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Abstract

The effectiveness of in-context learning re-
lies heavily on selecting demonstrations that
provide all the necessary information for a
given test input. To achieve this, it is cru-
cial to identify and cover fine-grained knowl-
edge requirements. However, prior methods
often retrieve demonstrations based solely on
embedding similarity or generation probabil-
ity, resulting in irrelevant or redundant exam-
ples. In this paper, we propose TopicK, a topic
coverage-based retrieval framework that selects
demonstrations to comprehensively cover topic-
level knowledge relevant to both the test in-
put and the model. Specifically, TopicK es-
timates the topics required by the input and
assesses the model’s knowledge on those top-
ics. TopicK then iteratively selects demonstra-
tions that introduce previously uncovered re-
quired topics, in which the model exhibits low
topical knowledge. We validate the effective-
ness of TopicK through extensive experiments
across various datasets and both open- and
closed-source LLMs. Our source code is avail-
able at https://github.com/WonbinKweon/
TopicK_EMNLP2025

1 Introduction

Large language models (LLMs) (Grattafiori et al.,
2024; Yang et al., 2024; Hurst et al., 2024) have
demonstrated a remarkable capacity to internalize
and utilize novel information solely from contex-
tual input, without requiring any parameter updates.
This ability, referred to as in-context learning (ICL)
(Brown et al., 2020), enables LLMs to leverage a
small set of input-output demonstrations to solve
previously unseen tasks or adapt to new domains.
However, prior studies (Liu et al., 2022; Peng et al.,
2024) have shown that the effectiveness of ICL is
highly sensitive to the choice of these demonstra-
tions. Consequently, identifying the most informa-
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tive demonstrations is critical to fully realizing the
generalization potential of LLMs through ICL.

In early work, similarity-based approaches (Gao
et al., 2021; Liu et al., 2022; Ye et al., 2023; Gupta
et al., 2023) employed retrieval modules to se-
lect relevant demonstrations from a candidate pool,
given a test input. They either utilize a BM25
retriever (Robertson et al., 2009) to select exem-
plars with high lexical overlap, or dense retrievers
(Reimers and Gurevych, 2019; Liu et al., 2019)
to identify K-nearest-neighbors in the embedding
space. These approaches encode the test input and
candidate demonstrations separately, enabling ef-
ficient retrieval with low latency. However, such
off-the-shelf retrievers operate independently of
the inference models (i.e., LLMs), thus failing to
account for their parametric knowledge.

To address this limitation, recent uncertainty-
based approaches (Iter et al., 2023; Wang et al.,
2024a; Peng et al., 2024) propose selecting demon-
strations that reduce the LLM’s predictive uncer-
tainty. They measure the generation probability of
either the test input (Peng et al., 2024) or the model
output (Iter et al., 2023), conditioned on each can-
didate. Demonstrations are then ranked based on
these probabilities. While this aligns retrieval with
LLMs, it requires a separate LLM inference for
every test-candidate pair, incurring a substantial
computational burden at test time. Moreover, as
demonstrations are ranked by independently com-
puted probabilities, these methods fail to ensure
diversity among the selected demonstrations.

Figure 1 presents a motivating case study for a
test input from SciQ (Welbl et al., 2017). The
similarity-based approach (Ye et al., 2023) re-
trieves a demonstration solely based on embed-
ding similarity, thereby failing to capture the spe-
cific topics required by the test input. Mean-
while, the uncertainty-based method (Peng et al.,
2024) selects a redundant demonstration about
‘Carnivore’, where the model exhibits the high-
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Figure 1: Case study on SciQ dataset and Llama-3.2-1B. The top-1 demonstration is given the same for all three
methods. PPL denotes the perplexity (lower is better) for the correct answer ‘(c) Herbivore’.

est uncertainty, overlooking the diversity among
demonstrations. These shortcomings highlight
the need for a novel approach that identifies fine-
grained knowledge requirements (e.g., topics), and
thoroughly covers them by retrieving relevant yet
diverse demonstrations.

We propose TopicK, a topic coverage-based
demonstration retrieval framework that explicitly
captures the fine-grained informational demands of
both the test input and the model. Specifically, Top-
icK estimates three key components: (1) required
topics in the test input, (2) covered topics in candi-
date demonstrations, and (3) topical knowledge en-
coded in the model. These components are inferred
via a lightweight topic predictor, without requiring
human annotations or LLM inference at test time.
TopicK then iteratively selects demonstrations that
introduce previously uncovered required topics, for
which the model shows low topical knowledge. As
a result, in Figure 1, TopicK achieves the lowest
perplexity by retrieving a demonstration with a new
topic ‘Herbivore’.

The key features of TopicK are summarized as:

• TopicK captures fine-grained topic-level knowl-
edge requirements of test inputs, going beyond
existing methods that rely solely on embedding
similarity or generation probability.

• TopicK infers the required topics using a
lightweight topic predictor, avoiding the need
for LLM inference at test time as in previous
uncertainty-based methods.

• TopicK consistently outperforms state-of-the-
art approaches across diverse benchmarks and

model scales, including both open- and closed-
source LLMs.

2 Preliminary

2.1 In-Context Learning
In-context learning (ICL) is one of the core emer-
gent capabilities of large language models (LLMs),
enabling them to internalize and utilize novel in-
formation solely from contextual input, without
requiring updates to model parameters.

Problem Formulation Given a test input x, an
LLM generates the output ŷ, conditioned on a few
in-context demonstrations, as follows:

ŷ ∼ pLM(ŷ | d1, d2, . . . , dK︸ ︷︷ ︸
demonstrations

, x), (1)

where each demonstration di = (xi, yi) is selected
from a candidate pool D = {(xi, yi)}Ni=1.

A variety of strategies have been proposed to im-
prove ICL performance, including demonstration
selection (Gao et al., 2021; Liu et al., 2022; Rubin
et al., 2022; Wu et al., 2023b), demonstration order-
ing (Lu et al., 2022; Lee et al., 2024; Liang et al.,
2025), and prompt template design (Deng et al.,
2022; Xu et al., 2022; Prasad et al., 2023; Cheng
et al., 2023). In this work, we focus on demonstra-
tion selection, which has been identified as the most
critical factor influencing ICL effectiveness (Peng
et al., 2024; Wan et al., 2024).

2.2 Similarity-based Approaches
Early work (Gao et al., 2021; Liu et al., 2022) em-
ploys embedding models (Reimers and Gurevych,
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2019; Liu et al., 2019) to obtain vector representa-
tions ex and ed for the test input x and each demon-
stration d ∈ D. The top-K demonstrations are then
selected by ranking candidates in descending order
of cosine similarity, i.e., cos (ex, ed). Subsequent
studies further take account of diversity by employ-
ing majority voting (Su et al., 2022), determinantal
point processes (Ye et al., 2023), or BERTScore
(Gupta et al., 2023).

Limitation While these approaches offer fast re-
trieval, they remain model-independent and over-
look the parametric knowledge of LLMs. More-
over, they consider diversity only at the surface-
level embedding space. As a result, although the
retrieved demonstrations may be semantically sim-
ilar to the test input, they often provide limited util-
ity and fail to meaningfully influence the model’s
decision-making process (Peng et al., 2024).

2.3 Uncertainty-based Approaches
Recent approaches argue that the utility of a demon-
stration is not solely determined by its similar-
ity to the test input, but also by how it inter-
acts with LLMs (Peng et al., 2024; Chen et al.,
2024). These uncertainty-based approaches aim
to select demonstrations that explicitly reduce the
model’s predictive uncertainty. For instance, Iter
et al. (2023) select demonstrations that minimize
the entropy of the model’s output distribution:
argmindi∈D H(ŷ | di, x). Similarly, Peng et al.
(2024) select candidates that minimize the entropy
of the test input: argmindi∈D H(x | di).
Limitation Although uncertainty-based objec-
tives align demonstration retrieval with LLMs, they
require a separate LLM inference to examine each
demonstration. This incurs substantial computa-
tional overhead, severely limiting scalability and
practical deployment. Furthermore, they rank the
demonstrations based on independently computed
probabilities, overlooking the diversity in the se-
lected demonstrations.

3 Methodology

We propose TopicK, a novel demonstration re-
trieval framework that leverages topics to explicitly
examine the fine-grained informational demands
of both the test input and the target LLM. TopicK
consists of two major stages as follows:

• Topical Knowledge Assessment (§3.1): Top-
icK estimates three key components (1) required

topics in the test input, (2) covered topics in can-
didate demonstrations, and (3) topical knowledge
encoded in the LLM’s parameters.

• Topic Coverage-based Retrieval (§3.2): Top-
icK selects demonstrations that introduce pre-
viously uncovered required topics, where the
model exhibits low topical knowledge.

3.1 Topical Knowledge Assessment

We first identify core topics of each demonstration,
without relying on external data or human annota-
tions. Then, a lightweight topic predictor is devised
based on the identified topics, and utilized to esti-
mate the topic distributions of both the test input
and candidate demonstrations.

3.1.1 Topic Identification
Given a candidate poolD and a topic set T , our ob-
jective is to identify the core topics of each demon-
stration. While any pre-defined topic set (Shen
et al., 2018) can be employed, for broader applica-
bility, we construct T from scratch using topic min-
ing tools (Shang et al., 2018; Zhang et al., 2023).

Candidate Topic Matching After constructing
T , we find a candidate topic set for each demon-
stration d ∈ D with two types of matching:

• Lexical Overlap: Select the top-10 topics based
on BM25 scores (Robertson et al., 2009).

• Semantic Similarity: Select the top-10 topics
based on cosine similarity cos(ed, et). (t ∈ T )

To ensure coverage, topics matched by the lexical
overlap are excluded from the semantic similar-
ity matching. The candidate topic set T ′

d ⊂ T is
obtained by merging those two results.

Core Topic Matching with LLMs Topics can
exhibit varying semantics depending on the context.
To consider this, we leverage the contextualization
capabilities of LLMs. Specifically, we prompt GPT-
4o (Hurst et al., 2024) to select the core topics from
T ′
d and identify any missing but relevant topics.

This process yields the finalized core topic set Td ⊂
T for each demonstration d ∈ D.

3.1.2 Topic Predictor
Using the identified core topics, we devise a
lightweight topic predictor that maps each demon-
stration embedding ed to a topic distribution t̂d ∈
[0, 1]|T |. Each element t̂d,t ∈ t̂d represents the
degree of membership of topic t in the core topic
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Figure 2: Overview of topic coverage-based demonstration retrieval (TopicK) framework.

set Td. In this work, we employ a three-layer MLP
t̂d = f(ed), as the simplest choice. We note that
the topic predictor not only generalizes to unseen
test inputs (i.e., ex), but also enriches the topic dis-
tributions of candidates by inferring related topics
beyond the initial core topic set.

Distinctiveness-aware Training Signal A naive
training signal for t̂d would be a binary vector td ∈
{0, 1}|T |, where td,t = 1 if t ∈ Td and 0 otherwise.
However, not all topics contribute equally; some
topics are more distinctive to a given demonstration.
To capture this, we adopt a distinctiveness metric
inspired by Lee et al. (2022):

DST(d, t) =
exp (BM25(d, t))

1 +
∑

d′∈Dd
exp (BM25(d′, t))

,

(2)
where Dd denotes the set of 100 demonstrations
nearest to d in the embedding space. We then nor-
malize the distinctiveness scores to produce a soft
target vector td ∈ [0, 1]|T |:

td,t =
DST(d, t)

maxt′∈Td DST(d, t′)
. (3)

Finally, we train the topic predictor t̂d = f(ed) by
using a binary cross-entropy loss:

LTP = −
∑

d∈D

( ∑

t∈Td
td,t log t̂d,t+

∑

t/∈Td
log(1−t̂d,t)

)
.

(4)

3.1.3 Topical Knowledge Assessment
Required & Covered Topics To assess relevant
topics for each sample, we utilize the trained topic
predictor described earlier. Given embeddings of
a test input ex and a demonstration ed, we predict

their topic distributions t̂x = f(ex) ∈ [0, 1]|T | and
t̂d = f(ed) ∈ [0, 1]|T |. Here, t̂x represents the
required topics needed to understand and answer
the test input x, while t̂d indicates the covered
topics in the candidate demonstration d. These
distributions allow fine-grained assessment of how
well a demonstration aligns with the informational
needs of a test input.

Topical Knowledge In addition to the required
and covered topics, we also consider the model’s in-
herent knowledge on each topic, defined as t̂LM ∈
[0, 1]|T |. We estimate the topical knowledge by
aggregating the model’s zero-shot accuracy on can-
didate demonstrations:

t̂LM,t =

∑
d∈D t̂d,t · zero-shot(d)∑

d∈D t̂d,t
,

zero-shot(d) = 1[y = argmax
ŷ

pLM(ŷ|x)],
(5)

where zero-shot(d) ∈ {0, 1} indicates the zero-
shot accuracy on demonstration d = (x, y) ∈ D.
That is, we measure how reliably the LLM answers
instances associated with each topic without any
demonstrations. This prior provides insights into
which topics the model has already internalized,
allowing us to avoid selecting demonstrations for
topics that the model already knows well.

3.2 Topic Coverage-based Retrieval
3.2.1 Topic Coverage-aware Relevance
We define a novel relevance score between a test
input x and a candidate demonstration d as follows:

r(x, d) =
∑

t∈T

t̂x,t · t̂d,t
t̂LM,t

= ⟨t̂x ⊘ t̂LM, t̂d⟩, (6)
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where ⊘ denotes the element-wise division and
⟨·, ·⟩ is the inner product. This relevance score
captures three critical aspects:

• Required Topics: t̂x,t prioritizes topics highly
relevant to the test input.

• Covered Topics: t̂d,t promotes demonstrations
that provide high coverage of required topics.

• Topical Knowledge: t̂LM,t down-weights topics
that the model already knows well.

By our design, TopicK assigns a high relevance
score for a demonstration d, whose covered top-
ics t̂d align well with the knowledge-weighted re-
quired topics (i.e., t̂x ⊘ t̂LM). It is worth noting
that t̂LM is pre-computed before the test time, while
t̂x and t̂d are inferred via a lightweight topic pre-
dictor. Therefore, TopicK enables LLM-aware
demonstration selection without LLM inference
at test time. We use the final relevance score as
r(x, d)+λ ·cos(ex, ed), incorporating both topical
and semantic relevance.

3.2.2 Cumulative Topic Coverage
We further incorporate cumulative topic cover-
age to avoid retrieving redundant demonstrations.
Given a set of previously selected demonstrations
D′

x, we update the covered topics t̂d in Eq. 6 as:

t̂d ← (t̂d∪D′
x
− t̂D′

x
). (7)

Here, t̂D′
x

and t̂d∪D′
x

represent the cumulative topic
coverage before and after adding d. These are
also obtained by the topic predictor using mean-
pooled embeddings, e.g., t̂d∪D′

x
= f(ed∪D′

x
) and

ed∪D′
x

= (ed +
∑

d′∈D′
x
ed′)/(1 + |D′

x|). This
formulation encourages the selection of the next
demonstration that introduces novel topic coverage
beyond what has already been covered by D′

x. Af-
ter iteratively selecting K demonstrations, the final
set Dx = {di}Ki=1 is prepended to the test input
to generate the output ŷ ∼ pLM(ŷ | Dx, x). To
reduce computational overhead, we retain only the
top-300 candidates of the first iteration.

3.2.3 Theoretical Justification
Lastly, we provide a theoretical justification for
how our topic coverage-aware relevance is derived.
We start from H(x|d), the uncertainty regarding
the test input x given the demonstration d. Since x
is known at test time, minimizing this uncertainty
is equivalent to maximizing the generation prob-
ability p(x|d). While ConE (Peng et al., 2024)

estimates this probability through expensive LLM
inference at test time, we instead decompose it
via topic modeling (Blei et al., 2003; Kang et al.,
2025):

p(x|d) =
∑

t∈T
p(x|t) · p(t|d)

=
∑

t∈T
(p(t|x) · p(x) / p(t)) · p(t|d)

= p(x) ·
∑

t∈T
p(t|x)︸ ︷︷ ︸
required
topics

· p(t|d)︸ ︷︷ ︸
covered
topics

/ p(t)︸︷︷︸
topical

knowledge

.

(8)
Here, p(x) is constant across demonstrations. The
terms p(t|x), p(t|d), and p(t) correspond to t̂x,t,
t̂d,t, and t̂LM,t in Eq. 6, respectively. Thus, our
topic coverage-based retrieval is equivalent to min-
imizing the model’s uncertainty on the test input.

4 Experiment

4.1 Experimental Setup

Due to a lack of space, please refer to Appendix B
for further details.

Models We conduct experiments using two
widely adopted model families, Llama3.2
(Grattafiori et al., 2024) and Qwen2.5 (Yang
et al., 2024), covering a range of model sizes:
Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B,
Qwen-2.5-0.5B, Qwen-2.5-3B, and Qwen-2.5-7B.
All models are instruction-tuned. Additionally,
we adopt Gemini-2.0-Flash-Lite (Google, 2023),
Claude-3.0-Haiku (Anthropic, 2024), and
GPT-4o-mini (Hurst et al., 2024) for evaluation on
closed-source LLMs.

Datasets We evaluate our method on 6 datasets
spanning a variety of domains. For general-domain
tasks, we use CommonsenseQA (Talmor et al.,
2019) and SciQ (Welbl et al., 2017) for natural
language understanding, as well as QNLI (Wang
et al., 2018) and MNLI (Williams et al., 2018)
for natural language inference. To assess question-
answering performance in specialized domains, we
include MedMCQA (Pal et al., 2022) from the
medical domain and Law (Cheng et al., 2024) from
the legal domain. Each dataset has a demonstration
pool of input-output pairs, and we evaluate the
accuracy on the test set with three different random
seeds. If the test set is private, we report the results
on the validation set as done in Peng et al. (2024).
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CommonsenseQA SciQ QNLI MNLI MedMCQA Law

Llama3.2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

Zero 37.67 55.13 64.70 64.10 81.50 91.90 51.11 51.73 53.73 42.14 43.45 44.11 37.71 52.45 58.26 41.55 79.50 87.40
Rand 41.03 56.59 63.47 64.90 82.00 92.00 53.54 60.34 72.82 37.87 42.21 46.42 35.76 52.31 59.23 42.70 90.70 93.60
BM25 42.37 52.99 64.05 67.20 82.90 92.30 55.27 68.15 75.68 41.80 46.54 50.79 38.64 56.36 61.57 44.10 91.20 94.70
TopK 43.14 56.33 65.59 71.20 89.00 92.90 60.18 71.05 77.95 50.58 58.94 66.25 39.80 59.65 67.89 47.00 91.80 96.30
CEIL 44.18 57.78 66.68 72.20 89.20 93.30 61.06 71.46 78.63 51.22 60.04 67.02 40.09 61.25 68.10 48.10 92.25 96.80

Set-BSR 44.72 58.48 67.49 72.90 90.20 94.40 61.80 72.32 79.59 51.84 60.77 67.84 40.27 61.79 68.93 48.70 93.00 97.35
MDL 44.51 58.23 67.10 72.60 89.80 94.30 61.34 72.17 79.81 51.76 60.34 67.97 40.16 61.51 68.79 48.50 93.10 97.25
MDR 44.46 57.78 66.88 72.40 89.60 94.10 61.22 72.14 79.37 51.66 60.27 67.88 40.25 60.88 68.63 48.35 92.85 97.10
ConE 44.34 58.40 66.91 72.80 90.10 94.50 61.56 72.20 80.14 51.89 60.53 68.11 40.45 62.07 69.03 48.60 93.15 97.45

TopicK 46.19∗ 60.52∗ 68.63∗ 74.60∗ 91.20∗ 95.20∗ 62.51∗ 73.55∗ 81.35∗ 52.81∗ 61.67∗ 68.06 41.80∗ 62.36+ 70.21∗ 51.70∗ 93.80+ 97.60

Qwen2.5 0.5B 3B 7B 0.5B 3B 7B 0.5B 3B 7B 0.5B 3B 7B 0.5B 3B 7B 0.5B 3B 7B

Zero 43.41 63.44 69.45 65.10 93.00 93.80 57.97 64.31 54.15 47.20 47.78 49.54 34.16 51.24 55.47 41.10 69.70 81.85
Rand 44.72 64.50 69.21 71.00 92.60 94.60 55.39 70.52 65.41 48.61 48.14 50.02 35.19 51.28 59.59 42.00 86.90 92.10
BM25 45.62 66.49 70.35 72.30 93.00 94.90 58.13 72.96 74.18 50.55 62.46 64.39 37.07 51.71 60.83 45.50 93.40 95.20
TopK 48.14 65.23 70.42 78.30 93.30 95.10 59.02 76.36 79.57 51.59 67.61 73.55 38.70 53.54 62.88 46.90 95.70 96.30
CEIL 49.64 66.39 71.28 80.50 93.70 95.50 60.55 77.57 80.68 52.28 68.15 74.41 40.00 55.96 64.69 47.45 96.35 96.65

Set-BSR 50.24 66.99 72.15 81.50 94.80 96.20 61.29 78.51 81.66 52.91 68.98 75.31 40.48 56.64 65.48 48.00 96.60 97.50
MDL 49.80 66.34 71.68 81.10 94.30 95.70 61.18 78.03 81.41 53.17 68.66 75.14 39.78 56.48 65.34 48.55 96.80 97.55
MDR 49.63 66.31 71.54 79.80 94.10 95.30 61.07 78.11 81.23 53.23 68.61 75.09 40.12 56.12 65.31 48.50 96.65 97.40
ConE 50.11 66.75 71.91 81.30 94.50 95.90 61.31 78.35 81.75 53.30 68.74 75.28 40.29 56.93 65.52 48.65 96.95 97.70

TopicK 51.84∗ 67.32+ 72.97∗ 81.80+ 94.90 96.40 62.04∗ 79.63∗ 82.68∗ 53.46+ 69.35∗ 75.59+ 41.30∗ 57.85∗ 66.34∗ 49.85∗ 97.15 98.30+

Table 1: Performance (accuracy) of ICL with different demonstration selection strategies. “-B” indicates the model
size, and the best result in each column is highlighted in bold. ∗ and + indicate p ≤ 0.01 and p ≤ 0.05 for the
paired t-test with the best competitor.

Baselines We compare TopicK (ours) with var-
ious conventional and state-of-the-art approaches.
Specifically, we adopt two basic methods:

• Zero uses no demonstration and serves as a zero-
shot baseline.

• Rand randomly selects demonstrations for each
test example.

and four similarity-based approaches:

• BM25 (Robertson et al., 2009) selects demon-
strations based on lexical overlap.

• TopK (Liu et al., 2022) selects the K-nearest-
neighbors using dense retriever embeddings.

• CEIL (Ye et al., 2023) adopts DPP (Chen et al.,
2018) to enhance diversity. For a fair comparison,
we exclude the retriever fine-tuning and apply
only the DPP-based inference

• Set-BSR (Gupta et al., 2023) selects demonstra-
tions based on BERTScore-Recall (BSR) (Zhang
et al., 2019), to cover the tokens in the test input.

and three uncertainty-based approaches:

• MDL (Iter et al., 2023) selects demonstrations
that minimize predictive uncertainty.

• MDR (Wang et al., 2024a) selects demonstra-
tions where the model exhibits minimum predic-
tive error.

• ConE (Peng et al., 2024) selects demonstrations
that minimize uncertainty on test input.

For all methods compared, we adopt the 8-shot
setting, following ConE. We would like to note that
all baselines, like ours, freeze both the retriever and
the LLMs. For a fair comparison, we exclude meth-
ods utilizing retriever update for selecting prompts
(Rubin et al., 2022) or demonstrations (Chen et al.,
2024; Wang et al., 2024b,c).

Implementation Details Our evaluation setup,
including prompt templates and inference pro-
cedures, is based on the OpenICL library (Wu
et al., 2023a). For the embeddings, we
use all-mpnet-base-v2 (SBERT) (Reimers and
Gurevych, 2019), which has shown strong retrieval
performance in ConE (Peng et al., 2024). For
similarity-based baselines, we utilize the FAISS
library (Douze et al., 2024) to perform efficient
nearest-neighbor search. For uncertainty-based
methods, we retrieve 30 candidate demonstrations
with TopK to narrow the search space, following
their implementations. All baselines are imple-
mented using publicly available author code, and
we strictly follow the documented configurations
and hyperparameters.

4.2 Main Results

Table 1 shows the ICL performance with differ-
ent demonstration selections. We first observe that
different model families possess varying levels of
domain knowledge (Kweon et al., 2025). For in-
stance, Llama-3.2 models outperform Qwen-2.5
models on MedMCQA but underperform on Com-
monsenseQA. This supports our motivation to ex-
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Figure 3: Time-accuracy trade-off. The y-axis repre-
sents ICL accuracy, and the x-axis indicates the time
elapsed for retrieval with a single A100 GPU.

amine the topical knowledge of each model before
retrieving demonstrations. Additionally, we find
that Rand occasionally performs worse than Zero,
highlighting the importance of appropriate demon-
stration selection.

Similarity-based approaches (e.g., Set-BSR)
generally perform well on general-domain tasks
such as CommonsenseQA and SciQ. In contrast,
uncertainty-based methods (e.g., ConE) perform
better in specialized domains like MedMCQA and
Law. This is because similarity-based methods rely
on surface-level relevance, which is often sufficient
for general-domain tasks, whereas uncertainty-
based methods incorporate the model’s internal
knowledge and uncertainty, making them more ef-
fective in handling complex or domain-specific rea-
soning required in specialized tasks.

TopicK consistently outperforms the state-of-
the-art similarity-based (Set-BSR) and uncertainty-
based (ConE) methods by integrating semantic sim-
ilarity with topic coverage. Across all datasets, Top-
icK achieves relative improvements of 1.59% over
Set-BSR and ConE. Notably, TopicK yields larger
improvement in specialized domains (MedMCQA,
Law) by up to 6.38% over ConE with Llama-3.2-
1B. This indicates that TopicK selects demonstra-
tions that comprehensively cover the topics in the

Model Method Common QNLI MedMCQA

Gemini-2.0
-Flash-Lite

Zero 62.33 74.17 70.31
Rand 65.10 76.66 71.02
TopK 67.98 77.54 74.29
CEIL 68.06 79.97 75.04

Set-BSR 68.23 80.36 75.47
TopicK 69.37 84.20 78.59

Claude-3.0
-Haiku

Zero 57.00 72.34 53.73
Rand 58.97 74.83 59.48
TopK 63.64 75.71 66.80
CEIL 64.78 78.14 67.65

Set-BSR 65.02 78.36 67.81
TopicK 67.40 82.37 69.11

GPT-4o
-mini

Zero 65.52 76.36 61.68
Rand 66.01 77.89 64.24
TopK 69.21 82.47 70.34
CEIL 69.75 85.02 71.16

Set-BSR 70.18 85.53 71.72
TopicK 70.88 86.54 72.44

Table 2: Performance of 5-shot ICL with closed-source
LLMs. “Common” represents CommonsenseQA.

test input, enabling better leveraging of domain-
specific knowledge for unseen tasks.

4.3 Time-Accuracy Trade-off

Figure 3 illustrates the time-accuracy trade-off
of Llama-3.2-1B and Llama-3.1-8B across three
datasets. Similarity-based methods (TopK, CEIL,
Set-BSR) benefit from efficient retrieval through
dual-encoder architectures, offering low latency.
However, their reliance solely on surface-level
similarity often leads to suboptimal performance,
particularly in specialized domains (i.e., MedM-
CQA). On the other hand, uncertainty-based meth-
ods (ConE) attain higher accuracy on MedMCQA,
by leveraging the LLM itself to evaluate the in-
formativeness of demonstrations. However, they
require separate LLM inference for each demon-
stration, incurring significant computational over-
head at test time; ConE is 37× slower than TopicK
on QNLI.

TopicK strikes the best balance between accu-
racy and efficiency. TopicK consistently achieves
the best performance by comprehensively covering
fine-grained topic-level knowledge, while main-
taining low retrieval latency. This advantage arises
from its use of a lightweight topic predictor to es-
timate the knowledge required for each test input.
Importantly, the topic predictor operates indepen-
dently of the LLM size, making TopicK highly
scalable and effective across both small and large
LLMs
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Figure 4: Analysis on topic coverage with Llama-3.2-1B and MedMCQA.

4.4 Results with Closed-Source LLMs
Since TopicK estimates the topical knowledge via
a topic predictor and zero-shot accuracy, it can
be applied to closed-source LLMs as well. We
note that uncertainty-based methods (MDL, MDR,
ConE) rely on generation probabilities, and there-
fore, are generally incompatible with closed-source
LLMs (Google, 2023; Anthropic, 2024; Hurst et al.,
2024).1 Table 2 presents the 5-shot ICL perfor-
mance of two closed-source LLMs. TopicK con-
sistently outperforms all baselines across all tasks
and models, demonstrating its effectiveness and
generality on restricted APIs.

4.5 Topic Coverage Analysis
Figure 4 presents an in-depth analysis of demon-
stration diversity as the number of shots increases
from K = 1 to 10. For this analysis, we introduce
two metrics:

• Topic Coverage: the number of topics covered
by demonstrations (d1, . . . , dK), among the top-
20 required topics in the test input.

• Topic Redundancy: the proportion of topics
covered by the current demonstration (dK) that
have already been covered by previous demon-
strations (d1, . . . , dK−1).

We observe that TopK suffers from low topic cov-
erage and high redundancy due to its reliance
on similarity ranking without diversity control.
Set-BSR improves diversity by adopting setwise
BERTScore, but remains limited by surface-level
embedding similarity and implicit token-level cov-
erage. ConE, despite considering model uncer-
tainty, shows high redundancy and low coverage
as it evaluates each demonstration independently.
In contrast, TopicK explicitly targets fine-grained

1As of submission, logprobs for the first two closed-source
LLMs in Table 2 are unavailable.

Common QNLI MedMCQA
TopicK 46.19 62.51 41.80
w/o Core Topic (§3.1.1) 44.72 62.03 41.17
w/o Soft Label (§3.1.2) 45.21 62.38 41.56
w/o Topical Knowledge (§3.2.1) 44.86 60.68 40.55
w/o Cumulative Coverage (§3.2.2) 44.41 61.47 40.12

Table 3: Ablation study of TopicK with Llama-3.2-1B.
“Common” represents CommonsenseQA.

topic coverage, achieving the highest coverage and
lowest redundancy. This demonstrates its effec-
tiveness in retrieving demonstrations that are not
only relevant and informative but also comprehen-
sively cover a broader range of necessary topics,
enhancing overall ICL performance.

4.6 Ablation Study

Table 3 presents an ablation study of TopicK with
three variations:

• “w/o Core Topic” replaces the LLM-matched
core topic set with a BM25-generated candidate
topic set.

• “w/o Soft Label” trains the topic predictor using
a binary vector, rather than the distinctiveness-
aware soft label (Eq. 3).

• “w/o Cumulative Coverage” omits the update of
covered topics (Eq. 7), selecting demonstrations
independently.

Removing any component reduces performance,
confirming their utility. Removing core topic
matching leads to performance degradation across
all datasets, confirming the importance of aligning
demonstrations with the central topic of the test
input. Eliminating distinctiveness-aware labeling
slightly reduces accuracy, suggesting that filtering
out popular topics improves selection precision.
Lastly, the removal of the cumulative topic cov-
erage consistently causes the largest degradation,
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Test input (Zero-shot PPL: 2.872)
Question: Non-human organisms that mainly con-
sume plants/other primary producers are known as
what?
(A) Amphibian
(B) Omnivore
(C) Herbivore
(D) Carnivore

Inferred required topics
carnivore (0.91), omnivore (0.90), herbivore
(0.87), plant (0.34), ecosystem (0.28), food chain
(0.23), animal (0.18), food web (0.09), insectivore
(0.07), vegetarian (0.06), organism (0.05)

Topical knowledge of LLM
carnivore (0.72), omnivore (0.85), herbivore (0.75),
plant (0.77), ecosystem (0.69), food chain (0.74),
animal (0.78), food web (0.89), insectivore (0.73),
vegetarian (0.76), organism (0.73)

Top-1 demonstration (1-shot PPL: 2.152)
Question: What do you call an animal that feeds
on other animals? (A) Carnivore (B) Omnivore (C)
Polyvore (D) Herbivore
Answer: (A)

Inferred covered topics
carnivore (0.87), ecosystem (0.32), animal (0.19),
food chain (0.19), polyvore (0.13), organism (0.11),
omnivore (0.08), herbivore (0.07)

Top-2 demonstration (2-shot PPL: 1.630)
Question: Herbivores are heterotrophs that eat only
or mainly what? (A) Plants (B) Animals (C) Fish
(D) Decayed matter
Answer: (A)

Inferred covered topics
herbivore (0.96), heterophile (0.51), plant (0.27),
xerophyte (0.23), vegetarian (0.21), decayed mat-
ter (0.19), rotifer (0.15), food web (0.08), eutroph
(0.07), moss (0.06)

Top-3 demonstration (3-shot PPL: 1.369)
Question: Omnivores are animals that eat both plant-
and? (A) Biofuel (B) Liquid diets (C) Recycled food
(D) Animal-derived food
Answer: (D)

Inferred covered topics
omnivore (0.90), liquid diet (0.33), recycled food
(0.17), animal (0.13), biofuel (0.11), carnivore
(0.07), plant (0.07), insectivore (0.06), food chain
(0.03), vegetarian (0.03)

Table 4: Detailed case study on SciQ dataset and Llama-3.2-1B (extended from Figure 1). PPL denotes the perplexity
(lower is better) for the correct answer ((C) Herbivore). Scores for inferred topics represent importance according to
the topic predictor. i.e., t̂x,t and t̂d,t.

especially on MedMCQA (-4.02%), indicating that
capturing a wide range of subtopics is crucial for
complex knowledge-intensive tasks.

4.7 Caset Study
Table 4 presents a case study with TopicK, extend-
ing Figure 1. First, we observe the topic predictor
generalizes to unseen inputs and enriches topic dis-
tributions by inferring implicitly related concepts
(e.g., ecosystem, food chain). Second, TopicK
retrieves diverse, non-redundant demonstrations
that ensure broad topic coverage. Third, it incorpo-
rates topical knowledge, selecting demonstrations
where the model shows weaker understanding. For
instance, TopicK prefers herbivore (0.87) over om-
nivore (0.90), considering the model’s lower topi-
cal knowledge on herbivore (0.75 vs. 0.85).

5 Conclusions

We argue that an effective set of demonstrations
should provide comprehensive coverage of fine-

grained aspects (i.e., topics) required by the test in-
put and language models. To this end, we propose
TopicK, which identifies the required topics in the
test input and retrieves demonstrations that max-
imize the cumulative topic coverage. By assess-
ing the model’s informational needs through topic-
level signals, TopicK relies solely on a lightweight
topic predictor and avoids any LLM inference at
test time. Extensive experiments across diverse
domains and both open- and closed-source LLMs
demonstrate that TopicK consistently outperforms
state-of-the-art methods.
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Limitations

Model scale Due to computational constraints,
we evaluate TopicK on open-source LLMs ranging
from 0.5B to 8B parameters. It would be valuable
to scale our experiments to larger models such as
Llama-3.3-70B.

Flat topic set In this work, we construct a flat
topic set and devise a flat topic predictor. Explor-
ing hierarchical topic structures (e.g., topical tax-
onomy) remains a promising direction for future
work, potentially enabling a richer understanding
of topic coverage.
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A Implementation Details for TopicK

Our source code, including the core topic set
for each demonstration, is available at https://
github.com/WonbinKweon/TopicK_EMNLP2025

Topic Mining We employ two topic mining tools:
SeedTopicMine (Zhang et al., 2023) for extracting
single-word topics and AutoPhrase (Shang et al.,
2018) for multi-word phrases. We then merge the
outputs to construct the topic set T for each dataset.

Core Topic Matching with GPT-4o We prompt
GPT-4o to select the core topics from the candidate
topic set T ′

d and identify any missing but relevant
topics, as follows:

You will receive a question-answer demonstration
along with a candidate topic set. Your task is to out-
put relevant topics of the demonstration. You may
choose topics from the candidate topic set, or you
can create new relevant topics. You must provide
at least five topics. Do not include any explanation
or numbers. Please just output the list of relevant
topics, separated by commas. Demonstration: {d},
Candidate topic set: {T ′

d}

This process yields the finalized core topic set Td ⊂
T for each demonstration d.

Topic Predictor In this work, we employ a three-
layer MLP t̂d = f(ed) for the topic predictor.
The input embedding ed ∈ R768 is extracted us-
ing the all-mpnet-base-v2 model (Reimers and
Gurevych, 2019). The last classification layer is ini-
tialized with the embeddings of topic names. The
model is optimized using the distinctiveness-aware
soft label (Eq.3) and binary cross-entropy (Eq.4).

B Experiment Details

Datasets Table 5 shows the statistics of each
dataset. “#Topics” indicates the number of mined
topics from each dataset. Since Law (Cheng et al.,
2024) dataset does not provide an explicit data split,
we randomly partition the 10k input-output pairs
into training and test sets using an 8:2 ratio. All
datasets are sourced from their official Hugging-
Face repositories (Wolf et al., 2019).

Templates We adopt the OpenICL library (Wu
et al., 2023a) for the prompt templates and infer-
ence procedures. Table 6 shows the templates
in OpenICL for datasets in the experiment. For
a stable evaluation, following ConE (Peng et al.,

Dataset Data Split #Classes #Topics
CommonsenseQA 9,741 / 1,221 5 3,781

SciQ 11,679 / 1,000 4 11,451
QNLI 104,743 / 5,463 2 51,809
MNLI 392,702 / 9,815 3 109,390

MedMCQA 120,765 / 2,816 4 49,925
Law 8,000 / 2,000 4 5,296

Table 5: Dataset statistics.

Task Prompt Class

CommonsenseQA

Question: < x > Answer: <A> A
Question: < x > Answer: <B> B
Question: < x > Answer: <C> C
Question: < x > Answer: <D> D
Question: < x > Answer: <E> E

MNLI
< x1 > Can we know < x2 >? Yes. Entailment

< x1 > Can we know < x2 >? Maybe. Neutral
< x1 > Can we know < x2 >? No. Contradiction

QNLI
< x1 > Can we know < x2 >? Yes. Entailment
< x1 > Can we know < x2 >? No. Contradiction

SciQ
MedMCQA

Law

Question: < x > Answer: <A> A
Question: < x > Answer: <B> B
Question: < x > Answer: <C> C
Question: < x > Answer: <D> D

Table 6: Templates of tasks. < x > is a placeholder for
test inputs.

2024), we adopt the perplexity-based inference in
OpenICL.

Hyperparameters All hyperparameters of Top-
icK and baselines are selected with a grid search
on the validation set. If the test set is private and
the validation set is used for evaluation, we reserve
10% of the training set as a held-out validation set.
For CEIL, the scale factor λ for the DPP-based
inference is selected from [0, 0.5]. For uncertainty-
based methods (MDL, MDR, ConE), we retrieve 30
candidate demonstrations with TopK to narrow the
search space, following their implementations. For
MDL, the select time is set to 10 to constrain the
time limit. For MDR, the coefficient C is selected
from [0, 1]. For TopicK, the learning rate of the
topic predictor is selected from [1e−5, 1e−4]. For
the final relevance score r(x, d) + λ · cos(ex, ed),
λ is selected from [0.1, 1] and z-score normaliza-
tion is applied for r(x, d) and cos(ex, ed) to ensure
their scales are matched.

Resources For open-source LLMs (i.e.,
Llama3.2 and Qwen2.5 families), all experiments
were conducted on a single NVIDIA A100 80GB
GPU with an AMD EPYC™ 7513 2.60GHz CPU.
For closed-source LLMs (i.e., Gemini-2.0-Flash-
Lite and Claude-3.0-Haiku, GPT-4o-mini), all
experiments were performed via their respective
APIs, subject to usage-based pricing.
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