages that are linguistically close to it, specifi-
cally German and Dutch. Table 9 shows that using
continuous lang2vec similarity consistently outper-
forms the heuristic setting.
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Llama 4 Aya GPT-3.5 GPT-4

Chinese -5.2 -3.2 -2.4 -2.3
English -5.4 -4.2 -3.0 -2.6
French -4.9 -3.3 -2.7 -2.5
German -4.6 -3.3 -2.3 -1.9
Japanese -5.0 -2.9 -2.6 -2.6
Dutch -4.4 -2.6 -2.4 -2.1
Portuguese -5.2 -3.0 -2.2 -2.1
Russian -4.7 -3.6 -2.3 -1.8

(a) mCSQA.

Llama 4 Aya GPT-3.5 GPT-4

Arabic -6.6 -5.1 -3.9 -3.2
Bengali -6.2 -4.4 -3.7 -3.5
English -.7.0 -6.6 -4.8 -4.3
Finnish -5.9 -4.2 -3.7 -3.3
Indonesian -5.5 -4.7 -4.0 -4.1
Japanese -6.3 -5.3 -3.6 -4.0
Kiswahili -5.2 -4.7 -2.9 -2.7
Korean -6.1 -5.2 -4.0 -4.3
Russian -5.9 -4.6 -4.1 -3.6
Telugu -4.9 -3.9 -3.2 -3.0
Thai -5.3 -4.4 -3.6 -3.3

(b) TYDI.

Table 6: Performance drop of BMF-ICL when using
uniform weights instead of optimized weights.
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en zh fr de ja nl pt ru

w/ TL
2-shot 71.8 57.8 73.5 77.6 67.2 76.1 77.2 48.1
4-shot 73.8 59.8 75.5 79.6 69.2 78.1 79.2 50.1
16-shot 76.3 62.3 78.0 82.1 71.7 80.6 81.7 52.6

w/o TL
2-shot 69.1 53.0 68.1 72.5 64.1 72.4 65.8 45.6
4-shot 70.6 54.5 69.6 74.0 65.6 73.9 67.3 47.1
16-shot 72.1 56.0 71.1 75.5 67.1 75.4 68.8 48.6

(a) Llama 4

en zh fr de ja nl pt ru

w/ TL
2-shot 58.7 39.9 60.0 64.8 44.2 60.7 64.9 32.0
4-shot 60.7 41.9 62.0 66.8 46.2 62.7 66.9 34.0
16-shot 63.2 44.4 64.5 69.3 48.7 65.2 69.4 36.5

w/o TL
2-shot 50.1 29.3 48.6 52.5 35.5 51.3 40.0 28.3
4-shot 51.6 30.8 50.1 54.0 37.0 52.8 41.5 29.8
16-shot 53.1 32.3 51.6 55.5 38.5 54.3 43.0 31.3

(b) Aya

en zh fr de ja nl pt ru

w/ TL
2-shot 77.4 65.5 79.3 83.1 77.1 82.7 82.5 55.0
4-shot 79.4 67.5 81.3 85.1 79.1 84.7 84.5 57.0
16-shot 81.9 70.0 83.8 87.6 81.6 87.2 87.0 59.5

w/o TL
2-shot 77.2 63.1 76.5 81.1 76.4 81.5 76.8 53.0
4-shot 78.7 64.6 78.0 82.6 77.9 83.0 78.3 54.5
16-shot 80.2 66.1 79.5 84.1 79.4 84.5 79.8 56.0

(c) GPT-3.5

en zh fr de ja nl pt ru

w/ TL
2-shot 80.3 68.7 79.5 82.0 77.8 83.5 83.6 52.8
4-shot 82.3 70.7 81.5 84.0 79.8 85.5 85.6 54.8
16-shot 84.8 73.2 84.0 86.5 82.3 88.0 88.1 57.3

w/o TL
2-shot 79.3 67.0 77.6 81.2 76.3 81.0 78.3 51.0
4-shot 80.8 68.5 79.1 82.7 77.8 82.5 79.8 52.5
16-shot 82.3 70.0 80.6 84.2 79.3 84.0 81.3 54.0

(d) GPT-4

Table 7: BMF-ICL performance with 2, 4, and 16 shots on mCSQA.
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en ar bn fi id ja sw ko ru te th

w/ TL
2-shot 69.0 62.6 63.2 71.3 69.2 70.7 61.2 66.2 62.1 61.9 60.7
4-shot 71.0 64.6 65.2 73.3 71.2 72.7 63.2 68.2 64.1 63.9 62.7
16-shot 73.5 67.1 67.7 75.8 73.7 75.2 65.7 70.7 66.6 66.4 65.2

w/o TL
2-shot 64.3 62.9 53.8 63.9 65.9 63.6 53.9 63.5 59.4 56.0 56.7
4-shot 65.8 64.4 55.3 65.4 67.4 65.1 55.4 65.0 60.9 57.5 58.2
16-shot 67.3 65.9 56.8 66.9 68.9 66.6 56.9 66.5 62.4 58.5 59.7

(a) Llama 4

en ar bn fi id ja sw ko ru te th

w/ TL
2-shot 59.5 56.9 56.5 68.5 60.5 62.8 57.0 58.2 57.9 58.3 55.9
4-shot 61.5 58.9 58.5 70.5 62.5 64.8 59.0 60.2 59.9 60.3 57.9
16-shot 64.0 61.4 61.0 73.0 65.0 67.3 61.5 62.7 62.4 62.8 60.4

w/o TL
2-shot 48.6 53.4 38.2 50.6 44.8 38.1 38.3 48.4 51.8 44.4 46.5
4-shot 50.1 54.9 39.7 52.1 46.3 39.6 39.8 49.9 53.3 45.9 48.0
16-shot 51.6 56.4 41.2 53.6 47.8 41.1 41.3 51.4 54.8 47.4 49.5

(b) Aya

en ar bn fi id ja sw ko ru te th

w/ TL
2-shot 73.1 65.0 66.1 72.5 73.0 74.1 63.0 69.6 63.9 63.5 62.8
4-shot 75.1 67.0 68.1 74.5 75.0 76.1 65.0 71.6 65.9 65.5 64.8
16-shot 77.6 69.5 70.6 77.0 77.5 78.6 67.5 74.1 68.4 68.0 67.3

w/o TL
2-shot 71.0 66.9 60.5 69.6 74.9 74.6 60.6 70.0 62.6 61.0 61.1
4-shot 72.5 68.4 62.0 71.1 76.4 76.1 62.1 71.5 64.1 62.5 62.6
16-shot 74.0 69.9 63.5 72.6 77.9 77.6 63.6 73.0 65.6 64.0 64.1

(c) GPT-3.5

en ar bn fi id ja sw ko ru te th

w/ TL
2-shot 77.7 68.5 63.0 72.7 73.6 73.4 61.2 71.8 64.6 63.3 64.1
4-shot 79.7 70.5 65.0 74.7 75.6 75.4 63.2 73.8 66.6 65.3 66.1
16-shot 82.2 73.0 67.5 77.2 78.1 77.9 65.7 76.3 69.1 67.8 68.6

w/o TL
2-shot 78.5 64.8 64.1 70.5 73.1 73.9 61.7 69.8 63.7 63.8 62.5
4-shot 80.0 66.3 65.6 72.0 74.6 75.4 63.2 71.3 65.2 65.3 64.0
16-shot 81.5 67.8 67.1 73.5 76.1 76.9 64.7 72.8 66.7 66.8 65.5

(d) GPT-4

Table 8: BMF-ICL performance with 2, 4, and 16 shots on TYDI.
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Model Language lang2vec heuristic

Llama 4 de 75.3∗ 70.1
nl 70.1∗ 63.6

Aya de 54.5∗ 53.3
nl 53.3∗ 52.0

GPT-3.5 de 83.1∗ 81.9
nl 83.5∗ 82.0

GPT-4 de 83.2 82.8
nl 83.0∗ 82.0

Table 9: Comparison of linguistic-alignment strategies
(lang2vec vs. heuristic English selection) on mCSQA. ∗
denotes a statistically significant improvement over the
heuristic according to McNemar’s test (p < 0.01).
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