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Abstract

This paper introduces TURNABOUTLLM , a
novel framework and dataset for evaluating
the deductive reasoning abilities of Large Lan-
guage Models (LLMs) by leveraging the inter-
active gameplay of detective games Ace Attor-
ney and Danganronpa. The framework tasks
LLMs with identifying contradictions between
testimonies and evidences within long narrative
contexts, a challenging task due to the large
answer space and diverse reasoning types pre-
sented by its questions. We evaluate twelve
state-of-the-art LLMs on the dataset, hinting at
limitations of popular strategies for enhancing
deductive reasoning such as extensive thinking
and Chain-of-Thought prompting. The results
also suggest varying effects of context size, the
number of reasoning step and answer space
size on model performance. Overall, TURN-
ABOUTLLM presents a substantial challenge
for LLMs’ deductive reasoning abilities in com-
plex, narrative-rich environments.1

1 Introduction

Detective stories contain some of the most difficult
reasoning problems, meticulously crafted to be in-
triguing and illusive for even the most intelligent
readers. To perform said deduction requires various
abilities. Some include information retrieval from
long passages of narrative with attention to partic-
ular details. Others include piecing together facts
with knowledge of physical laws, social norms,
timeline of events, and so on. As large language
models (LLMs) are increasingly coveted for their
reasoning ability, evaluating them on detective sto-
ries brings about unique challenges.

Unfortunately, evaluating LLMs’ deductive rea-
soning via detective stories is often infeasible. For
example, Sherlock Holmes involves rich reasoning
but does not contain explicit questions to pose to

* Equal contribution.
1Our resources can be found at https://github.com/zharry29/

turnabout_llm.
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Figure 1: An illustration of a problem from Ace Attor-
ney, a detective game where players are instructed to
pinpoint a contradiction between a piece of evidence
and a testimony. Adapted to a task in TURNABOUT-
LLM, the input is a list of testimonies and a list of
evidences with their corresponding textual descriptions.
The output is the pair of testimony (T4) and evidence
(E2) that contradict each other. The example shown is
from the introductory episode and is likely the easiest.

models. As a result, existing work that leveraged
detective stories for evaluation either only consid-
ered simple snippets as the context (Del and Fishel,
2023a) or character relationship prediction as the
task (Zhao et al., 2024). Some also focus on tex-
tual understandings that require simple reasoning
abilities (Xu et al., 2025). To overcome this limita-
tion, we take advantage of a unique asset, detective
games, as their interactive gameplay provides a
natural interface for evaluating LLMs.

We propose TURNABOUTLLM2, a framework
and textual dataset to evaluate LLMs’ deductive
reasoning ability in a long narrative context. TURN-

2The name “Turnabout” is a wordplay from Ace Attorney as a
nod to the playable character’s knack for completely changing the
direction of a trial, against all odds.
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Dataset Sym. SLC LAS Nat. MH Het.

BIG-Bench Hard ✗ ✗ ✗ ✓ ✓ ✗

LogicQA ✗ ✗ ✗ ✓ ✓ ✗

ReClor ✗ ✗ ✗ ✓ ✓ ✗

ZebraLogic ✗ ✗ ✓ ✓ ✓ ✗

ProofWriter ✓ ✗ ✗ ✗ ✓ ✗

FOLIO ✓ ✗ ✗ ✓ ✓ ✗

ProntoQA ✓ ✗ ✗ ✗ ✗ ✗

LogicBench ✓ ✗ ✗ ✗ ✗ ✗

TurnaboutLLM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Qualitative comparison of TURNABOUTLLM
against other deductive reasoning benchmarks. There
are no previous benchmarks that satisfy all six desiderata
simultaneously. Our proposed TURNABOUTLLM is the
first benchmark to include symbolic logical annotations
(Sym.) for reasoning tasks situated in natural scenarios
(Nat.) with super-long contexts (SLC), large answer
spaces (LAS), multi-hop (MH) reasoning steps, and
heterogeneous (Het.) reasoning types.

ABOUTLLM is constructed using two critically
acclaimed detective games Ace Attorney3 and
Danganronpa4. The core gameplay mechanism,
adapted as our task format, is to read through a
story, examine existing evidences, examine witness
testimonies, deduce likely conclusions, and find
a contradiction between an evidence and a testi-
mony in each turn of gameplay, all in text. One
example from the 306 turns can be seen in Fig-
ure 1. TURNABOUTLLM is superior to existing
reasoning benchmarks in that:

1. it includes natural contexts written by human
authors that sometimes exceeds 100K words;

2. it presents a large answer space that can con-
tain 300 candidate answers;

3. it contains rigorous yet heterogeneous ques-
tions that demands temporal, spatial, behavior,
object state, causal and numerical understand-
ing;

4. all of the examples contain expert annotations
of evidence spans, context summary, reason-
ing type, and the complete reasoning steps.

We conducted 26 experiments on 12 state-of-the-art
LLMs using TURNABOUTLLM, revealing several
intriguing insights detailed in Section 5. The re-
sults establish TURNABOUTLLM as a substantial
challenge for current LLMs outside their training
corpus, as the top-performing DeepSeek-R1 only

3https://en.wikipedia.org/wiki/Ace_Attorney
4https://en.wikipedia.org/wiki/Danganronpa

obtains an accuracy score of 45.72%. We observe
the generation of extensive reasoning tokens does
not directly help with model performance but is
negatively correlated with accuracy. The tradition-
ally effective Chain-of-Thought prompting method
also presents minimal benefits on complex deduc-
tive tasks. When presented with excessive con-
textual information, only large models, not small
and medium-sized ones, can leverage needle-in-a-
haystack retrieval to improve reasoning outcomes.
We find that performance declines as the number
of reasoning steps increases but is unaffected by
the size of the answer space, and conversely perfor-
mance improves with larger parameter counts.

2 Related Work

General Reasoning Benchmarks To broadly as-
sess models’ reasoning capacities, multiple general-
purpose benchmarks have been widely studies.
They include MMLU (Hendrycks et al., 2021), Su-
perGLUE (Wang et al., 2020), BIG-Bench (Srivas-
tava et al., 2023), and BIG-Bench Hard (Suzgun
et al., 2022). While these benchmarks provide a
useful overview, they are not exclusively focused
on reasoning tasks, resulting in a limited reflection
of models’ actual reasoning skills.

In contrast, several benchmarks explicitly tar-
get deductive reasoning capacities. LogiGLUE
(Luo et al., 2024) integrates 24 reasoning-focused
datasets into a unified benchmark. LogiQA (Liu
et al., 2020) and ReClor (Yu et al., 2020) draw
logical reasoning questions from standardized ex-
ams like the LSAT in multi-choice formats. Ze-
braLogic (Lin et al., 2025) constructs constraint-
satisfaction problems that feature expansive answer
spaces. However, these benchmarks lack symbolic
annotations of logical structures, limiting insights
into underlying reasoning processes.

Synthetic Datasets for LLM Reasoning Syn-
thetic datasets fulfill the need for symbolic annota-
tions by using LLMs to generate examples based on
logical rules. PrOntoQA (Saparov and He, 2023)
and LogicBench (Parmar et al., 2024) synthesize
questions from logical rules applied to ontologi-
cal entities, while JustLogic (Chen et al., 2025)
uses randomly sampled real-world sentences as
premises for reasoning chains. Nonetheless, they
typically focus on single inference rules rather
than multi-hop reasoning. To address this gap,
Multi-LogiEval (Patel et al., 2024) and ProofWriter
(Tafjord et al., 2021), an improvement to RuleTaker
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Figure 2: An example data point from TURNABOUTLLM, where testimonies, marked as T1 to T3, are shown
horizontally in green and evidences E1, E2 and more are shown vertically in orange. In addition to labeling which
testimony-evidence pairs are contradictory, we provide a per-contradiction explanation and a ground-truth reasoning
chain used to derive the contradiction. Each reasoning chain forms a tree structure: leaf nodes represent observed
facts, while internal (non-leaf) nodes correspond to intermediate atomic propositions that perform derivations.

(Clark et al., 2020), require models to validate syn-
thetic conclusions involving multiple logical steps.
However, along with the expert-curated multi-hop
FOLIO (Han et al., 2024), these datasets suffer
from limited context sizes and answer spaces.

Reasoning Datasets from Detective Stories De-
tective stories naturally engage readers in multi-hop
deduction, thus well-suited for deductive reason-
ing evaluations. MuSR (Sprague et al., 2024) and
True Detective (Del and Fishel, 2023b) synthesize
detective stories from predefined facts or online
detective games, yet they face inherent limitations
of small context sizes. Benchmarks derived from
authentic novels or high-quality puzzles, such as
WhoDunIt (Gupta, 2025), DetectBench (Gu et al.,
2024), and DetectiveQA (Xu et al., 2025), address
this context size limitation. However, their answer
spaces remain relatively constrained. To the best
of our knowledge, there is no existing benchmark
that leverages the detective story format to com-
bine symbolic annotations with reasoning tasks
characterized by large contexts and answer spaces.
A comprehensive overview of each benchmark’s
attributes is presented in Table 1.

3 Dataset and Task

Our TURNABOUTLLM dataset is based on 11 ti-
tles of critically acclaimed Ace Attorney series and
Danganronpa. In this section, we detail our process
of creating the TURNABOUTLLM dataset (Sec-
tion 3.1), the additional annotations (Section 3.2),
and the overall statistics (Section 3.3).

3.1 Data Creation
Extraction To obtain data, we crawl and parse an
Ace Attorney Wiki5 and a Danganronpa archive6.
We extract the following data: 1) character in-
formation, including name, gender, age, and a
description; 2) evidence information7, including
name, source, and a description; 3) testimonies
in the core gameplay8, including speaker, content,
and the correct evidence to present if the testimony
can be contradicted; and 4) transcript of the full
gameplay9, including dialogues, information, and
flavor text, used as the full context. While the
games are originally visual novels in nature, we
only consider the textual elements, which are suffi-
cient for reasoning in most cases. Whenever visuals
are indispensable for reasoning, they are manually
captioned so that key visual features are provided.

Modification Using the data acquired above, we
construct each each example, referred to as a turn,
as follows. The input to a model is:

1. Ci: information of every character
2. Ei: information of every evidence
3. Ti: an array of testimonies
4. X (optional): a context that may provide addi-

tional information required for the reasoning
The output of a model is a pair of (Ti, Ej) where
an evidence is presented to contradict a testimony.

5aceattorney.fandom.com/wiki
6lparchive.org/Danganronpa-Trigger-Happy-Havoc/
7“Evidence” in Ace Attorney” and “Truth Bullets” in Dangan-

ronpa.
8“Cross examination” in Ace Attorney and “non-stop debate” in

Danganronpa.
9Non-core gameplay such as investigation in Ace Attorney or

social activities in Danganronpa is lumped into the context.
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Type Evidence example Testimony example

Spatial Death was caused by a gunshot to the chest. ...fired on the English civilian! And from the back...
Temporal Shots were fired just after midnight on 12/25. When she said “It’s almost Christmas!” shots fired!
Causal ...weapon bears the defendant’s prints... I never touched the murder weapon.
Behavioral Victim’s diary: Meet with Hugh. Important. Huge: I didn’t talk to anyone until the final bell.
Numerical Cause of death: single blunt force trauma. You see? You hit her twice!
Physical The victim was wearing a plain shirt. He was always walking around with a flowery shirt.
Spelling The defendant is Maggey Byrde. The blood writing was the defendant’s name, “Maggie”.

Table 2: Examples (edited for brevity and clarity) of evidences and testimonies of each reasoning type.

At times, there can be multiple ground-truth pairs.
Thus, the task is essentially a multiple-choice for-
mat with an action space of |T | × |E|, on the order
of hundreds. While our dataset is mostly faithful to
the original games, we made various types of mod-
ification (change of wording, removing turns with
loose contradictions, adding information for logic
leaps, etc.) to ensure the rigorousness of reasoning.

3.2 Annotations

To improve rigorousness of evaluation and enable
fine-grained insights into TURNABOUTLLM, we
annotate the following aspects of each turn: meta-
data, reasoning chains, and reasoning types. The
annotation protocol is included in C in Appendix.

Metadata First, we annotate a one-sentence sum-
mary of the current story that provides necessary
information for identifying the contradiction for
each turn. We provide the span from the evidence
and from the testimony that critically constitutes
the contradiction. We next label whether a turn
is self-contained, where a contradiction can be de-
ducted using only information of characters, evi-
dences, and testimonies, without any other context
such as the dialogue transcripts. Whenever a turn
is not self-contained, a model needs to perform a
needle-in-a-haystack retrieval from the full context
(all transcript until the current moment) to gather
necessary information (Figure 8). In this case, we
manually annotate an expected context span.

Reasoning Chain Next, we annotate a reasoning
chain used for deriving the contradiction for each
turn (Figure 2). A reason chain is a tree structure
with three components. First, observed facts, repre-
sented as leaf nodes, are paraphrased directly from
evidence, testimony, or context. Atomic proposi-
tions (non-leaf nodes) are handwritten modus po-
nens rules that operates upon the facts and derive
new facts. Finally, a contradiction (root node) is
implied based on two obviously contradiction facts.

As the reasoning in TURNABOUTLLM is based

on natural narrative texts, subjectivity in the rea-
soning chain is unavoidable. Therefore, when an-
notating the propositions, we uphold the desiderata
of only considering general rules in the real world
(neglecting what-ifs and extremities) and making
them as reasonably atomic as possible.

Reasoning Types Lastly, we annotate a fine-
grained type of deductive reasoning for each turn.
We define 7 reasoning types, including spatial, tem-
poral, causal, behavioral, numerical, physical, and
spelling with examples shown in Table 2. We as-
sign one or more types to a turn based on the type
of reasoning that underlies the propositions in the
annotated reasoning chain (Figure 2). Each rea-
soning category contains a non-trivial number of
turns (Figure 3b), demonstrating that our dataset
demands heterogeneous reasoning capabilities.

On average, annotation for each turn takes 20
minutes for a trained annotator, resulting in a total
labor of approximately 100 hours.

3.3 Statistics
Table 3 summarizes the statistics of TURNABOUT-
LLM. In total, there are 306 turns in TURNABOUT-
LLM, with an average of 12 game characters, 38
evidences, 11 testimonies, and 25K text characters.

Figure 3a demonstrates a large answer-space
in TURNABOUTLLM, with an average of 200
evidence-testimony pairs to choose from. Figure 3b
shows the distribution of different types of reason-
ing ability required. Combined, these statistics are
evidence that TURNABOUTLLM is a challenging
and complex benchmark for LLM capabilities.

4 Evaluation Protocol

To evaluate a model on the dataset, we extract spe-
cific fields from each data point in the game to
form a single prompt, and we prompt the model
one-time for a single turn. The model is asked to
give the indices of the contradicting evidence and
testimony. As there may be multiple contradicting
pairs in each turn, we regard the output as correct
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Statistics AA123 AA456 GAA12 AAI12 DGRP1 Overall

# Data points 85 72 43 69 37 306
Avg. context length (# chars) 19K 29K 36K 34K 2.2K 25K
Avg. # characters 10.6 13.6 13.2 12.6 17 12.3
Avg./Max. # testimonies 5.9 / 10 5.6 / 8 5.7 / 7 5.1 / 8 6.7 / 11 5.7 / 11
Avg./Max. # evidences 20.2 / 32 21.1 / 33 18.6 / 30 25.3 / 38 18.0 / 21 21.1 / 38
Avg./Max. length of reasoning chain 3.5 / 9 3.8 / 10 3.6 / 6 3.5 / 8 3.3 / 5 3.6 / 10

Table 3: Overall statistics of TURNABOUTLLM, categorized by the incorporated detective game titles. AA123
stands for Phoenix Wright: Ace Attorney Trilogy. AA456 stands for Apollo Justice Ace Attorney Trilogy. GAA12
stands for The Great Ace Attorney Chronicles. AAI12 stands for Ace Attorney Investigations Collection. DGRP1
stands for Danganronpa: Trigger Happy Havoc.
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(a) An illustration of the number of turns in TURNABOUTLLM
(size of each circle) with respect to the number of available evi-
dences (horizontal) and testimonies (vertical) to choose from.
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find the contradiction, classified by the incorporated title.

Figure 3: Illustrations of further statistics of our TURNABOUTLLM dataset.

if the proposed pair is included in the list of ground
truth contradicting pairs.

Evaluation Metrics We compute the overall ac-
curacy of the model as the percentage of correct
answers across all turns, and we compute the ev-
idence accuracy and testimony accuracy respec-
tively as the percentage of correct evidence and
testimony presented across all turns.

Data Splits We do not endorse any particular
train-develop-test split of TURNABOUTLLM and
leave that decision to future users. In this work,
we treat the entirety of the Ace Attorney dataset
as the evaluation set, since we do not attempt any
hyperparameter tuning or modeling improvement.

Evaluation Settings To better gauge different as-
pects of models’ reasoning abilities, we propose 4
variations of the evaluation prompt templates based
on available property fields in the data. First, We
start with a basic zero-shot prompt10 with an av-
erage of 1,686 words, which sequentially includes
descriptions of all the characters, evidences, and
testimonies in the current turn. In case more con-
text than mere evidence descriptions are needed for

10Our experiments show that few-shot prompting leads to worse
results which are omitted.

reasoning, we append a short “context span”, an
excerpt from the context field that guarantees to
fills in the most relevant context information, to the
corresponding evidence description.

Second, we use a one-shot, Chain-of-Thought
(CoT) prompt with an average of 2,280 words,
which contains an one-shot example to demonstrate
how to reason through evidences to find the contra-
diction. Moreover, we append a “let’s think step
by step” instruction to elicit reasoning behaviors.
We do this for all non-reasoning models exclud-
ing DeepSeek-R1 and OpenAI’s o-series. We also
provide further ablations on individual effects of
one-shot and CoT prompting in Appendix D.

Third, we use a full-context prompt averaging
44K words, which includes the complete context
of all prior turns within the same court case leading
up to the current one. This is a challenging but
realistic setting, as all human players experience
the game this way. As such, needle-in-a-haystack
retrieval of critical information from the context is
necessary for turns that are not self-contained by
merely characters, evidences, and testimonies.

Fourth, to study whether the model is memoriz-
ing the game from its training corpus, we provide
an ablation prompt with an average of 537 words
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native reasoning capabilities, arrows show the performance change when applying chain-of-thought prompting.
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Figure 5: Model accuracies plotted against the number of reasoning steps, required reasoning types, and size
of answer space. Due to space constraints, we only show the performance of 6 representative models. A more
comprehensive illustration is shown in the appendix.

where all descriptions of the characters and evi-
dences are removed. The model will have to reason
based on the names of the characters and evidences
alone, which is often insufficient. Therefore, we
would expect a significant drop in its performance
if it does not memorize key events in the game.

As is previously discussed, evidences and some-
times testimonies come with images that are occa-
sionally crucial for reasoning about the contradic-
tion. While we have fully captioned them in this
work, we also provide all the images and clearly la-
bel whenever they are required so that a multimodal
evaluation is available for future work.

Experiments We evaluate 12 LLMs on our 4
variations of prompts. The LLMs come from 4
model families: the DeepSeek series which in-
cludes the 671B DeepSeek-R1 (DS-R1) and V3
(DS-V3) and the smaller distilled DeepSeek-R1-
70B (DS-R1-70B), DeepSeek-R1-32B (DS-R1-
32B), and DeepSeek-R1-8B (DS-R1-8B) models,
the OpenAI family including GPT-4.1 (G4.1), GPT-

4.1-mini (G4.1-M) and the reasoning models o3-
mini (O3-M) and o4-mini (O4-M), the Llama-3.1-
instruct family including Llama-70B (L3.1-70B)
and Llama-8B (L3.1-8B), and the reasoning model
QwQ-32B (Q-32B) exceling in reasoning and cod-
ing. Except for OpenAI models and the two largest
DeepSeek models that are run via their APIs, we
run all other models locally on 8 H100 GPUs using
HuggingFace and KANI (Zhu et al., 2023) .

5 Results and Analysis

In this section, we present our primary empirical
findings regarding LLMs’ reasoning abilities. We
begin by highlighting the overall accuracies of all
12 models on TURNABOUTLLM summarized in
Figure 4. Subsequently, we provided detailed anal-
yses that dissect model performance by factors
such as numbers of reasoning steps (Figure 5a),
reasoning types (Figure 5b), answer space sizes
(Figure 5c), numbers of reasoning tokens (Figure
6) and prompting strategies (Figure 4, 7).
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The dataset poses a significant challenge in long-
context deductive reasoning for state-of-the-art
models. All 12 models demonstrate consider-
able diffuculty in correctly identifying evidence-
testimony pairs within TURNABOUTLLM (Fig-
ure 4). Among them, DS-R1 achieves the highest
accuracy of 45.72% using the basic prompt. All
models, except G4.1, achieve higher accuracy in
selecting the correct evidence than in selecting the
correct testimony. This trend aligns with the fact
that there are typically fewer candidate evidences
than testimonies to evaluate. These findings illus-
trate that TURNABOUTLLM represents a substan-
tial challenge for even the most advanced LLMs.

Minimal memorization makes the dataset a reli-
able benchmark for LLMs. Evaluating 4 mod-
els on the ablation prompt with no evidence descrip-
tions, we consistently observe scores at a merely
average of 15%, suggesting little memorization. On
the contrary, the models’ reasoning traces reveal
that they are making the most likely “bet” based
on evidence names alone. For example, from the
evidence name “Poison Gas Ingredients”, R1 infers
that the item likely contradicts a testimony about
the poison gas containing Normallium, which hap-
pens to be the correct contradiction. Therefore, we
conclude that major models only have minimum
memorization of TURNABOUTLLM, which estab-
lishes it as a fair ground for LLM evaluations.

Incorrect results consume more reasoning to-
kens than correct ones, and more output tokens
do not necessarily yield better results. We de-
fine “reasoning tokens” as intermediate tokens gen-
erated by the model before arriving at the final
answer. Across all models, incorrect responses ex-
hibit higher median and maximum numbers of rea-
soning tokens compared to correct ones (Figure 6),
indicating a negative correlation between model
accuracy and the number of reasoning tokens. This

potentially shows that when the model produces
incorrect answers, outputing additional reasoning
tokens does not yield more improvements.

We observe a surplus of reasoning tokens pro-
duced by Q-32B and DS-R1 over other models in
Figure 6 using a logarithmic scale. However, de-
spite using far fewer reasoning tokens than Q-32B,
G4.1 achieves approximately equal accuracy, ex-
hibiting superior reasoning efficiency under a lim-
ited token budget. This could further corroborate
with the conjecture that intentional exploration of
the answer space is more decisive to model perfor-
mance than extensive output of reasoning tokens.

Full context benefits large models but hurts
smaller ones. Including the complete context
in the evaluation prompt has contrasting effects
depending on the size of the model (Figure 7).
Large models such as G4.1 and DS-R1 exhibit
notable accuracy improvements of approximately
15% compared to their basic prompt performances.
Conversely, small and medium-sized models, such
as L3.1-70B and L3.1-8B, suffer performance de-
clines. This could suggest that smaller models, lim-
ited by their parameter size, not only under-utilize
additional contextual information but are also “con-
fused” by the influx of supplementary data.

Models struggles the most with extracting key
facts in deductive reasoning. Sampling 5% of
all incorrect responses from DS-R1, Q-32B, and
G-4.1, we categorize reasoning errors into five cat-
egories: (i) extracting false factual information; (ii)
selecting the wrong fact for deduction; (iii) gen-
erating the wrong proposition given correct facts;
(iv) generating degenerate deductions given correct
premises; and (v) prioritizing less rigorous deduc-
tions. As Table 5 shows, (i) is the most common
mode of failure, suggesting that models predomi-
nantly have more difficulty understanding critical
context than following deductive steps.
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Rayfa Padma Khura'in E25 (out of 30)
At around 2PM, Shah'do was surprised by a firecracker, 
ran into the courtyard, spooked Nayna and stole her hat.

Ahlbi’s Statement
I had been gazing upon the courtyard since 
about 2, but father was the only one I saw. 

T3 (out of 6)

Contradiction

Witness claims she, while 
gazing, saw only her father

Assumption 1 [T3]

Evidence suggests that Shah’do 
spooked Nayna in the courtyard

Assumption 2 [E25]

Nayna is in the 
courtyard at 2

Deduction 2

Nayna can’t be in the courtyard if 
her father is the only one she saw

Contradiction

Reasoning Chain (Labeled in Turnabout-LLM)

No one other than her father 
is in the courtyard at 2

Deduction 1

Reasoning (DeepSeek-R1) Reasoning (GPT-4.1)

Testimony 3: that she was 
gazing at the courtyard since 
about 2 PM and saw only her 
father. Compare this with the 
Channeling Photo (Evidence 
24), which shows a picture 
taken at around 2 PM of the 
channeling rite. If the 
channeling rite (where Rayfa 
should be present as the 
princess/priestess) was 
taking place at 2 PM, she 
could not have been gazing 
upon the courtyard at that 
precise time. This is a clear 
contradiction…

Correct IncorrectAns: (T3, E25) Ans: (T3, E24)

(...iterate over all evidences...)
Let me check again. The 
answer should be one pair. 
Let me verify: Ahlbi's 
Statement says that around 
2 PM, Shah'do (the dog) 
ran into the courtyard, 
spooked Nayna… But her 
testimony says she only 
saw her father. Therefore, 
Evidence 25 contradicts 
Testimony 3 because 
Ahlbi's account suggests 
Nayna was in the courtyard 
around 2 PM, which Rayfa 
did not report seeing.

Validation
1418 Reasoning Tokens 111 Reasoning Tokens

Figure 8: A qualitative comparison between DeepSeek-R1 and GPT-4.1’s reasoning on answering the 2nd turn of
AA6-5-4. GPT-4.1 failed by jumping straight into conclusion, while DS-R1 carefully examines all evidences and
testimonies, producing over 1.4K reasoning tokens as well as the correct answer.

Model performance deteriorates with increas-
ing reasoning steps, but not with larger answer
spaces. There is a negative correlation between
average accuracy within a model architecture fam-
ily and the number of reasoning steps (Figure 5a).
As the number of reasoning steps increases, perfor-
mance gradually declines, signaling that questions
requiring more logical connections tend to be more
difficult. This supports the validity of using anno-
tated reasoning chains as an indicator of difficulty.

In contrast, the size of the answer space does
not appear to impact model accuracy (Figure 5c).
By categorizing answer spaces into seven bins with
approximately equal numbers of data points, we ob-
serve consistent model performance across all bins.
Further analysis reveals that reasoning models tend
to use many reasoning tokens to exhaustively enu-
merate possible testimony-evidence pairs without
engaging in deeper reasoning.

CoT prompting does not enhance model per-
formance. We notice minimal benefits of CoT
prompting on reasoning performance (see Figure 4).
For all 5 models except the smallest L3.1-8b, this
prompting method either results in no improve-
ment or minor performance decreases. The mod-
els’ reasoning traces reveal that CoT prompting
delays the time the model first reaches its final
conclusion and allows it to “think” more. How-
ever, the extended thinking often hinges on a single
evidence-testimony pair, failing to conduct an ex-
tensive search in the answer space. This appears to
imply that CoT prompting is ineffective in solving
deductive reasoning tasks with extensive answer

spaces and large context sizes.

Models benefit from longer explorations of the
answer space. Models can effectively extend ex-
plorations of the answer space to boost their ac-
curacy, as is shown by the qualitative example
in Figure 8. In the example, we observe distinct
behaviors in G4.1 and DS-R1’s reasoning traces.
G4.1, generating only 111 tokens, merely considers
one possible evidence before finalizing on a wrong
answer. In contrast, DS-R1, generating 1,418 to-
kens, explores multiple evidences before narrowing
down to 3 most likely candidates and arriving at
the correct answer. We conjecture that when in a
large answer space, successful deductive reasoning
is grounded in extensive, trial-and-error search and
does not have a cognitive shortcut.

Different models excel at different reasoning
types and scale with increasing parameter size.
Different models have particular strengths and
weaknesses depending on the type of reasoning re-
quired (Figure 5b). Models generally perform best
on numerical tasks involving counting and compar-
ison, whereas most exhibit their lowest scores on
temporal or causal reasoning. Furthermore, model
performance tends to improve as the parameter size
increases (Figure 4), with the notable exception of
Q-32B, which outperforms all larger models except
the 671B DS-R1. The positive correlation between
parameter size and model accuracy could imply
that larger models may possess inherently stronger
deductive reasoning capabilities.
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6 Conclusion

We introduce TURNABOUTLLM , the first bench-
mark that embeds symbolic-logic puzzles inside
narrative-rich, super-long contexts drawn from de-
tective visual novels. By performing an extensive
empirical study across twelve contemporary LLMs,
we show that TURNABOUTLLM is challenging
and poses a fair ground to evaluate LLMs’ reason-
ing abilities. We release the dataset, annotation
toolkit, and evaluation code to spur research on (i)
scalable long-context reasoning, (ii) controllable
chain-of-thought generation, and (iii) unified met-
rics for symbolic-narrative tasks. We hope TURN-
ABOUTLLM will serve as a stepping-stone toward
LLMs that can navigate the messy, open-world
logic of real human discourse.

7 Limitation

Despite its breadth, TURNABOUTLLM still faces
several constraints. First, its detective-courtroom
focus targets contradiction spotting, leaving other
deductive settings—such as scientific discovery
or regulatory compliance—largely untested. Sec-
ond, because the narratives originate from Japanese
visual novels, they may encode culture-specific
norms and idioms that bias evaluation toward mod-
els already familiar with such text. Third, although
we supply descriptive captions for in-game images,
true multimodal reasoning is only approximated,
not fully exercised. Fourth, the dataset’s manu-
ally crafted reasoning chains (≈ 100 annotator-
hours) introduce subjectivity and hamper scal-
ability, though future releases will report inter-
annotator agreement and provide semi-automated
validation tools. Fifth, while the raw scripts are
publicly available, their copyright status could
change; We are committed to honoring any take-
down requests from the rights holders. Finally, eval-
uation with 100K-token prompts imposes a heavy
computational footprint, and researchers with lim-
ited resources may need chunk-wise retrieval strate-
gies that we have not yet benchmarked. Acknowl-
edging these limitations helps define the bench-
mark’s current scope and highlights directions for
future expansion.
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Jana Thompson, Janelle Wingfield, Jared Kaplan,
Jarema Radom, Jascha Sohl-Dickstein, Jason Phang,
Jason Wei, Jason Yosinski, Jekaterina Novikova,
Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen
Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Ji-
aming Song, Jillian Tang, Joan Waweru, John Bur-
den, John Miller, John U. Balis, Jonathan Batchelder,
Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose
Hernandez-Orallo, Joseph Boudeman, Joseph Guerr,
Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl
Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva,
Katja Markert, Kaustubh D. Dhole, Kevin Gim-
pel, Kevin Omondi, Kory Mathewson, Kristen Chi-
afullo, Ksenia Shkaruta, Kumar Shridhar, Kyle Mc-
Donell, Kyle Richardson, Laria Reynolds, Leo Gao,
Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
Ochando, Louis-Philippe Morency, Luca Moschella,
Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng
He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem
Şenel, Maarten Bosma, Maarten Sap, Maartje ter
Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas
Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn,
Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Mátyás Schu-
bert, Medina Orduna Baitemirova, Melody Arnaud,
Melvin McElrath, Michael A. Yee, Michael Co-
hen, Michael Gu, Michael Ivanitskiy, Michael Star-
ritt, Michael Strube, Michał Swędrowski, Michele
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A License and Intended Use

The data utilized in this research is sourced from
fandom.com. As stipulated by fandom.com, their
resources are made available under the Creative
Commons Attribution-Share Alike License 3.0 (Un-
ported) (CC BY-SA). This license permits the shar-
ing and adaptation of the material, provided that ap-
propriate attribution is given to the original source,
a link to the license is provided, and that if the ma-
terial is remixed, transformed, or built upon, the
contributions are distributed under the same or a
compatible license. Our intended use of this data is
strictly for academic research and analysis within
this paper, fully adhering to the terms and condi-
tions set forth by the CC BY-SA license.

B Annotator demographics

Five annotators contribute to authoring and veri-
fying each data point’s reasoning types, reasoning
steps, and evidence and context span. All are U.S.-
based university students and avid Ace Attorney
and Danganropa players, thus ideally suited to ex-
amine each case data’s key attributes.
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C Annotation Protocol

The two primary assets that are manually annotated
are labels of reasoning types and semi-formal
reasoning chains for each turn. The annotation is
performed in two stages by four annotators in total,
following the guidelines below.

In the first stage, all annotators individually per-
form and then discuss the annotations on the first
two installments of the game (AA1-2) iteratively
until they reach 100% inter-annotator agreement.
During this process, the annotation guideline is re-
fined and finalized.

In the second stage, two out of the four anno-
tators each annotate half of the remaining turns
(in AA3-6, Danganronpa1) individually. Their an-
notations are then validated by a third annotator,
where a handful of disagreements are resolved. No
further cross-validation is performed due to the
prohibitively high cost of annotation.

C.1 Labels
Numerical. Labeled as “numerical” only if the
core contradiction is a difference in numbers. Ex-
ample: “I heard 1 gunshot” vs. “2 gunshots were
fired”. Numbers that do not constitute a contradic-
tion should not be labeled as numerical. Example:
“I gave the victim 2 items” vs. “The witness never
met the victim”.

Temporal. Labeled as “temporal” only if the core
contradiction involves time. Example: “He died
before noon” vs. “Time of death is after 3 PM”.
This may stack with other labels like “numerical”.
Mentions of time that do not constitute a contradic-
tion should not be labeled temporal. Example: “I
met the victim in the morning” vs. “The witness
never met the victim”.

Spatial. Labeled as “spatial” only if the core con-
tradiction involves space. Example: “I killed him
at the bus stop” vs. “The victim was found dead
in his home”. Mentions of location without contra-
diction should not be labeled spatial. Example: “I
met the victim at school” vs. “The witness never
met the victim”.

Physical. Labeled as “physical” only if the core
contradiction involves non-universal physical prop-
erties of an object. Example: “I saw him beaten by
a club” vs. “Autopsy report shows only trauma of
piercing”. This object cannot be time or space but
can be an abstract concept. Example: “I never told
anyone this idea” vs. “The victim wrote down this

idea in a notebook”. If the contradiction involves
human behavior, it should be labeled as “behav-
ioral” instead. At times, this may stack with other
labels such as temporal or spatial. Example: “I did
not hear anything from the clock at noon” vs. “The
clock sounds at noon” (also temporal) “I saw the
vase” vs. “There was a wall between the witness
and the vase” (also spatial)

Behavioral. Labeled as “behavioral” only if the
core contradiction involves human behavior, such
as intent, habits, or preferences. Example: “Larry
hates music” vs. “Larry is reported to listen to
music every day”. Exceptions are only considered
if there is strong evidence. If another contradiction
type applies, the label should not be behavioral.
Example: “I killed him at the bus stop” vs. “The
victim was found dead in his home” may lead to a
corollary of “I killed him” vs. “I cannot have killed
him”.

Spelling. Labeled when the contradiction is due
to spelling differences. Example: “Harry” vs.
“Henry”.

C.2 Reasoning Chain

A reasoning chain is a manually annotated list of
facts or propositions that lead to a contradiction.

Considerations:

• A fact is a paraphrase of the testimony span
(“I saw the victim getting shot.”), evidence
span (“only piercing wounds were found.”),
or context span.

• A proposition is a general rule of implication.
Example: “if someone gets shot, there will be
ballistic wounds, not piercing wounds.”

• Entities in propositions should be lifted and
generalized when possible. Example: use
“someone” in lieu of “Mr. Tanaka”.

• There must be at least one proposition. Propo-
sitions are framed as Modus ponens:

Assertion P + Conditional ⇒ Assertion Q

• Each fact and proposition should be as atomic
as possible, though some subjectivity is in-
evitable.
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Model Prompt Examples Overall (%) Testimony (%) Evidence (%)

DS-V3

Base Zero-shot 33.09 53.53 43.12
Base One-shot 31.23 55.02 41.26
CoT Zero-shot 40.52 57.25 52.79
CoT One-shot 33.46 50.19 44.61

G-4.1

Base Zero-shot 36.09 49.25 52.26
Base One-shot 37.55 57.25 47.96
CoT Zero-shot 40.15 56.88 56.13
CoT One-shot 34.20 51.30 45.72

L3.1-70B

Base Zero-shot 25.19 44.74 39.10
Base One-shot 7.81 29.00 15.24
CoT Zero-shot 10.27 23.77 18.11
CoT One-shot 21.93 40.15 34.20

Table 4: Performances of four setups that separate the effects of one-shot vs CoT prompting across three models.

Model Fact
extraction (%)

Fact
selection (%)

Proposition
generation (%)

Degenerate
deduction (%)

Deduction
ranking (%)

DS-R1 47.1 17.7 23.5 17.7 29.4
Q-32B 44.4 0.0 22.2 0.0 33.3
G-4.1 45.5 27.3 18.2 0.0 0.0

Table 5: Common error types made by each model when their answers were incorrect. The percentages indicate the
proportion of incorrect answers falling into each error category.
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(a) Accuracy decreases as the number of
reasoning steps grows. Due to scarcity,
we omit problems that need > 6 steps.

Spa. Tem. Cau. Beh. Num. Phy. Spe.

Reasoning kind

DS-R1-8 DS-R1-32 DS-R1-70
G-4.1-M L-3.1-8 L-3.1-70

(b) Accuracy with respect to the reasoning types.
While performance vary a lot across models, tem-
poral reasoning is usually the weakest.
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(c) Accuracy with respect to size
of answer space. Results does not
show strong negative correlation.

Figure 9: Model accuracies plotted against the number of reasoning steps, required reasoning types, and size of
answer space. Additional experiments not covered in the main body text are presented here.

D Ablations on one-shot prompting and
CoT prompting

To decouple the effects of one-shot vs CoT prompt-
ing in our pipeline, we design four prompt varia-
tions that carefully control the target variable. They
are: (i) zero-shot prompting; (ii) one-shot prompt-
ing with an example; (iii) zero-shot CoT prompt-
ing; and (iv) one-shot prompting with an exam-
ple. We conduct the four experiments on three non-
reasoning models, DS-V3, G-4.1, and L3.1-70B,
on the whole TURNABOUTLLM dataset.

As shown in Table 4, we observe that: (i) zero-
shot CoT prompting greatly helps large models
(DS-V3 and G-4.1), where both attain their best

performance out of four, but it reduces L3.1-70B’s
accuracy by more than half. (ii) one-shot example
offers little help to the two large models on both
base and CoT prompting, but it has opposite effects
when applied to L3.1-70B in both scenarios.

E Additional Data Examples and
Statistics

Figure 10 and 11 present two highly challenging
examples from TURNABOUTLLM. Figure 9 shows
additional performance breakdown of models that
are not included in the main section.
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Finally, one 
woman came. 
She stood 
front of me.

We talked... 
Then she 
left.

I parked. She 
wasn't 
there... So, 
I waited on 
bridge.

T1 T2 T3

[caption] …the victim is 
standing to the right, facing 
left. The prisoner is 
standing to the left.

Witness’
Photo

E2

From the south, the 
person to the right is 

to the east.

Proposition 1

One person cannot 
come first and second

Contradiction

… … …

Contradiction

Reasoning Chain (Labeled)

Fawles
Escaped 
prisoner 

confronted by 
policewoman

The photo was 
taken to the south 

of the bridge.

Assumption 1 [C1]

Melissa: Umm... When I took the photo, I was 
standing right over... here. [caption] I was 
standing to the south of the bridge.

Victim: east

Derived Fact 1

Victim: first

Derived Fact 4

If a person is at the 
broken end of the bridge, 

they arrived first.

Proposition 2
Spatial, temporal

Prisoner: first
Victim: second

Assumption 6 [T1,T2]

Explanation: The person that came first 
would be the one at the broken end of 
the bridge, which was the victim’s end, 
because…

Melissa

“An innocent 
witness”

C1

Spatial

East end of 
bridge is broken

Assumption 3 [E1]

Bridge’s
Map

E1

Benign Benign Benign

Explanation: N/A

[caption] The bridge is broken 
off on the east end, and 
connected to the parking lot 
on the west end.

E1 E2

Victim: right
Prisoner: left

Assumption 2 [E2]

Figure 10: A highly challenging data point from TURNABOUTLLM involving spatial and temporal reasoning.
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One kind of 
chip is worth 
100 points, 
other kind is 
worth 1,000. 

One who was 
winning was 
the victim!

The game 
began with 
3,500 point 
in chips for 
each man.

T1 T2 T3

Defendant & victim's 
chips when crime took 
place. [caption] On 
the near side, there 
are 4 red, small 
chips and 1 gray, big 
chip. On the far 
side, there are 2 
red, small chips and 
9 gray, big chips. On 
the near side, the 
cards are 7 heart, 7 
diamond, 7 club, Ace 
spade, and Ace 
diamond. On the far 
side, the cards are 
King heart, King 
diamond, King spade, 
Ace club, Ace heart.

Chip 
Photo

E2

Near side: 
4 small + 1 big

Assumption 2 [E2]

The total value is the 
sum of two sides.

Proposition 1

Two people cannot 
both be winning

Contradiction

… … …

Contradiction

Reasoning Chain (Labeled)

Olga Orly
Dard dealer 
at casino, 
place of 
murder

Far side: 
2 small + 9 big

Assumption 1 [E2]
… The hand and chips on near 
side belong to the defendant, 
Mr. Wright. Those on the far 
side belonged to the victim, 
Mr. Smith …

Total: 7,000

Assumption 4 [T1]

Total: 6 small 
+ 10 big

Derived Fact 1

Small: 1,000
Big: 100

Derived Fact 2

Value of each side is 
sum of small and big

Proposition 3

Far: 2,900
Near: 4,100

Derived Fact 3

The person on the 
side with greater 
score is winning

Proposition 4

Defendant is 
winning

Derived Fact 4

If 6*1,000+10* 
1000=7000, small is 
worth more than big

Proposition 2
Numerical

Victim is 
winning

Assumption 6 [T3]

Explanation: N/A

Explanation: 
Victim is actually 
losing, not winning, 
because…

Explanation: N/A

Payne
Prosecutor

C1

Numerical

Numerical

Chips worth 
100 and 1,000

Assumption 3 [T2]

Near side: 
defendant

Far side: victim

Assumption 5 [C1]SpatialDeadly
Bottle

E1
Benign Benign Benign

Figure 11: A highly challenging data point from TURNABOUTLLM involving numerical and spatial reasoning,
even with a touch of abductive reasoning.
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