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Abstract

Large language models (LLMs) offer an in-
expensive yet powerful way to annotate text,
but are often inconsistent when compared with
experts. These errors can bias downstream esti-
mates of population parameters such as regres-
sion coefficients and causal effects. To mitigate
this bias, researchers have developed debias-
ing methods such as Design-based Supervised
Learning (DSL) and Prediction-Powered In-
ference (PPI), which promise valid estimation
by combining LLM annotations with a limited
number of expensive expert annotations.

Although these methods produce consistent es-
timates under theoretical assumptions, it is un-
known how they compare in finite samples of
sizes encountered in applied research. We make
two contributions: First, we study how each
method’s performance scales with the num-
ber of expert annotations, highlighting regimes
where LLM bias or limited expert labels sig-
nificantly affect results. Second, we compare
DSL and PPI across a range of tasks, finding
that although both achieve low bias with large
datasets, DSL often outperforms PPI on bias
reduction and empirical efficiency, but its per-
formance is less consistent across datasets. Our
findings indicate that there is a bias-variance
tradeoff at the level of debiasing methods, call-
ing for more research on developing metrics for
quantifying their efficiency in finite samples.

1 Introduction

Large language models (LLMs) are transforming
disciplines that use text as a form of evidence in
testing theories, something particularly evident in
computational social science (Ziems et al., 2024;
Törnberg, 2024; Bail, 2024; Argyle et al., 2023).
LLMs are being used to extract features critical for
substantive research questions, across a myriad of
domains, from measuring political ideology (Sim
et al., 2013), style and tone of writing (El-Haj et al.,
2016), level of politeness (Priya et al., 2024), the

likelihood of epidemiological events (Kino et al.,
2021), to describing neighborhoods’ health and
living conditions (Murugaboopathy et al., 2025),
and beyond. Although the use of LLMs promises
to speed up the process of annotating these vari-
ables, which would previously have required time-
consuming hand annotation by experts, if LLMs
provide a wrong or suboptimal answer (i.e., a bi-
ased reply), downstream scientific estimates will
also be biased (Egami et al., 2024; Angelopoulos
et al., 2023a).

Thus, although LLMs are powerful, these mod-
els often annotate in a way that is inconsistent with
expert annotators (Audinet de Pieuchon et al., 2024;
Lin and Zhang, 2025). The distribution of LLM
annotation errors can be heterogeneous or corre-
lated with other variables of interest. These errors
then lead to misleading substantive interpretations
(McFarland and McFarland, 2015).

To handle these biases, debiasing methods1

have been developed, most prominently Prediction-
Powered Inference (PPI) (Angelopoulos et al.,
2023a) and Design-based Supervised Learning
(DSL) (Egami et al., 2023, 2024). Both frame-
works produce an unbiased estimate by combining
the LLM annotations with a smaller set of expert
annotations. The biases in LLM-based estimates
are then compensated for by introducing a rectifier
created by comparing the two sets of annotations
for the subset of samples that have both the LLM
(predicted) annotation and the expert’s annotation.

Debiasing methods have been shown to work in
large (population) samples (Angelopoulos et al.,
2023a; Egami et al., 2024), yet there is a lack of
knowledge about when and how much debiasing
methods provide added value in finite samples—

1We stress that in this paper, the term bias refers to an
incorrectly estimated parameter in a statistical model, and
a debiasing method corrects the misestimation. We do not
consider bias in the sense of e.g. demographic biases in NLP
representations.

19769



which is what most domain researchers have at their
disposal. There are no closed-form expressions that
relate a debiasing method’s efficacy to the alloca-
tion of expert versus model-generated annotations,
leaving practitioners without analytic guidance on
when one should prefer DSL or PPI over simply
collecting more expert annotations. This lack of
guidance will, in turn, hamper the uptake of debi-
asing methods or likely reinforce ill use of LLMs
in applied scientific domains.

Accordingly, to address this lack, we articulate
the following research questions:

RQ1: When is a debiased, large-scale LLM an-
notation dataset statistically preferable to a finite
expert-only dataset for unbiased estimation of a
population parameter?
RQ2: What are the performance differences be-
tween the debiasing methods, and how do they
vary across datasets and LLM-based annotators?

We tackle these questions by comparing PPI and
DSL across four datasets and four annotation pro-
cedures. To our knowledge, ours is the first ef-
fort to compare debiasing methods empirically. In
foreshadowing our results, our analysis shows that
compared to PPI, DSL achieves better debiasing
results on average, but it is also the most variable
in performance. Thus, PPI has a higher degree
of stability; DSL is less consistent in gains. Our
findings call for more research into the advantages
and disadvantages of various biasing methods with
respect to data forms.

2 Background: Methods for Debiasing
LLM-based Estimates

Let D = {(di,xi, ŷi)}Ni=1 be a corpus of N doc-
uments di, with associated independent variables
xi ∈ X = {xi}Ni=1 and LLM annotations ŷi ∈
Ŷ = {ŷi}Ni=1. A subset of D of size n also has
additional expert annotations yj ∈ Y = {yj}nj=1,
where n ≤ N . Expert annotations are taken to be
the ground truth and are generally costly (Gilardi
et al., 2023).

Next, we focus on a general parameter of interest
θ, which represents the result of the downstream
statistical analysis. For example, this could be a re-
gression coefficient or a class prevalence rate. The
goal of the debiasing methods is to create an esti-
mator f which estimates θ based on X, Y , and Ŷ .
Ideally, the estimator should be consistent, mean-
ing that f(X, Y, Ŷ ) → θ as N → ∞, and precise,
meaning that we want to keep the variance and
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Figure 1: The reference model (top-left) is estimated
from expert annotations (orange) for all N samples in
the dataset (i.e., n = N , with full expert labeling).
The classical model (top-right) uses only the n expert
samples for downstream estimation (n ≪ N ). The
imputation model (bottom-left) uses only the generated
annotations for all N samples (blue). The debiased
models (bottom-right) use both LLM annotations for all
N samples and expert annotations for the subset of n
samples.

confidence intervals as small as possible.
One way to achieve this would be to ignore Ŷ

entirely and only use the unbiased expert anno-
tations Y . We call this the classical estimator
θ† = f(X, Y ), which is usually generated by min-
imizing a loss. Although this estimator produces
unbiased estimates, it can have a large variance if
we have few expert annotations. We call the clas-
sical estimator trained with expert annotations for
all N samples the reference estimator θ∗, which
corresponds to the ideal but costly model that the
debiasing methods are aiming towards.

Another approach would be to only use LLM
annotations Ŷ and ignore the expert annotations Y .
We call this the imputation estimator, θ̃ = f(X, Ŷ ).
Here, we rely on the assumption that we can ex-
change the expert annotations for the LLM an-
notations. The hope is that, while LLM annota-
tions might be noisier than expert annotations, we
can counteract the noise by simply generating as
many labels as needed, given a large enough corpus.
However, the LLM may exhibit systematic biases
different from those of the expert human annota-
tors, meaning that |θ̃ − θ∗| > 0 as N → ∞, and
therefore this assumption does not hold in general.
In turn, this leads to a biased downstream estimate,
and one runs the risk of being “precisely inaccurate”
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(McFarland and McFarland, 2015).
A third approach claims to be both unbiased

and more precise than θ†. Such methods typically
work by estimating parameters on LLM annota-
tions, with a rectifier constructed from the differ-
ence between the generated and expert annotations
for the subset of the corpus for which we have both
(see Figure 1). In this paper, we investigate PPI and
DSL as two of the most prominent among these
methods.

Prediction-Powered Inference (PPI). PPI offers
a protocol for integrating LLM predictions into
downstream statistical inference via first-order de-
biasing (Angelopoulos et al., 2023a). It begins
by treating the LLM predictions as if they were
true labels and forming the “imputation estimate”:
θ̃ = argminθ

1
N

∑N
i=1 ℓθ

(
xi, ŷi

)
, where ℓθ is

the loss defining our estimand, such as the binary
cross-entropy for a logistic regression. In general θ̃
is biased, so PPI introduces the rectifier, which, in
the one parameter case equals

rθ = E
[
∇θℓθ(xi, yi) − ∇θℓθ

(
xi, ŷi

)]
,

the gradient terms capturing the systematic distor-
tion from substituting ŷi for the true yi (the gradient
difference reveals the bias direction in parameter
space, which we then offset to debias). We esti-
mate rθ on the labeled sample and estimate the
imputed gradient on the unlabeled set using plugin
estimators. The final, first-order debiased estimate
is then θ̃− r̂θ. Because r̂θ is estimated from sample
averages, confidence sets can be readily obtained.

Design-based Supervised Learning (DSL).
DSL (Egami et al., 2023, 2024) adopts a
design-based sampling scheme, which assumes
π(ŷi,xi) = Pr(bi = 1 | ŷi,xi) > 0, where
bi ∈ {0, 1} denotes whether document i is labeled
by experts and where π(·) is known. The data is
partitioned into K folds and used to cross-fit ĝk, a
model to predict yi as a function of ŷi and xi:

ỹki = ĝk(ŷi,xi) +
bi

π(ŷi,xi)

(
yi − ĝk(ŷi,xi)

)
.

Then, E
[
ỹi | ŷi,xi

]
= E

[
yi | ŷi,xi

]
regardless of

misspecification of ĝk via double robustness.
Many estimands admit a moment equation form:

E
[
m(yi,xi; θ)

]
= 0 (e.g., maximum likelihood).

DSL solves the empirical analogue of the mo-
ment condition with the debiased outcome, us-
ing

∑N
i=1m

(
ỹi,xi; θ

)
= 0, where each ỹi is con-

structed as above. Cross-fitting and M-estimation
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Figure 2: Setup for Experiments 1 and 2. Left panel
(Experiment 1): Fixed N total samples with LLM anno-
tations (blue); vary n ≪ N expert annotations (orange)
for debiasing. Right panel (Experiment 2): Vary N total
samples with LLM annotations (blue); fixed n expert
annotations (orange) for debiasing.

theory then yield consistent “sandwich” estimators
of variance, giving valid confidence intervals.

Table 3 summarizes the key inferential proper-
ties of PPI and DSL, highlighting similarities and
differences.

3 Methodology

Our analysis focuses on two experiments, which
we use to benchmark and contrast the θ†, PPI, and
DSL estimators (see Figure 2). In both experi-
ments, we focus on the coefficients of a binary
logistic regression as our particular parameter of
interest θ. Specifically, for each dataset, we create
a downstream task relating four independent vari-
ables x1 . . . x4 to a binary outcome y. The inde-
pendent variables are either categorical or integers
computed from text features. Each logistic regres-
sion, therefore, produces four coefficients β1...β4
and a y-intercept β0 for a total of five parameters.
See Appendix D for package use details and a link
to the code.

Experiment 1. Our first experiment involves
varying the number of expert annotations while
keeping the total number of samples constant (see
Figure 2, left). Our goal here is to answer the ques-
tion: how do the debiasing methods improve with
an increasing proportion of expert annotations? In
other words, if one has a fixed number of data sam-
ples, how much budget should one allocate towards
the expert annotations for debiasing?

For this experiment, we vary the number of ex-
pert samples logarithmically. We use a minimum
of 200 expert annotations (below that threshold,
debiasing methods became unstable). We addition-
ally report the proportion of expert samples ni/N
rather than the absolute number in order to compare
datasets of different sizes. We run 250 repetitions
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Figure 3: Results for Experiment 1 averaged over all
datasets and annotation methods.

and report 2σ confidence intervals for each entry,
dataset, and annotation procedure.

Experiment 2. In our second experiment, we
vary the total number of samples while keeping the
number of expert annotations fixed (see Figure 2,
right). This setup targets scenarios where the ex-
pert annotation budget is limited but unlabeled data
is abundant—such as in large news or social-media
corpora—enabling practitioners to evaluate how
additional unlabeled data enhances the effective
sample size (i.e., the equivalent number of expert
annotations needed to match the debiased estima-
tor’s precision) via debiasing methods. Specifically,
we ask: given a fixed expert budget, how much does
the effective sample size increase with more gen-
erated annotations? We repeat these experiments
using 200, 1,000, and 5,000 expert annotations.

Like in Experiment 1, we vary the total number
of samples logarithmically. The minimum number
of total samples is defined by the number of avail-
able expert samples. The maximum number of total
samples is determined by the size of the available
dataset, which varies. We report the proportion of
total samples with respect to the total number of
available samples to facilitate comparison between
datasets. We use 250 repetitions to estimate the 2σ
confidence interval.

Datasets and Annotations. We replicate our
experiments over four datasets: Multi-domain
Sentiment, Misinfo-general, Bias in Biographies,
and Germeval18 (see Appendix A). We also
compare performance across four LLM-model
classes: BERT, DeepSeek v3, Phi-4, and Claude
3.7 Sonnet (see Appendix C). Input variables
are either additional annotations available from
the original dataset or quantities derived from
the text, such as the text length in characters.

We compare PPI, DSL, and θ† with the same
number of annotations. The datasets are avail-
able at https://huggingface.co/datasets/
nicaudinet/llm-debiasing-benchmark.

Evaluation Metrics. We evaluate performance
of debiasing methods by comparing the respective
models against the reference model θ∗. Compari-
son between models is done using a standardized
Root Mean Squared Error (sRMSE), which cap-
tures both bias and variance for a holistic perfor-
mance assessment (see Appendix B). We standard-
ize by scaling according to the reference model
coefficients.

4 Results

In our experiments, we contrasted θ†, PPI, and DSL
with the reference model θ∗. The only difference
between θ† and θ∗ is that they are trained on a
different number of expert annotations — θ† is
trained on only the expert annotations that would
have been given to one of the debiasing methods.
Accordingly, the smaller the proportion of expert
annotations given to the debiasing methods, the
more inaccurate θ† becomes, which is reflected as
a high sRMSE. As we increase the proportion of
expert annotations, θ† converges towards θ∗, and
we observe a monotonically decreasing sRMSE. At
a proportion of 1, there is no difference between θ†
and θ∗ (the sRMSE is 0).

Results of Experiment 1 are displayed in Figure
3. We observe that PPI has a lower sRMSE than θ†
for all data points. This is expected and guaranteed
by theory under assumptions. DSL exhibits a sig-
nificantly lower sRMSE than both PPI and θ† for
almost all data points, showing that it is able to use
the expert annotations more efficiently than both.
However, the crossing at the end, when virtually all
expert annotations contribute to the debiasing pro-
cedure, is curious: why do the DSL and θ† curves
cross? When analyzing the performance of DSL by
dataset (see Appendix F), we notice that the cross-
ing phenomenon in the performance of DSL seems
dataset-dependent. In particular, for the Misinfo-
general dataset, DSL performs worse than both PPI
and θ† for all samples.

A complete explanation of this phenomenon is
still unknown. We have ruled out hypotheses re-
lated to preprocessing (e.g., centering); we have
not identified obvious properties of the dataset that
predict anomalous DSL estimates (e.g., agreement
between expert and LLM annotations). Emerging
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Figure 4: Results from the set of experiments varying the total number of samples, averaged over datasets and
annotation methods. The x-axis shows the total number of samples (N ) as a proportion of the total available samples
in each dataset. The y-axis shows the sRMSE. The plots show results for n = 200, n = 1000, and n = 5000.

evidence, however, points to multicollinearity in
the feature set as a contributing factor: DSL ap-
pears more sensitive to it than PPI, which is com-
paratively robust. In particular, we find in Figure
10 in Appendix G that the detrimental scaling of
DSL in the Misinfo-general dataset is greatly im-
proved when we remove highly collinear features.
We also find in Figure 14 in Appendix H that bias
decreases for all three methods when removing
highly collinear features. Another remaining expla-
nation is that, although PPI debiasing via subgradi-
ents leverages less information compared to DSL
(which uses external sampling design knowledge),
it avoids instabilities commonly associated with
weighting estimators (Zubizarreta, 2015). Future
work should explore these and related explanations,
including how feature correlations interact with
debiasing stability.

The results of Experiment 2 are displayed in
Figure 4. Since θ† does not use generated annota-
tions, its sRMSE remains constant as the dataset
size grows. We also observe that PPI and DSL both
outperform θ† in each of the three cases; perfor-
mance of both tends to improve as we increase the
total dataset size.

To translate these empirical findings into prac-
tical guidance for resource allocation in computa-
tional social science (Daoud and Dubhashi, 2023),
we adapt the budgeting template from Broska et al.
(2025)’s mixed subjects design, which optimizes
the mix of costly expert annotations and cheaper
LLM predictions based on their correlation and
error profiles. Expert labeling on Amazon Mechan-
ical Turk currently averages $0.10 per label as of
2025 (W., 2025). For LLM inference on our largest
corpus (Bias in Biographies, N = 10,000), assum-
ing 300 input tokens per document (3 million total
input tokens) and 10 output tokens per prompt (0.1

million total output tokens): Phi-4 incurs $0.06 per
million input tokens and $0.14 per million output
tokens, yielding a total cost of ≈ $0.20 (equiva-
lent to 2 expert labels). DeepSeek v3, at $0.56 per
million input tokens and $1.68 per million output
tokens, costs ≈ $2 (20 expert labels). Claude 3.7
Sonnet, at $3 per million input tokens and $15 per
million output tokens, costs ≈ $10.50 (105 expert
labels). BERT fine-tuning adds negligible cloud
costs (≈ $0.50 USD, 5 expert labels), with debi-
asing computations (DSL/PPI) under $1 total on
standard hardware. In this 10,000-document sce-
nario, the break-even n for cost (where n expert
labels cost as much as full-model inference) is thus
2 for Phi-4, 20 for DeepSeek, 105 for Claude, and 5
for BERT—far below full expert annotation. Given
our results (e.g., sRMSE < 0.2 at n = 200), we en-
courage practitioners to supplement their analyses
with LLM predictions starting at these thresholds.

5 Conclusion

This study has investigated the performance of two
LLM debiasing methods. On average, both debias-
ing methods produce models closer to a reference
model than just using a small number of expert
annotations. We also observe that DSL seems to
significantly outperform PPI across datasets and
annotation methods. However, DSL performance
appears more inconsistent and dataset-dependent.
Both DSL and PPI are more efficient than rely-
ing solely on a small, human-annotated dataset, so
we encourage researchers to integrate debiasing
methods into their analyses for improved estima-
tion. While DSL outperforms PPI on most datasets,
its performance is more inconsistent across them;
therefore, we recommend reporting results from
both methods until DSL’s potential variability is
better understood.
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Limitations

Our study focuses on two specific debiasing meth-
ods, DSL and PPI, leaving out several other emerg-
ing techniques such as the recently proposed
predict-then-debias (e.g., Kluger et al., 2025) and
prediction-powered inference with inverse proba-
bility weighting (Datta and Polson, 2025). We only
consider scenarios where the outcome variable re-
quires annotation, thereby restricting the scope to
single-task classification; we focus on binary out-
comes as a simplifying assumption to facilitate
benchmarking of the debiasing methods, though
future work should extend this to multi-class or
continuous outcomes. Future work should also
consider situations where input variables are LLM-
annotated or there is information leakage among
variables (Daoud et al., 2022). In addition, while
DSL and PPI can be applied to any M-estimator,
our experimental evaluation of downstream tasks is
currently limited to logistic regression (correspond-
ing to the type of annotation we have considered).
Future work should consider a variety of other sta-
tistical estimators, such as survival or hierarchical
models.

Moreover, our experiments also concentrate on
four datasets with relatively short texts in English
or German, so further evaluation is needed in other
languages, domains, and text lengths. Lastly, we
assume expert-labeled data to be the ground truth;
in practice, human annotations can also be noisy
or inconsistent (Artstein and Poesio, 2008). Future
work should examine how to extend or adapt meth-
ods such as DSL and PPI when the expert labels
themselves may be subject to significant measure-
ment error or domain shifts. We also acknowledge
that the robustness of these debiasing methods un-
der worst-case or adversarial settings remains an
open problem.
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A Datasets Description

We here present information about the datasets
used in the analysis. All datasets are constructed
by extracting a balanced subset of publicly avail-
able datasets. Following the simulation exper-
iment from Egami et al. (Egami et al., 2023)
we created four features (x1, x2, x3, x4) used in
the downstream task to predict the annotated out-
put y. Details of the original datasets and fea-
ture creation are reported below. All datasets
and LLM annotations used in the paper are avail-
able at https://huggingface.co/datasets/
nicaudinet/llm-debiasing-benchmark.

Multi-domain Sentiment. The Multi-domain
Sentiment dataset is a corpus of product reviews
taken from Amazon (Blitzer et al., 2007). The
dataset was originally used to investigate domain
adaptation in sentiment classifiers. We used a sub-
set taken from 6 domains, consisting of 11,914
reviews with two sets of annotations: a binary sen-
timent label (positive or negative) and a domain
label (books, camera, DVD, health, music, or soft-
ware). The dataset is balanced both in sentiment
and topic labels.

For the downstream task, we use the sentiment
label as the outcome variable. The independent
variables are: the domain label (transformed to
numeric values 0-5), the number of characters in
the review, the number of space-separated words
in the review, and the number of repetitions of the
word “I” in the review.

Misinfo-general. The Misinfo-general dataset is
a large corpus of British newspaper articles (Ver-
hoeven et al., 2024) originally used to benchmark
out-of-distribution performance of misinformation
models. For our experiments, we selected arti-
cles from 2022 that were published in one of two
venues: The Guardian UK or The Sun. We then
balanced the dataset to have 5000 articles in each
class.

For the downstream task, we use the venue as
the binary outcome variable. The independent vari-
ables are: the number of characters in the article,
the number of space-separated words in the article,
the number of capital letters in the article, and the
number of characters in the title of the article.

Bias in Biographies. The Bias in Biographies
dataset is a corpus of short biographies originally
used to study gender bias in occupational classifi-
cation (De-Arteaga et al., 2019). The corpus con-

sists of English-language online biographies from
the Common Crawl, annotated with self-identified
binary gender and occupation labels (with 28 cate-
gories), enabling analysis of implicit gender biases
in textual representations. Here, N = 10,000.

For the downstream task, we use the gender label
as the outcome variable. This variable is balanced.
Independent variables are: the occupation label
(transformed to a numeric value, 0-27), the number
of characters in the biography, the number of space-
separated words in the biography, and the number
of capital letters in the biography.

Germeval18. The Germeval18 dataset is a cor-
pus of German tweets. It was used in the GermEval
shared task on the identification of offensive lan-
guage in 2018 (Wiegand et al., 2018). It is com-
posed of a training and test set of documents with
associated toxicity labels, totaling 5676 documents.
We use a balanced subset of the data.

For the downstream task, we use the binary toxi-
city label as the outcome variable. The independent
variables are: the number of characters in the tweet,
the number of space-separated words in the tweet,
the number of capital letters in the tweet, and the
number of “@” characters in the tweet.

B Details of Evaluation Metrics

We define the standardized Root Mean Squared
Error (sRMSE) as:

sRMSE(θ; d) =

√√√√E

[(
θ − θ∗d
θ∗d

)2
]
.

where θ are the coefficients from the model under
test and θ∗d are the coefficients from the reference
model for dataset d.

C Model Details

BERT + Logistic Regression. As a representa-
tive of supervised approaches, we fine-tune a pre-
trained BERT encoder (Devlin et al., 2019) on the
expert-labeled subset to obtain contextual represen-
tations hi = BERT(di), which are then passed to
a logistic regression head trained to predict yi.

Large Language Models. We also generate an-
notations with three language models: Microsoft
Phi-4 (Abdin et al., 2024), DeepSeek v3 (Liu et al.,
2024), and Claude 3.7 Sonnet (Anthropic, 2025).
Phi-4 is a 14B open-weight model, which we ran lo-
cally with the default temperature of 1.0. We used
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the paid DeepSeek and Anthropic APIs to access
DeepSeek v3 and Claude 3.7 Sonnet, respectively.
We paid approximately $10 for the DeepSeek API
and approximately $100 for the Anthropic API
(2025 USD). We used the default decoding mecha-
nism and temperature of 1.0 for both models. The
prompts used to generate the labels are available
in Appendix E. In some cases, the annotations gen-
erated for a small number of the documents did
not fit the annotation schema. These samples were
ignored.

D Package and Code Details

For the classical logistic regression, we use the
scikit-learn Python package. We use no regu-
larization and set the maximum iterations to 1000.

For DSL, we use the dsl R package developed
by the original paper authors for both experiments.
We leave the parameters to their default settings.

For PPI, we use the ppi_py Python package (An-
gelopoulos et al., 2023b)—an implementation of
the PPI+ framework by the original PPI authors—
for both experiments. We also leave the parameters
to their default settings.

The source code for the experiments is
available at https://github.com/nicaudinet/
llm-debiasing-benchmark.

E Prompts

Figures 5, 6, 7, and 8 show the prompt templates
used to make prompts for LLM annotation. The
prompt templates were specialized for each dataset
since each dataset corresponds to a different annota-
tion task. However, the structure of the prompt tem-
plates was kept the same: first, a short description
of the task, then an explanation of the formatting
with two simple examples, and finally the docu-
ment to classify. For each dataset, we also include
a system prompt (see Table 1).

F Results by Dataset

Figure 9 showcases the results for Experiment 1
broken down by dataset. In all four datasets, PPI
outperforms θ† for all data points. DSL outper-
forms PPI and θ† in most cases. However, 3 of the
datasets exhibit cross-over behavior for higher pro-
portions of expert samples, with Misinfo-general
being the outlier where DSL performs significantly
worse than both PPI and θ† for all data points.

G Results Removing Collinear Variables

Here we investigated the dependence of DSL
on correlations between variables. Some of the
features we chose for the datasets were highly
collinear (e.g., the number of characters and the
number of space-separated words in a piece of text).
We gather the Pearson r2 correlations in Table 2.
For each dataset and annotation type, we proceeded
to remove collinear features by finding feature pairs
with r2 above 0.9 and removing the latter variable
(for instance, we remove x3 for the Multi-domain
Sentiment dataset).

The results of running Experiment 1 with the
reduced datasets are shown in Figure 10 and Figure
11. The results show that removing the collinear
features mitigated the cross-over effect observed
with DSL for higher proportions of expert samples.

H Standardized Bias Plots

We report the performance of the debiasing meth-
ods for Experiment 1 in terms of the standardized
bias, following the simulation experiment from
Egami et al. (Egami et al., 2023). The standardized
bias is defined similarly to the sRMSE as:

Standardized Bias(θ; d) = E
[
θ − θ∗d
θ∗d

]

where θ are the coefficients from the downstream
task and θ∗d are the coefficients from the reference
model for dataset d.

Figure 12 and Figure 13 show the results for the
original experiment with four features. We notice
that PPI consistently produces slightly less biased
coefficients with smaller confidence intervals than
θ†. DSL is more variable, producing much less bi-
ased coefficients for some datasets (Multi-domain
Sentiment, Bias in Biographies) but much more
biased coefficients in others (Misinfo-general, Ger-
meval18).

Figure 14 and Figure 15 show the results for the
experiment from Appendix G where highly cor-
related features are removed. Compared to using
all features, we notice a significant performance
increase in all three methods. In particular, the
coefficients produced by DSL are more stable.

I Comparison of DSL and PPI

A comparison of DSL and PPI can be found in
Table 3.
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Classify the following review as either:
- POSITIVE if the review indicates an overall positive sentiment
- NEGATIVE if the review indicates an overall negative sentiment

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you to use, where
< REVIEW_TEXT > is a stand-in for the article text:

< REVIEW_TEXT >

CLASSIFICATION: POSITIVE

< REVIEW_TEXT >

CLASSIFICATION: NEGATIVE

Here's the review to classify:

{text}

CLASSIFICATION:

Figure 5: The prompt template used to annotate documents from the Multi-domain Sentiment dataset, where {text}
is substituted with the document in question.

Classify the following article as either:
- THESUN if it is likely to have been published in the British tabloid newspaper

The Sun
- THEGUARDIAN if it is likely to have been published in the British daily

newspaper The Guardian

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where
< ARTICLE_TEXT > is a stand-in for the article text:

< ARTICLE_TEXT >

CLASSIFICATION: THESUN

< ARTICLE_TEXT >

CLASSIFICATION: THEGUARDIAN

Here's the article I would like you to classify:

{text}

CLASSIFICATION:

Figure 6: The prompt template used to annotate documents from the Misinfo-general dataset, where {text} is
substituted for the document in question
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Classify the following textual biographies as either:
- MALE if the subject is likely to be male
- FEMALE if the subject is likely to be female

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where < BIOGRAPHY_TEXT >
is a stand-in for the textual biography:

< BIOGRAPHY_TEXT >

CLASSIFICATION: MALE

< BIOGRAPHY_TEXT >

CLASSIFICATION: FEMALE

Here's the textual biography I would like you to classify:

{text}

CLASSIFICATION:

Figure 7: The prompt template used to annotate documents from the Bias in Biographies dataset, where {text} is
substituted for the document in question

Classify the following German tweets as either:
- OFFENSIVE if the tweet is likely to contain an offense or be offensive
- OTHER if the tweet is _not_ likely to contain an offense or be offensive

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where < TWEET_TEXT >
is a stand-in for the text of the tweet:

< TWEET_TEXT >

CLASSIFICATION: OFFENSIVE

< TWEET_TEXT >

CLASSIFICATION: OTHER

{make_examples(examples)}

Here's the German tweet I would like you to classify:

{text}

CLASSIFICATION:

Figure 8: The prompt template used to annotate documents from the Germeval18 dataset, where {text} is
substituted for the document in question

19779



Dataset System Prompt
Multi-domain Sentiment “You are a perfect sentiment classification system”
Misinfo-general “You are a perfect newspaper article classification system”
Bias in Biographies “You are a perfect biography classification system”
Germeval18 “You are a perfect German tweet classification system”

Table 1: The system prompts used to annotate the various datasets
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Figure 9: Results from the set of experiments varying the proportion of expert samples, aggregated per dataset.

Dataset LLM x1,x2 x1,x3 x1,x4 x2,x3 x2,x4 x3,x4

Multi-domain Sentiment

bert 0.008 0.007 0.013 0.995 0.253 0.283
deepseek 0.008 0.007 0.013 0.995 0.255 0.284
phi4 0.007 0.007 0.012 0.995 0.253 0.283
claude 0.007 0.007 0.012 0.995 0.252 0.282

Misinfo-general

bert 0.995 0.617 0.026 0.618 0.021 0.002
deepseek 0.995 0.621 0.025 0.622 0.021 0.002
phi4 0.995 0.617 0.026 0.618 0.021 0.002
claude 0.995 0.617 0.026 0.618 0.022 0.002

Bias in Biographies

bert 0.000 0.000 0.001 0.965 0.351 0.329
deepseek 0.000 0.000 0.001 0.964 0.346 0.325
phi4 0.000 0.000 0.001 0.965 0.351 0.329
claude 0.000 0.000 0.001 0.965 0.351 0.329

Germeval18

bert 0.349 0.250 0.190 0.961 0.685 0.653
deepseek 0.282 0.161 0.096 0.940 0.470 0.452
phi4 0.332 0.223 0.161 0.956 0.615 0.590
claude 0.284 0.164 0.101 0.941 0.487 0.468

Table 2: The Pearson r2 correlations between each pair of features for each dataset and LLM annotations. Pairs of
features with correlations above the threshold are highlighted. Correlations for the same dataset may differ slightly
between LLM annotations because the LLMs failed to annotate a small portion of the samples, which we discarded.
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Figure 10: Performance of debiasing methods in Experiment 1 after removing highly collinear features (r2 > 0.9)
averaged over all datasets.
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Figure 11: Performance of debiasing methods in Experiment 1 after removing highly collinear features (r2 > 0.9)
for each dataset.
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Figure 12: Performance of debiasing methods for Experiment 1 in terms of the standardized bias aggregated over all
datasets.
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Figure 13: Performance of debiasing methods for Experiment 1 in terms of the standardized bias for each dataset.
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Figure 14: Performance of debiasing methods for Experiment 1 where highly correlated variables are removed, in
terms of the standardized bias and aggregated over all datasets.
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Figure 15: Performance of debiasing methods for Experiment 1, where highly correlated variables are removed, in
terms of the standardized bias.
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Table 3: Comparison of PPI (Angelopoulos et al., 2023a) and DSL(Egami et al., 2023) for debiasing ML predictions
in downstream parameter estimation.

Method Bias Correction Mecha-
nism

Guarantees Variance Components

PPI First-order adjustment us-
ing estimating equation
gradients (influence func-
tion) to offset systematic
prediction errors.

Asymptotic validity holds
irrespective of prediction
model specification, pro-
vided large-sample cover-
age.

Aggregates predic-
tion uncertainty and
gradient-based correction
variability; no design-
specific terms.

DSL Post-estimation pseudo-
outcome via doubly
robust imputation, relying
on specified selection
probabilities.

Consistency if at least
one of outcome regression
or selection model is ac-
curate; requires positive
bounded probabilities.

Includes augmented
regression variance
plus inverse-probability
weighting effects, which
may be amplified under
irregular sampling (e.g.,
covariate overlap, multi-
collinearity).
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