
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20054–20085
November 4-9, 2025 ©2025 Association for Computational Linguistics

A Graph-Theoretical Framework for Analyzing the Behavior of Causal
Language Models

Rashin Rahnamoun and Mehrnoush Shamsfard
Shahid Beheshti University, Tehran, Iran

rahnamounrashin@gmail.com and m-shams@sbu.ac.ir

Abstract

Recent progress in natural language process-
ing has popularized causal language models,
but their internal behavior remains poorly un-
derstood due to the high cost and reliance
on large-scale benchmarks in existing analysis
methods. To address these challenges, we in-
troduce a graph-theoretical framework for an-
alyzing causal language models. Our method
constructs graphs from model outputs by link-
ing high-probability token transitions and ap-
plies classical metrics to capture linguistic fea-
tures of model behavior. Based on previous
works, none have examined or applied graph
analysis from this perspective. For the first
time, a macroscopic view of the overall behav-
ior of a language model is provided by analyz-
ing the mathematical characteristics of small
sample graphs derived from the generated out-
puts. We first discuss the metrics theoreti-
cally, then demonstrate how they work through
experiments, followed by some applications
of this graph-theoretical framework in natural
language processing tasks. Through experi-
ments across training steps and model sizes,
we demonstrate that these metrics can reflect
model evolution and predict performance with
minimal data. We further validate our findings
by comparing them with benchmark accuracy
scores, highlighting the reliability of our met-
rics. In contrast to existing evaluation methods,
our approach is lightweight, efficient, and es-
pecially well-suited for low-resource settings.
Our implementation codes are available at this
GitHub repository. 1

1 Introduction

Recent progress in natural language processing
(NLP) has expanded the scope of applications for
language models. To further improve their perfor-
mance and uncover additional use cases, it is im-
portant to understand how these models function

1https://github.com/rarahnamoun/
A-Graph-Theoretical-Framework

and what enables their capabilities. Among these,
causal language models are particularly prevalent,
yet there is still much to learn about their internal
mechanisms. Causal language models are a type
of language model that predict the next token in
a sequence based on the previous tokens, without
considering future tokens. A deeper understand-
ing of these models could reveal novel approaches
and enhance their effectiveness.

Current approaches to analyzing language mod-
els often rely on large-scale experiments or
trial-and-error techniques, which are both time-
consuming and costly. To overcome these lim-
itations, we propose a mathematical framework
grounded in graph theory that enables low-cost, in-
terpretable analysis of causal language models. To
the best of our knowledge, this is the first frame-
work that systematically analyzes causal language
models through a graph-theoretical lens. This ap-
proach provides an alternative to expensive evalu-
ation benchmarks and reduces dependency on ex-
tensive hardware resources.

The use of graph-based techniques in language
modeling is well established. Graphs has long
been intertwined with NLP, from syntactic pars-
ing to modern tasks such as prompting (Jin et al.,
2024; Jiang et al., 2023), reasoning (Chen et al.,
2024; Tang et al., 2025), language modeling,
and retrieval-augmented generation (Wang et al.,
2024b; Ye et al., 2024; Wang et al., 2024a; Sun
et al.; LUO et al.; Wang et al., 2024c). These appli-
cations demonstrate that graphs are powerful tools
for uncovering underlying patterns and structures
in language data, motivating the development of a
graph-theoretical framework for model analysis.

Our method constructs graphs from the outputs
of causal language models, linking selected and
non-selected tokens based on their transition prob-
abilities. We analyze these graphs using classi-
cal metrics such as density (Coleman and Moré,
1983), spectral entropy (De Domenico and Bia-
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monte, 2016), and graph energy (Li et al., 2012).
These measurements capture distinct aspects of
model behavior and can be aggregated across
prompts to reveal stable, interpretable patterns,
even with minimal input data.

We evaluate our approach through two experi-
ments. The first examines models at various train-
ing steps and parameter sizes, showing how dif-
ferent metrics reflect model evolution. The sec-
ond focuses on spectral entropy and uses a small
sample of prompts to predict model performance,
achieving results consistent with human-annotated
benchmarks. Unlike recent evaluation methods
that require high-quality datasets or costly in-
frastructure (Maia Polo et al., 2024; Feng et al.,
2024; Saranathan et al., 2024; Wu et al., 2025;
Liusie et al., 2024), these recent works address
only one of the limitations in low-resource se-
tups, not all of them. Moreover, most of them
rely on sampling strategies to select prompts from
large-scale benchmarks, which are often unavail-
able in many low-resource datasets. Our graph-
theoretical framework is lightweight and appli-
cable in low-resource scenarios. This graph-
theoretical framework opens new directions for
analyzing causal language models through inter-
pretable, low-cost metrics.

Using only a few samples, this method gener-
ates an expanded graph with thousands of nodes
and edges, and analyzing the structure of this
graph can help predict the models behavior on re-
lated samples.

It is not only a method for evaluating low-
resource benchmark models with minimal data
but also a framework for comparing and analyz-
ing models with different features from a graph-
theoretical perspective. Moreover, these graph-
theoretical metrics can be particularly useful in
the early stages of training or for models with a
smaller parameter count, where classical metrics
such as accuracy or datasets with well-formed tex-
tual structures fail to provide reliable evaluation
because weaker models often produce incomplete
and irregular outputs that differ significantly from
well-formed texts.

2 Related Work

2.1 LLMs and Graphs

Using graphs with LLMs has many applications
and approaches. Historically, knowledge graphs
have been used in various NLP tasks. Recent no-

table works (Madaan et al., 2022; Sun et al.; LUO
et al.; Wang et al., 2024c; Zhang et al., 2024) and
many more have focused on this integration more
deeply. Some recent publications (Hu et al., 2024;
Chen et al.; Yu et al., 2025) have focused on node
classification using graphs. Another recent study
focused on graph reasoning (Chen et al., 2024;
Tang et al., 2025) and proposed models based on
graph structures (Wang et al., 2024b; Ye et al.,
2024; Wang et al., 2024a), There are also works on
graph-based retrieval-augmented generation (He
et al., 2024; Gutiérrez et al.) and prompts related
to graphs (Jin et al., 2024; Jiang et al., 2023)

2.2 NLP from a Graph Theory Perspective
A recent study explored the intersection of graphs
and natural language as complex systems, (Stanisz
et al., 2024) analyzing various aspects of network
topology and linguistic structure, such as word
co-occurrence in texts, using both mathematical
and statistical methods. Another work by Wachs-
Lopes and Rodrigues (2016) presents a graph-
based model for human natural language and an-
alyzes it using various graph-theoretical measure-
ments. In this recent work, a word embedding
model was constructed from low-resource texts,
and a complex network graph was built using
cosine similarity as the edges; however, no fur-
ther prediction or evaluation was conducted (Rah-
namoun and Rahnamoun, 2025).

In fact, there remains a significant gap between
recent advances in NLP and findings from the
graph-theoretical perspective. Many publications
in this area are not recent and do not demonstrate
new effects or results.

2.3 Efficient Evaluation for LLMs
Recently, many studies have been conducted to
efficiently evaluate LLMs. We investigate some
notable ones here. First, a work by Maia Polo
et al. (2024) introduced a method for sampling
from large datasets while avoiding prompts that
yield typical or uninformative results. Another im-
portant recent work by Feng et al. (2024) also uses
informative samples to extract more meaningful
insights about LLMs from large datasets. Other
recent studies, such as the one by Saranathan et al.
(2024), follow a similar approach.

A novel method introduced by Wu et al. (2025)
uses self-explanation for natural language genera-
tion (NLG) tasks, achieving performance up to 20
times faster at runtime compared to others. This
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is accomplished through prompt engineering but
is effective only for large-scale language models
capable of generating appropriate responses for
prompt-based evaluations.

Another work by Liusie et al. (2024) presents a
more innovative approach aimed at reducing the
cost of using LLMs as evaluation judges by de-
creasing the number of comparisons in NLG tasks.

However, none of these works address low-
resource languages or settings. High-quality,
large-scale benchmarks are often unavailable in
such contexts. Moreover, models with many pa-
rameters remain expensive to evaluate, even when
the number of comparisons is reduced. They re-
quire powerful hardware and often ignore LLMs
that do not follow instruction templates properly.
As a result, only a few competitive models are in-
cluded, which limits the fairness and generalizabil-
ity of evaluations in low-resource settings.

Algorithm 1 Causal Language Model Analysis
Flow

Require: Prompts P = {p(1), . . . , p(n)}; model
M ; tokenizer τ : Σ∗ → Vocab; token limit
m ∈ N+; top-k ∈ N+; threshold θ ∈ (0, 1)

1: Initialize score list F ← [ ]
2: for each p(i) ∈ P do
3: x(i) ← τ(p(i))
4: tokens (t|x(i)|+1, . . . , t|x(i)|+m) from M

5: G(i) = (V,E,w)← (∅, ∅, {})
6: for j = 0 to m− 1 do
7: Pj ← softmax(logitsj)
8: {(p1, v1), . . . , (pk, vk)} ← Top-k(Pj)
9: u← τ−1(t|x(i)|+j)

10: Add u to V
11: for ℓ = 1 to k do
12: if pℓ > θ then
13: v ← τ−1(vℓ)
14: Add v to V
15: Add edge (u, v) to E
16: w(u, v)← pℓ
17: end if
18: end for
19: end for
20: Compute graph score: fi ← f(G(i))
21: Append fi to F
22: end for
23: return S ← 1

n

∑n
i=1 fi

3 Methodology

Our methodology follows three simple steps: first,
we construct graphs from prompts; then, we ana-
lyze each graph separately using graph-theoretical
metrics; and finally, we aggregate the results to
draw conclusions about the language model’s be-
havior. The following sections will explain these
steps in detail.

3.1 Word Transition Sampling Graphs

To construct the sampling graph from a causal
language model, we include both the actual gen-
erated words (the output text) and the top candi-
date words with high probabilities that were not
selected during output generation. These words
are treated as nodes in the graph. The graph also
contains transitions between words, represented as
edges, which reflect the probabilistic relationships
between the nodes.

Definition 1. Given a prompt p, its tokenized form
t = (t1, . . . , tn), and a sampling run generating
output tokens (tn+1, . . . , tn+m), the probabilistic
word transition graph is a, weighted graph:

G = (V, E, w) (1)

where:

• V = {decode(t) | t ∈ {tn+1, . . . , tn+m}},
where decode : V → Σ∗ maps tokens to their
string representations in the output alphabet
Σ.

• E ⊆ V × V is the set of edges, where an
edge (u, v) ∈ E exists if v = decode(t′) for
some token t′ such that the transition prob-
ability w(u, v) exceeds a specified threshold
θ ∈ (0, 1).

• w : E → [0, 1] is a weight function assign-
ing transition probabilities, i.e., w(u, v) =
P(ti+1 = t′ | t1, . . . , ti), where t′ =
encode(v) and encode : Σ∗ → V is the in-
verse of decode.

The graph connects previous words to subse-
quent words, with each edge representing a tran-
sition from one word to the next, reflecting the
probabilistic relationships between them. Transi-
tion probabilities are filtered to include only those
that exceed the threshold, ensuring that only signif-
icant transitions are represented in the final graph.
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3.2 Analyzing the Structure of the Graphs

To interpret the behavior of causal language mod-
els from a structural perspective, we construct and
analyze word transition sampling graphs 3.1. By
applying principles from spectral graph theory and
information theory, we examine how the structure
reflects predictability, diversity, and influence in
the main model’s output.

In the following, we present key theoretical for-
mulations that bridge graph characteristics to lin-
guistic patterns.

3.2.1 Graph Density

Word density is the first metric used in our theoret-
ical framework, defined as follows:

Definition 2 (Graph Density (Coleman and Moré,
1983)). The graph density D(G) is defined as the
ratio of the number of edges to the maximum pos-
sible number of edges in a simple graph with |V |
vertices:

D(G) =
2|E|

|V |(|V | − 1)
. (2)

D(G) lies in the interval [0, 1], where D(G) = 1
corresponds to a complete graph.

By using graph density and applying it to
the word transition sampling graph mathemati-
cal model, which is described in Section 3.1, we
proved Theorem 1 (see the proof in Appendix
A.1). For validation, we used a well-known math-
ematical model, |E(t)| = α|V (t)|β (Barabási,
2002), to analyze graph growth over time. See Ap-
pendix A.1 for details on how the parameters were
set for the linguistic task, the specifics of this math-
ematical modeling, and why it is appropriate for
analyzing word transition sampling graphs. This
theorem shows that the number of word diversi-
ties increases regardless of whether word transi-
tions increase or decrease, resulting in a decrease
in density. Therefore, for greater textual diversity,
we prefer a decrease in density.

Theorem 1. In a word transition graph with ver-
tices as unique words and edges as transitions,
if |V | increases, the density D = 2|E|

|V |(|V |−1) de-
creases for large |V |, under:

• |E| = α|V |β , β < 2

• |E| = α|V |γ , γ < 1 as |E| decreases

3.2.2 Spectral Entropy
There are many definitions and different aspects
of calculating the spectral entropy of a graph (e.g.,
Von Neumann entropy) (De Domenico and Bia-
monte, 2016; Liu et al., 2022), but in our case, the
spectral entropy is defined as follows:
Definition 3 (Spectral Entropy). Let G be a graph
with adjacency matrix A and degree matrix D.
The combinatorial Laplacian is L = D − A.
Let λ1, . . . , λn be the eigenvalues of L, exclud-
ing those smaller than a threshold ε, and define
the normalized eigenvalue probabilities λi∑

λj∈Λ λj
.

The spectral entropy H(G) is then

H(G) = −
∑

λi∈Λ

λi∑
λj∈Λ λj

ln

(
λi∑

λj∈Λ λj

)
.

(3)
Adding edges to a connected graph can cause

its eigenvalues to increase, decrease, or remain
unchanged, depending on the structure and place-
ment of the added edges (Guo et al., 2018);
therefore, analyzing the effect of edge addition
or removal on spectral-based metrics is gener-
ally intractable for arbitrary graphs and must
be approximated or studied under specific condi-
tions.Analyzing spectral entropy in general graphs
can be challenging; however, previous findings in-
dicates that higher entropy corresponds to more
complex graph structures and a more uniform dis-
tribution of eigenvalues (Chung, 1997). For our
purposes, this suggests a greater diversity and com-
plexity in textual relationships, which is a crucial
factor in understanding the overall behavior and
performance of causal language models. As pre-
viously noted, analyzing eigenvalue dependencies
in general graph structures presents significant the-
oretical challenges. However, for a key structural
property of textual graphs, Theorem 2 (see proof
in Appendix A.2) establishes an important rela-
tionship: as the graph scales, the ratio of possi-
ble transitions to vocabulary elements provably de-
creases.
Theorem 2. Under the word transition sampling
graph growth model, let |E| = α|V |β with β < 2.
Then, the maximum degree ∆ satisfies:

lim
|V |→∞

∆

|V | = 0. (4)

3.2.3 Graph Energy
The final component of our framework introduces
the concept of graph energy, which quantifies net-
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work connectivity.

Definition 4 (Graph Energy (Balakrishnan, 2004;
Li et al., 2012) ). Let G be a graph with adjacency
matrix A. Let λ1, . . . , λ|V | be the eigenvalues of A,
where each λℓ satisfies the eigenvalue equation

Av⃗ℓ = λℓv⃗ℓ.

Then, the graph energy E(G) is defined as

E(G) =

|V |∑

ℓ=1

|λℓ|, where Av⃗ℓ = λℓv⃗ℓ. (5)

Lower energy values correspond to more frag-
mented graph structures, while higher energy indi-
cates greater connectivity. From a linguistic per-
spective, we naturally prefer more strongly con-
nected word graphs as they yield richer seman-
tic information. Theorem 3 establishes an upper
bound for graph energy in our word transition sam-
pling model, with this bound increasing as the
number of edges and nodes grows (see Appendix
A.3 for proof).

Theorem 3. Let G(t) = (V (t), E(t)) be a graph
evolving over time t, where |V (t)| is the num-
ber of vertices and |E(t)| = α|V (t)|β with con-
stants α > 0 and 1 < β < 2. For word tran-
sition sampling graphs constructed from natural
language sequences, the graph energy E(G(t)) is
upper-bounded by

E(G(t)) ≤
√
2α |V (t)|β+1

2 . (6)

As |V (t)| increases over time, this bound in-
creases, implying that E(G(t)) grows with t.

3.3 Prompt-to-Graph Pipeline for Model
Behavior Prediction

The procedure for analyzing the behavior of
a causal language model M involves three
main steps. Given a set of prompts P =
{p(1), . . . , p(n)}, we first generate model out-
puts by sampling from M , obtaining for each
prompt p(i) a sequence of output tokens y(i) =
(t|x(i)|+1, . . . , t|x(i)|+m), where x(i) = τ(p(i)) is
the tokenized input.

In the second step, for each output y(i), we con-
struct a corresponding probabilistic word transi-
tion graph G(i) = (V (i), E(i), w(i)) as defined in
Definition 3.1. This graph encodes both the actual
sampled words and their top-k alternatives with
significant probabilities above a threshold θ, cap-
turing local word-level dynamics.

Finally, in the third step, we analyze each graph
G(i) using structural metrics from spectral graph
theory and information theory, such as spectral en-
tropy, graph energy, and density. Let f : G → R be
a measurement function applied to a graph G ∈ G.
We aggregate these scores over the dataset:

S =
1

n

n∑

i=1

f
(
G(i)

)
, (7)

producing an overall quantitative profile of the
models structural behavior.

This process allows us to characterize how a
model like M responds to different prompt types
in terms of its generative structure. Even from a
limited number of samples, this approach offers
a macroscopic view into the latent organizational
patterns and transition dynamics learned by the
causal language model (see Algorithm 1).

4 Experiments

To bridge the theoretical framework introduced in
Section 3 with real-world applications in natural
language processing, we conducted experiments
using two approaches. First, we showed how the
theoretical concepts reveal the diverse behaviors
of the model across various training steps and pa-
rameter settings. These observations were then
linked to theoretical aspects using established nat-
ural language processing benchmarks to assess the
applicability of our framework in practice. Sec-
ond, based on the evaluated results from paper (Bi-
derman et al., 2023) across different models and
benchmark datasets, we compared our method,
which requires only a small number of sampled
prompts to assess model performance, with these
existing results. This comparison highlights the
practicality and efficiency of our framework, par-
ticularly in low-resource settings, where extensive
data or computational resources are limited. By
requiring minimal input. All experiments were
conducted using an NVIDIA Tesla K80 GPU with
12GB of VRAM and 12 GPU hours.

4.1 Datasets
Following the well-known benchmarks employed
in paper (Biderman et al., 2023) for various tasks
and evaluated on different large language models,
we utilized the datasets below to cover different
tasks and aspects of our models. The reason for se-
lecting some of the same models and benchmarks
used in paper (Biderman et al., 2023) is that they
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Figure 1: Pythia model with 70M parameters on ARC-
Easy, LogiQA, and PIQA datasets across different
training steps. The visualizations represent trends in
spectral entropy, graph energy, and density.

evaluated their model, Pythia (which we used to
experiment with our theoretical concepts), at dif-
ferent training steps and compared its performance
with various other models of similar parameter
sizes.
ARC-Easy. We used the ARC-Easy subset of
the AI2 Reasoning Challenge (ARC) (Clark et al.,
2018). It contains 5.2K rows of grade-school sci-
ence question data that can be answered by sim-
pler models, making it more suitable for models
with fewer than 1 billion parameters that cannot
perform reliably on more challenging reasoning
tasks.
PIQA. The PIQA dataset (Bisk et al., 2020) con-
tains 21K examples focused on physical common-
sense reasoning, a task that remains challenging

for current natural language processing models de-
spite humans achieving approximately 95% accu-
racy.
LogiQA. We have utilized LogiQA (Liu et al.,
2021), a comprehensive dataset comprising 8,678
question-answer pairs designed to evaluate logical
reasoning abilities in natural language understand-
ing.

4.2 Models
For our experiments, we used three models: Pythia
(Biderman et al., 2023), BLOOM (Le Scao et al.,
2023), and OPT (Zhang et al., 2022), selecting ver-
sions with fewer than 2 billion parameters due to
our limited access to computational resources.
Pythia. Designed to enable detailed research on
training dynamics and model behavior, Pythia (Bi-
derman et al., 2023) is a suite of 16 large language
models ranging from 70M to 12B parameters, all
trained on public data in identical order with 154
checkpoints each.
BLOOM. BLOOM (Le Scao et al., 2023) is
an open-access decoder-only transformer model
trained on multilingual data, developed collabora-
tively to promote accessible and transparent large
language model research. It is available in a range
of sizes, from 560 million to 176 billion parame-
ters.
OPT. The model OPT (Zhang et al., 2022) is a pub-
licly available suite of decoder-only transformer
models, ranging from 125M to 175B parameters,
designed to support open research with full access
to model weights.

4.3 Results
To empirically validate the theoretical relation-
ships discussed in Section 3.2, we conducted a
series of experiments to examine their correspon-
dence with real-world model behavior. For the ini-
tial set of experiments, we employed the Pythia
model at three different parameter scales: 70M,
160M, and 410M. Pythia provides 154 check-
points across the training process, allowing for a
detailed analysis of how large language models
evolve over time. We selected 10 equally spaced
checkpoints from this set to investigate how our
proposed metrics behave at different stages of
training.

From each of the three datasets, we randomly
selected 15 prompts. For the 70M model, we ex-
tended each prompt using a top-k sampling strat-
egy with k = 20, constructing corresponding
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Figure 2: The left bar chart shows spectral entropy values for models Pythia, BLOOM, and OPT across different
parameter counts on the ARC-Easy, PIQA, and LogiQA datasets. The right bar chart shows benchmark accuracies
for each dataset, with standard error bars included

graphs to analyze model behavior. The choice of
k = 20 was determined empirically and reflects
a trade-off between computational feasibility and
hardware constraints. For larger models, higher
values of k may be required to obtain more repre-
sentative or coherent outputs. The reason for us-
ing only a few examples is that, by a factor of k,
this method constructs a graph with thousands of
nodes and edges, which differs from using basic
prompts as samples for evaluating models. It effec-
tively expands the samples by constructing large
graphs, and analyzing the features of these graphs

enriches the prompts with additional textual infor-
mation, even when only a few examples are avail-
able.

As outlined in Sections 3.2.2, 3.2.3, and 3.2.1,
our theoretical framework suggests that linguistic
quality can be associated with higher values of
spectral entropy and graph energy, and lower val-
ues of graph density. As shown in Figure 1. Addi-
tional experimental results for models with 160M
and 410M parameters are provided in Appendix
C.

As explained in Section 3.2.2, spectral entropy

20060



captures more complex and linguistically signifi-
cant patterns compared to the other metrics, mak-
ing it the best candidate for evaluating model per-
formance. For our experiments, we used only 15
random prompts from each dataset and set the
graph construction parameter to top-k = 90. In
general, increasing the value of k improves the
quality of the graph construction and the result-
ing analysis. This choice was made experimen-
tally to balance the large model sizes, which are
in the millions of parameters, with computational
feasibility. Additionally, we compared our results
against benchmark accuracies and their standard
errors reported for different models in the official
Pythia paper (Biderman et al., 2023). The results
are presented in Figure 2.

4.4 Discussion and Analysis
As shown in Figure 1, variations in graph structure
cause fluctuations that can obscure clear trends,
since different topologies affect spectral entropy,
graph energy, and density differently. However,
as explained in Section 3.2, the ideal scenario in-
volves increasing graph energy and spectral en-
tropyindicating richer linguistic representationsa-
longside decreasing density. Our experiments with
the 70M parameter model confirm this: spectral
entropy and graph energy increase during training,
while density decreases. This aligns with findings
in the Pythia study (Biderman et al., 2023), where
extended training improved performance across
benchmarks. These results support the hypothesis
that the proposed metrics capture meaningful lin-
guistic characteristics of causal language models.

Furthermore, as discussed in Appendix B, most
of these metrics do not exhibit strong correlations
across different datasets and settings, indicating
that each captures a unique aspect of model be-
havior. Therefore, all three should be considered
jointly to evaluate and guide the development of
high-performing language models.

Another important factor in analyzing larger
models, such as the 410M variant, is the choice
of the top-k parameter. In our experiments, we
selected top-k = 90 to balance accuracy and com-
putational cost for 410M parameters model. For
models with a greater number of parameters, using
a larger k is generally necessary to fully capture
the graph structure and ensure meaningful analy-
sis. Notably, we do not use a simple prompt for
analysis; instead, we expand a single prompt into
a large graph with many nodes and edges. With a

larger k, even a small change can produce a richer
and larger graph containing more features and in-
formation, although this comes with an increased
computational cost for analysis. However, increas-
ing k also significantly raises computational de-
mands. This constraint makes the analysis of
larger models more time-consuming and may limit
the clarity of increasing or decreasing trends in the
metrics compared to models with fewer parame-
ters.

Additional results, presented in Figure 2, com-
pare spectral entropy values with the official
benchmark accuracies of Pythia, (Biderman et al.,
2023) reported across different model sizes. These
benchmark results are based on comparisons made
by related entities between the models generated
outputs and the corresponding reference answers.
The results, as shown in Figure 2, indicate that
in most cases and across different models, spectral
entropy measurements derived from only a small
number of prompt samples can closely approxi-
mate those obtained from full benchmark evalua-
tions. While this method offers an approximation
rather than an exact match, it remains informative.
For example, in the PIQA dataset (Figure 2), the
spectral entropy value for Pythia-1.4b shows some
discrepancy when compared to its corresponding
accuracy on the same dataset.

As explained in Section 3.2, spectral entropy
was chosen among several metrics for its abil-
ity to capture meaningful linguistic patterns with
low computational cost. Using top-k sampling
expands the models response space beyond a sin-
gle deterministic output, enabling analysis of both
generated and unselected tokens via word transi-
tion sampling graphs. This approach extends a sin-
gle prompt to offer deeper insights into the models
behavior. By selecting an appropriate top-k and us-
ing only a few samples and datasets, model perfor-
mance can be approximated without large bench-
marks or costly human evaluation. Unlike the
problems faced by recent works in efficient LLMs
evaluation discussed in Section 2.3, which mainly
do not address challenges related to low-resource
settings and limited access. While human or large-
scale evaluations better reflect real-world perfor-
mance, this method provides a fast, lightweight
alternative for evaluating language models, espe-
cially in low-resource settings with limited data,
computation, or time, offering meaningful behav-
ioral insights from minimal input.

This method can be particularly useful in the
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early stages of training or for models with a small
number of parameters, because it does not rely on
the textual structure of model outputs. Instead, it
analyzes the structure of the graphs constructed
from model output prompts. For irregular or weak
model outputs, this approach provides a more suit-
able evaluation than classical metrics such as ac-
curacy, which require high-quality model outputs.
This method is also helpful when human annota-
tion is expensive or inaccessible during the evalua-
tion stage.

5 Conclusions

Today, many approaches in Natural Language Pro-
cessing (NLP) heavily rely on trial-and-error meth-
ods and extensive benchmarking to gain deeper in-
sights into the behavior of large language models
and to enhance their performance. However, foun-
dational mathematical methods and behavior mod-
eling have often been overlooked. This oversight
can be particularly limiting in contexts where com-
putational, informational, financial, or human re-
sources are constrained.

In this paper, we introduce, for the first time,
a novel approach: by sampling the behavior of
language models and constructing graphs based
on these samples, we analyze the overall behav-
ior of the model using techniques from graph the-
ory. We present several theoretical and practical
aspects of this method and support them with ex-
perimental evidence. This includes experiments
such as analyzing the effect of training steps on
graph-theoretical metrics, and evaluating the accu-
racy of different models using only a few prompt
samples.

This work opens a new direction, suggesting
that prompt-based graph structures derived from
model outputs can be analyzed to reveal new fea-
tures and behavioral patterns from different per-
spectives. Although we focus only on three such
properties in this study, the method can be ex-
tended to many other applications. Each use of
this approach represents a significant step toward
understanding causal language behavior and evalu-
ating language models in resource-constrained en-
vironments.

Limitations

Due to limited access to computational resources,
we were unable to perform inference or run ex-
periments on large-scale language models with

high parameter counts (e.g., models with tens of
billions of parameters). As a result, it remains
an open question whether the proposed graph-
theoretical metrics retain their utility and inter-
pretability when applied to such large models, and
whether their behavior diverges significantly from
that observed in smaller-scale models.

Another critical limitation of our method lies in
its reliance on the generation of sufficiently long
outputs from language models. The construction
of meaningful graphs depends on having rich tex-
tual sequences; therefore, in scenarios where the
language model produces only short or option-
based responses, the approach becomes ineffec-
tive. To address this, prompts must be designed
to elicit explanatory or elaborative responses from
the model.

Furthermore, spectral entropy, one of the key
metrics used in our framework, shows promise as
a comparative tool for evaluating different models
or various configurations of the same model un-
der a fixed benchmark. However, its applicability
across different benchmarks is limited. It is not ap-
propriate for comparing the performance of differ-
ent models across different benchmarks in order to
determine which models perform better on which
benchmarks.

References
Paolo Allegrini, Paolo Grigolini, and Luigi Palatella.

2004. Intermittency and scale-free networks: a
dynamical model for human language complexity.
Chaos, Solitons & Fractals, 20(1):95–105.

R Balakrishnan. 2004. The energy of a graph. Linear
Algebra and its Applications, 387:287–295.

Albert-László Barabási. 2002. The new science of net-
works. Cambridge MA. Perseus.

Albert-László Barabási and Réka Albert. 1999. Emer-
gence of scaling in random networks. science,
286(5439):509–512.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 2397–2430. PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin
Choi, and 1 others. 2020. Piqa: Reasoning about

20062

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.1609/aaai.v34i05.6239


physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 34, pages 7432–7439.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li.
2024. Graphwiz: An instruction-following lan-
guage model for graph problems. arXiv preprint
arXiv:2402.16029.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han,
Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang.
Label-free node classification on graphs with large
language models (llms). In The Twelfth Interna-
tional Conference on Learning Representations.

Fan R. K. Chung. 1997. Spectral Graph Theory. Amer-
ican Mathematical Society, Providence, RI.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Thomas F. Coleman and Jorge J. Moré. 1983. Esti-
mation of sparse jacobian matrices and graph color-
ing blems. SIAM Journal on Numerical Analysis,
20(1):187–209.

Manlio De Domenico and Jacob Biamonte. 2016.
Spectral entropies as information-theoretic tools for
complex network comparison. Physical Review X,
6(4):041062.
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A Theoretical Properties of Word
Transition Sampling Graphs

A.1 Proof of the Effects of Textual Diversity
Let G(t) = (V (t), E(t)) evolve over time t, where
time refers to the generative steps of a causal lan-
guage model. Let |V (t)| be the number of nodes
and |E(t)| the number of edges at time t, with edge
growth governed by

|E(t)| = α|V (t)|β , (8)

where α > 0, 1 < β < 2. Word tran-
sition graphs (Allegrini et al., 2004), (Li et al.,
2018) suggest that they may follow a power-law
degree distribution, in which common stop words
(e.g., “by”, “and”, “the”) typically emerge as hubs
due to their high frequency and widespread co-
occurrence. This is the reason β has been chosen
between 1 and 2 in our assumptions.

Although in our modeling we increase the num-
ber of edges per V as vocabulary selections and
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edges and nodes with top k are increasing, it
means that for a fixed α, we can approximate the
addition of edges as if k+1 candidates were being
considered per node. That is, during each genera-
tive step, the number of new nodes (vocabularies)
increases roughly by k, and the number of poten-
tial edges increases proportionally. This gives us
the local approximation: Finally, this is also re-
flected in the graph density, which evolves as:

∆|E(t)| ≈ k ·∆|V (t)|. (9)

However, in reality we never reach the full top-
k count due to either a minimum selection thresh-
old or the probability distribution over transitions.
That is, while k transitions may be available, the
model often selects fewer because many candidate
transitions do not exceed the threshold or have low
transition probabilities. Hence, the actual increase
in edges satisfies:

∆|E(t)| ≤ k ·∆|V (t)|. (10)

Moreover, many of the added new vocabularies
are repeated across time steps. As a result, many
transitions are also repeated and do not contribute
to novel edge formation. This phenomenon further
slows the effective graph expansion, and the num-
ber of unique nodes and edges grows more slowly
than a naive k-based estimation would suggest.

Only when k is chosen to be very small (i.e.,
k ≪ |V (t)|) does the actual edge growth approach
the ideal case of adding k transitions per vocabu-
lary per step. On the other hand, if we consider the
case where 0 < β < 1, then the number of edges
grows sub linearly with respect to the number of
nodes. This leads to a graph with very few edges
compared to the number of nodes. As the num-
ber of vertices increases, the graph becomes in-
creasingly sparse and exhibits disconnected com-
ponents and structural fragmentation. Such behav-
ior is incompatible with the empirical structure of
vocabulary transition graphs produced by causal
language models, which tend to be well-connected
due to the frequent co-occurrence and recurrence
of vocabulary terms. Therefore, β ∈ (0, 1) is not a
plausible regime for modeling realistic generative
language graphs.

Values β > 2 imply an unrealistically dense
vocabulary transition graph, where the number
of word-to-word transitions grows faster than the
square of the vocabulary size, suggesting that
almost every word co-occurs with nearly every

other wordan implausible scenario in natural lan-
guage where word usage is selective and context-
dependent. Therefore, the power-law relation with
1 < β < 2 remains a realistic bound in the con-
text of vocabulary transition networks in genera-
tive models. Finally, this is also reflected in the
graph density, which evolves as:

D(t) =
2|E(t)|

|V (t)|(|V (t)| − 1)
≈ 2α|V (t)|β−2. (11)

To derive this, substitute |E(t)| = α|V (t)|β
into the density formula:

D(t) =
2|E(t)|

|V (t)|(|V (t)| − 1)
=

2 · α|V (t)|β
|V (t)|(|V (t)| − 1)

.

(12)

Simplify the expression by factoring out terms:

D(t) =
2α|V (t)|β

|V (t)| · |V (t)|(1− 1
|V (t)| )

=
2α|V (t)|β−1

|V (t)|(1− 1
|V (t)| )

.

(13)

For large |V (t)|, the term 1− 1
|V (t)| ≈ 1, so:

D(t) ≈ 2α|V (t)|β−1

|V (t)| = 2α|V (t)|β−1−1 = 2α|V (t)|β−2.

(14)

This approximation holds because as |V (t)| →
∞, the denominator |V (t)|(|V (t)| − 1) ≈ |V (t)|2.

Lemma 1. Let |V | ↑, |E| ↑. Assume standard
growth: |E| = α|V |β , β < 2. Then:

lim
|V |→∞

D = 0. (15)

Proof. Consider D(t) ≈ 2α|V (t)|β−2. Since β <
2, the exponent β − 2 < 0. As |V (t)| → ∞,
the term |V (t)|β−2 decreases because the negative
exponent causes the value to approach zero:

lim
|V |→∞

|V (t)|β−2 = lim
|V |→∞

1

|V (t)|2−β
= 0, (16)

since 2 − β > 0. Thus, D(t) = 2α|V (t)|β−2 →
0.

Lemma 2. Let |V | ↓, |E| ↓. Assume |E| = α|V |β ,
β > 1. Then:

lim
|V |→0

D = ∞. (17)

Proof. The density is:

D(t) =
2α|V (t)|β

|V (t)|(|V (t)| − 1)
. (18)

As |V (t)| → 0, the denominator |V (t)|(|V (t)| −
1) → 0, while the numerator 2α|V (t)|β → 0.
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Since β > 1, the denominator decreases faster.
Rewrite:

D(t) =
2α|V (t)|β

|V (t)|2(1− 1
|V (t)| )

≈ 2α|V (t)|β−2

1− 1
|V (t)|

. (19)

As |V (t)| → 0, |V (t)|β−2 →∞ because β − 2 <
0, and the denominator 1 − 1

|V (t)| becomes nega-
tive and approaches zero, but the graph structure
is undefined for |V | ≤ 1.

Lemma 3. Let |V | ↑, |E| ↓. Assume |E| = α|V |γ ,
γ < 1. Then:

lim
|V |→∞

D = 0. (20)

Proof. Substitute |E| = α|V |γ :

D(t) =
2α|V (t)|γ

|V (t)|(|V (t)| − 1)
=

2α|V (t)|γ
|V (t)|2(1− 1

|V (t)| )
. (21)

For large |V (t)|:

D(t) ≈ 2α|V (t)|γ
|V (t)|2 = 2α|V (t)|γ−2. (22)

Since γ < 1, γ − 2 < 0, so as |V (t)| → ∞:

lim
|V |→∞

|V (t)|γ−2 = 0, (23)

implying D(t) → 0. The decay is faster than in
the first lemma because γ − 2 < β − 2 < 0.

Lemma 4. Let |V | ↓, |E| ↑. Let |V | → |V |′,
|E| → |E|′ with |E|′ > |E|, |V |′ < |V |. Then
density increases if edge growth outpaces node re-
duction.

Proof. Compare the density before and after:

D =
2|E|

|V |(|V | − 1)
, D′ =

2|E|′
|V |′(|V |′ − 1)

. (24)

Since |V |′ < |V |, the denominator |V |′(|V |′ −
1) < |V |(|V |−1). If |E|′ > |E|, the numerator in-
creases. Thus, if the increase in |E|′ is significant
relative to the decrease in |V |′, then D′ > D.

Lemma 5. Let |E| = α|V |β , with β < 2. Then:

lim
|V |→∞

2|E|
|V |(|V | − 1)

= 0. (25)

Proof. Given |E| = α|V |β , the density is:

D =
2α|V |β

|V |(|V | − 1)
≈ 2α|V |β

|V |2 = 2α|V |β−2. (26)

Since β < 2, β − 2 < 0. As |V | → ∞:

lim
|V |→∞

|V |β−2 = 0, (27)

implying D → 0.

Lemma 6. Let |E| = α|V |β , with β < 2. Then:

lim
|V |→∞

2|E|
|V |(|V | − 1)

= 0. (28)

Proof. As shown:

D(|V |) = 2α|V |β
|V |(|V | − 1)

=
2α|V |β

|V |2(1− 1
|V | )

. (29)

For large |V |, 1− 1
|V | ≈ 1, so:

D(|V |) ≈ 2α|V |β
|V |2 = 2α|V |β−2. (30)

Since β < 2, β − 2 < 0, thus:

lim
|V |→∞

|V |β−2 = lim
|V |→∞

1

|V |2−β
= 0, (31)

because 2− β > 0. Therefore:

lim
|V |→∞

D(|V |) = 2α · 0 = 0. (32)

Theorem 1. In a word transition graph with ver-
tices as unique words and edges as transitions,
if |V | increases, the density D = 2|E|

|V |(|V |−1) de-
creases for large |V |, under:

• |E| = α|V |β , β < 2 (Eq. 15).

• |E| = α|V |γ , γ < 1 as |E| ↓ (Eq. 20).

Proof. Define density D(t) = 2|E(t)|
|V (t)|(|V (t)|−1)

Eq. 11 and using Lemmas 1 to 6.
Case 1: |V | ↑, |E| ↑, |E| = α|V |β , β < 2.
By Eq. 11, D(t) ≈ 2α|V (t)|β−2. Eq. 15 shows
β−2 < 0, so as |V | → ∞, |V (t)|β−2 → 0 Eq. 16,
hence D(t)→ 0.
Case 2: |V | ↑, |E| ↓, |E| = α|V |γ , γ < 1.
By Eq. 22, D(t) ≈ 2α|V (t)|γ−2. Eq. 20 shows
γ − 2 < 0, so |V (t)|γ−2 → 0 Eq. 23, hence
D(t)→ 0.

Conclusion: In both cases, D(t)→ 0 as |V | →
∞ (Eq. 15, Eq. 20).

Definition 5 (Random Graph (Erdős and Rényi,
1959)). A random graph GER(|V |, p) is a graph
where each possible edge between any two distinct
nodes in a vertex set V is included independently
with probability p ∈ [0, 1]. The expected number
of edges is:

E[|E|] = p ·
(
|V |
2

)
. (33)
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Definition 6 (Scale-Free Graph (Barabási and Al-
bert, 1999)). A Scale-Free graph is a graph whose
degree distribution follows a power law:

P (k) ∼ k−γ , (34)

where k is the node degree and γ ∈ (2, 3) for most
real-world networks.

Corollary 1. Let GER ∼ G(|V |, p) be an Erdős
Rényi random graph and let GSF be a scale-free
graph with degree distribution

P (k) ∼ k−γ , 2 < γ < 3.

Assume the number of edges grows as |E| =
α|V |β for some constants α > 0 and 1 < β < 2.
Then the densities satisfy

DER(|V |) ≈ p =
2|E|

|V |(|V | − 1)
= Θ(|V |β−2),

DSF(|V |) = Θ

(
1

|V |

)
.

(35)

Hence,

lim
|V |→∞

DER(|V |) = 0, lim
|V |→∞

DSF(|V |) = 0, (36)

but the density DER(|V |) decays slower than
DSF(|V |).
Proof. Consider the Erdős Rényi random graph
GER. The expected number of edges is

E[|E|] = p

(
|V |
2

)
= p

|V |(|V | − 1)

2
. (37)

The density is defined as

DER(|V |) = 2E[|E|]
|V |(|V | − 1)

= p. (38)

If the edge count grows as |E| = α|V |β , then

DER(|V |) = 2α|V |β
|V |(|V | − 1)

≈ 2α|V |β
|V |2 = Θ(|V |β−2).

(39)

For the scale-free graph GSF, the average de-
gree is constant due to the degree distribution, im-
plying

|E| = Θ(|V |)
. Hence,

DSF(|V |) = 2|E|
|V |(|V | − 1)

≈ 2|V |
|V |2 = Θ

(
1

|V |

)
. (40)

Since 1 < β < 2 implies β − 2 < −1, we have

|V |β−2 >
1

|V | for large |V |.

Thus, DER > DSF for large |V |.

A.2 Maximum Degree in Terms of Vertex
Count

We consider a growing graph model in which both
the number of nodes and the number of edges in-
crease. The theorem below analyzes the effect of
node insertion on maximum degree.

Theorem 2. Under the word transition sampling
graph growth model, let |E| = α|V |β with β < 2.
Then, the maximum degree ∆ satisfies:

lim
|V |→∞

∆

|V | = 0. (41)

Proof. The sum of degrees equals:

2|E| = 2α|V |β . (42)

The average degree is:

davg =
2|E|
|V | = 2α|V |β−1. (43)

Let 0 < p < 1, q = 1 − p, and b fixed. For
G ∈ G(|V |, p), the probability that every vertex
has degree at most (Riordan and Selby, 2000)

p|V |+ b
√
|V |pq (44)

is

Pr
(
∆(G) ≤ p|V |+b

√
|V |pq

)
= (c(b)+o(1))|V |,

(45)
where c(b) is the root of a certain equation inde-

pendent of p, with

c(0) ≈ 0.6102 >
1

2
. (46)

For an Erdős-Rényi graph G(|V |, p), the ex-
pected number of edges is:

E[|E|] = |V |(|V | − 1)

2
p. (47)

Given |E| = α|V |β , we set:

|V |(|V | − 1)

2
p ≈ α|V |β . (48)

Solving for p:

p ≈ 2α|V |β
|V |(|V | − 1)

≈ 2α|V |β
|V |2 = 2α|V |β−2,

(49)

20067



since |V |(|V | − 1) ≈ |V |2 for large |V |. How-
ever, aligning with the theorems definition, we
use:

p =
2α|V |β−1

|V | − 1
. (50)

Since β < 2, β − 1 < 1, so |V |β−1 → 0 as
|V | → ∞, implying p→ 0.

The maximum degree ∆ is bounded with high
probability by:

∆ ≤ p|V |+ b
√
|V |pq. (51)

Substitute p = 2α|V |β−2:

p|V | = (2α|V |β−2)|V | = 2α|V |β−1. (52)

Since q ≈ 1, we have:

|V |pq ≈ |V |p = 2α|V |β−1, (53)
√
|V |pq ≈

√
2α · |V |(β−1)/2. (54)

Thus:

∆ ≤ 2α|V |β−1 + b
√
2α · |V |(β−1)/2. (55)

Dividing by |V |:

∆

|V | ≤ 2α|V |β−2 + b
√
2α · |V |(β−1)/2−1. (56)

The first term has exponent β − 2 < 0, so
2α|V |β−2 → 0. The second terms exponent is:

β − 1

2
− 1 =

β − 3

2
< 0, (57)

since β− 3 < −1. Thus, |V |(β−3)/2 → 0. Both
terms vanish as |V | → ∞, so:

lim
|V |→∞

∆

|V | = 0. (58)

For scale-free graphs with P (d) ∼ d−γ , the
maximum degree scales as (Barabási, 2002):

∆ ∼ |V |
1

γ−1 . (59)

Since γ > 2, we have:

∆

|V | ∼ |V | 1
γ−1

−1
= |V |

2−γ
γ−1 → 0. (60)

A.3 Proof of Graph Energy Upper-bound
Theorem 3. Let G(t) = (V (t), E(t)) be a graph
evolving over time t, where |V (t)| is the number
of vertices and |E(t)| = α|V (t)|β with constants
α > 0 and 1 < β < 2. For both Erdős–Rényi
and scale-free models, the graph energy E(G(t))
is upper-bounded by

E(G(t)) ≤
√
2α |V (t)|β+1

2 . (61)

As |V (t)| increases over time, this bound in-
creases, implying that E(G(t)) grows with t.

Proof. Consider a graph G(t) = (V (t), E(t))
evolving over time t, with |V (t)| vertices and edges
governed by:

|E(t)| = α|V (t)|β , α > 0, 1 < β < 2. (62)

Let nt = |V (t)|, so |E(t)| = αnβ
t . As t increases,

nt increases, and since β > 1, |E(t)| grows super-
linearly with nt.

For G(t), the adjacency matrix A(t) has eigen-
values λ1, . . . , λnt , each satisfying A(t)v⃗ℓ = λℓv⃗ℓ.
The graph energy is:

E(G(t)) =

nt∑

ℓ=1

|λℓ|. (63)

McClelland (McClelland, 1971) provides an up-
per bound for the graph energy:

E(G(t)) ≤
√
2|E(t)||V (t)|. (64)

Substituting the edge growth law:
√
2|E(t)||V (t)| =

√
2(αnβ

t )nt =

√
2αnβ+1

t .
(65)

Define the upper bound as:

U(nt) =

√
2αnβ+1

t . (66)

Since β + 1 > 2, U(nt) is monotonically increas-
ing in nt. As t increases, nt grows, so the upper
bound increases over time.

For an Erdős-Rényi graph G(t) ∼ G(n, p), the
edge probability at time t is:

pt =
2|E(t)|

nt(nt − 1)
≈ 2αnβ

t

n2
t

= 2αnβ−2
t . (67)

The expected number of edges matches |E(t)|, and

the upper bound
√
2αnβ+1

t applies. Since pt → 0
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but ntpt = 2αnβ−1
t → ∞, and the bound in-

creases as nt and |E(t)| grow.
For a scale-free graph, assume a generative

model (e.g., preferential attachment (Barabási,
2002)) where the total number of edges at time t
is |E(t)| = αnβ

t . The degree distribution follows
P (k) ∼ k−γ , and the upper bound remains:

√
2|E(t)||V (t)| =

√
2αnβ+1

t , (68)

which increases with nt, consistent with the
growth in |V (t)| and |E(t)|.

For both Erdős-Rényi and scale-free graphs, the
upper bound on E(G(t)) increases as |V (t)| and
|E(t)| grow over time.

B Independence of Graph-Based Metrics
in Language Model Evaluation

We present a detailed empirical investigation of
the relationships between the proposed metrics
spectral entropy, graph energy, and graph density
using correlation analysis across different datasets
and model scales. To visualize these relationships,
we computed pairwise correlations on subsets of
metric data drawn from various checkpoints and
datasets. For each pair of metrics, we generated
joint distribution plots with marginal histograms
to examine their bivariate behavior, applying lin-
ear scales to accurately capture metric variability.
Additionally, a comprehensive correlation matrix
heatmap was created. The analysis consistently re-
vealed low correlations among the metrics, indi-
cating that each captures distinct and complemen-
tary dimensions of model behavior. Figures 3 to
9 show various correlation analyses on the PIQA
dataset across models 70, 160, and 410 m parame-
ters. Specifically, Figures 3 and 4 illustrate correla-
tions between density and graph energy or spectral
entropy for models 70 and 160 m parameters. Fig-
ures 5 and 6 extend these comparisons to model
410 m parameters and other metric pairs. Finally,
Figures 7 through 9 display correlation matrices
for all three models.

Figures 10 to 16 present correlation results on
the ARC-Easy dataset for models 70, 160, and 410
m parameters. The early figures compare density
with graph energy and spectral entropy (Figures 10
and 12), while later ones (Figures 13) show corre-
lations involving graph energy versus spectral en-
tropy. The last set (Figures 14 to 16) provide cor-
relation matrices per model.

Figures 17 to 23 summarize correlation analy-
ses on the LogiQA dataset for models 70, 160, and
410 m parameters. Initial figures (Figures 17 and
18) depict correlations between density and graph
energy or spectral entropy for models 70 and 160
m parameters. Figures 19 and 20 expand these
to model 410 m parameters and other pairs, while
Figures 21 through 23 show correlation matrices.

C Experimental Results for Pythia
Models with 160 M and 410 M
Parameters

Figures 24 and 25 show the behavior of the density
metric across training steps for the Pythia mod-
els with 160 million and 410 million parameters,
respectively. In both models, density decreases
as the number of training steps increases, consis-
tently across the PIQA, ARC-Easy, and LogiQA
datasets.

Conversely, Figures 26 and 27 illustrate that
graph energy increases over the training steps for
both models and all datasets.

Similarly, spectral entropy shows an increasing
trend with training progression as depicted in Fig-
ures 28 and 29.

Together, these results demonstrate consistent
trends in graph-based metrics as training advances,
revealing important insights into the structural evo-
lution of models with varying parameter sizes on
multiple datasets.
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Figure 3: PIQA dataset: Correlation Density vs Graph Energy for Model 70M (left) and Model 160M (right).
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Figure 4: PIQA dataset: Correlation Density vs Spectral Entropy for Model 70M (left) and Model 160M (right).
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Figure 5: PIQA dataset: Correlation Density vs Spectral Entropy for Model 410M (left) and Correlation Graph
Energy vs Spectral Entropy for Model 70M (right).
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Figure 6: PIQA dataset: Correlation Graph Energy vs Spectral Entropy for Model 160M (left) and Model 410M
(right).
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Figure 9: PIQA dataset: Correlation Matrix for Model 410M.
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Figure 10: ARC-Easy dataset: Correlation Density vs Graph Energy for Model 70M (left) and Model 160M (right).
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Figure 11: ARC-Easy dataset: Correlation Density vs Graph Energy for Model 410M (left) and Correlation Density
vs Spectral Entropy for Model 160M (right).
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Figure 12: ARC-Easy dataset: Correlation Density vs Spectral Entropy for Model 410M (left) and Correlation
Graph Energy vs Spectral Entropy for Model 70M (right).
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Figure 13: ARC-Easy dataset: Correlation Graph Energy vs Spectral Entropy for Model 160M (left) and Model
410M (right).
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Figure 14: ARC-Easy dataset: Correlation Matrix for Model 70M.
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Figure 15: ARC-Easy dataset: Correlation Matrix for Model 160M.
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Figure 16: ARC-Easy dataset: Correlation Matrix for Model 410M.
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Figure 17: LogiQA dataset: Correlation Density vs Graph Energy for Model 70M (left) and Model 160M (right).
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Figure 18: LogiQA dataset: Correlation Density vs Spectral Entropy for Model 70M (left) and Model 160M
(right).
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Figure 19: LogiQA dataset: Correlation Density vs Spectral Entropy for Model 410M (left) and Correlation Graph
Energy vs Spectral Entropy for Model 70M (right).
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Figure 20: LogiQA dataset: Correlation Graph Energy vs Spectral Entropy for Model 160M (left) and Model
410M (right).

Spectral Entropy Graph Energy Density

Sp
ec

tra
l E

nt
ro

py
G

ra
ph

 E
ne

rg
y

D
en

si
ty

1.00 0.29 -0.39

0.29 1.00 -0.35

-0.39 -0.35 1.00

Correlation Matrix (Model Parameters: 70 M, Dataset: LogiQA)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 21: LogiQA dataset: Correlation Matrix for Model 70M.
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Figure 22: LogiQA dataset: Correlation Matrix for Model 160M.
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Figure 23: LogiQA dataset: Correlation Matrix for Model 410M.
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Figure 24: Density metric (y-axis) vs Training Steps (x-axis) for Model 160 across PIQA, ARC-Easy, and LogiQA
datasets. Density decreases as training steps increase.
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Figure 25: Density metric (y-axis) vs Training Steps (x-axis) for Model 410 across PIQA, ARC-Easy, and LogiQA
datasets. Density decreases as training steps increase.
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Figure 26: Graph Energy metric (y-axis) vs Training Steps (x-axis) for Model 160 across PIQA, ARC-Easy, and
LogiQA datasets. Graph Energy increases as training steps increase.
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Figure 27: Graph Energy metric (y-axis) vs Training Steps (x-axis) for Model 410 across PIQA, ARC-Easy, and
LogiQA datasets. Graph Energy increases as training steps increase.
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Figure 28: Spectral Entropy metric (y-axis) vs Training Steps (x-axis) for Model 160 across PIQA, ARC-Easy, and
LogiQA datasets. Spectral Entropy increases as training steps increase.
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Figure 29: Spectral Entropy metric (y-axis) vs Training Steps (x-axis) for Model 410 across PIQA, ARC-Easy, and
LogiQA datasets. Spectral Entropy increases as training steps increase.
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