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Abstract

Automatic Term Extraction (ATE) is a critical
component in downstream NLP tasks such as
document tagging, ontology construction and
patent analysis. Current state-of-the-art meth-
ods require expensive human annotation and
struggle with domain transfer, limiting their
practical deployment. This highlights the need
for more robust, scalable solutions and real-
istic evaluation settings. To address this, we
introduce a comprehensive benchmark span-
ning seven diverse domains, enabling perfor-
mance evaluation at both the document- and
corpus-levels. Furthermore, we propose a ro-
bust LLM-based model that outperforms both
supervised cross-domain encoder models and
few-shot learning baselines and performs com-
petitively with its GPT-4o teacher on this bench-
mark. The first step of our approach is generat-
ing pseudo-labels with this black-box LLM on
general and scientific domains to ensure gener-
alizability. Building on this data, we fine-tune
the first LLMs for ATE. To further enhance
document-level consistency, oftentimes needed
for downstream tasks, we introduce lightweight
post-hoc heuristics. Our approach exceeds pre-
vious approaches on 5/7 domains with an aver-
age improvement of 10 percentage points. We
release our dataset and fine-tuned models to
support future research in this area.1

1 Introduction

Automatic Term Extraction (ATE) is a crucial
component of many NLP systems, with applica-
tions in information retrieval, machine translation,
topic detection, and sentiment analysis (Tran et al.,
2023; Xu et al., 2025). Traditional rule-based or
frequency-based ATE systems, as well as state-of-
the-art (SOTA) methods with pretrained models,
rely heavily on fine-tuning with human-annotated

1Dataset: https://huggingface.co/datasets/
ElenaSenger/SynTerm; Model: https://huggingface.
co/ElenaSenger/DiSTER-Llama-3-8B-Instruct

datasets, which are typically available for only
a handful of domains. Recent surveys explicitly
highlight this dependence as a key limitation, not-
ing that multi-domain ATE scenarios remain an
unsolved challenge for current SOTA approaches
(Tran et al., 2023; Xu et al., 2025). Large lan-
guage models (LLMs), with their massive pretrain-
ing across diverse corpora, offer a promising path
toward generalizable ATE. Yet, early applications
of LLMs in term extraction remain limited and typi-
cally perform worse compared to supervised SOTA
methods (Tran et al., 2023). Moreover, proprietary
black-box LLMs incur high API costs and pose pri-
vacy risks when handling sensitive or confidential
data.

To address these limitations, we introduce
a novel ATE framework: DiSTER (Distant
Supervision for Term Extraction with Robustness),
that leverages LLMs with distant supervision. Our
approach trains smaller, open models using syn-
thetic data generated via pseudo-labels from a
black-box LLM, thereby removing the need for
human annotation and enabling cross-domain scal-
ability. To enhance consistency within and across
documents, we incorporate simple post-hoc con-
sistency heuristics. These heuristics significantly
improve F1 scores and oftentimes lead to more
balanced precision and recall.

Moreover, we perform a comprehensive empir-
ical study, spanning the seven following domains:
biomedicine, corruption, dressage, heart failure,
coastal geography, computational linguistics and
wind energy. Combining these established datasets
makes this the largest and most diverse multi-
domain ATE evaluation to date. We assess models
under both corpus-level and document-level setups
to better reflect real-world extraction needs. Our
results demonstrate that training on distantly su-
pervised data leads to notable improvements in
cross-domain robustness and that post-hoc consis-
tency enforcement yields further gains, boosting
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document-level F1 scores by up to 55 percentage
points. Our contributions are:

• We propose DiSTER, a novel distantly su-
pervised ATE framework that combines syn-
thetic data generation, LLM fine-tuning, and
lightweight post-hoc consistency heuristics
for robust and scalable term extraction with-
out human annotation.

• We demonstrate that a strategically con-
structed, domain-diverse synthetic training
corpus significantly enhances cross-domain
generalization.

• We conduct the most comprehensive cross-
domain ATE evaluation to date, span-
ning seven diverse domains and evaluating
both corpus-level and document-level perfor-
mance.

2 Related work

2.1 Automatic Term Extraction
Traditional ATE methods typically follow a two-
step pipeline: (1) extracting candidate terms us-
ing linguistic and statistical features, and (2) rank-
ing them based on termhood and unithood scores
(Xu et al., 2025). Supervised machine learning
approaches enhance this process using manually
designed features and classifiers like SVMs, Ran-
dom Forests, or CRFs (Tran et al., 2023). With
deep learning, models such as BiLSTMs, CNNs,
and Transformers have been adopted for token
classification and embedding-based approaches,
showing SOTA results across languages and do-
mains (Tran et al., 2023, 2022a,b). Recently,
LLMs have entered the field. Giguere (2023)
showed that GPT-4 (OpenAI et al., 2024b) per-
forms well in zero-shot settings across legal, tech-
nical, and medical domains, outperforming statisti-
cal baselines on small test sets. Meanwhile, Tran
et al. (2024) explored few-shot prompting with
LLaMA and GPT-3.5-Turbo for the ACTER heart-
failure dataset, though results still lag behind cross-
domain sequence labeling with XLM-R (Conneau
et al., 2020).

2.2 Distillation and Pseudo-Labeling
Knowledge Distillation (KD) transfers knowledge
from larger teacher models to smaller student mod-
els. In black-box KD, often used with propri-
etary LLMs, only the teacher’s outputs are avail-
able (Yang et al., 2024), hence, the student model

learns by mimicking the teacher’s generated se-
quences instead of its internal states. Specifically,
Labeling Knowledge, when a LLM labels a set of
examples based on an instruction (with or with-
out demonstrations), is widely considered effec-
tive for transferring specific LLM skills (Xu et al.,
2024). This approach has proven effective across
diverse NLP tasks (Li et al., 2025). In the in-
formation extraction domain, several studies have
shown promising results: Hsu and Roberts (2024)
applied LLM weak supervision improving perfor-
mance on medical entity extraction with minimal
human annotation. Similarly, UniversalNER (Zhou
et al., 2024) successfully distilled open-domain
named-entity recognition (NER) capabilities from
GPT-3.5-Turbo-0301 into smaller models that ul-
timately outperformed their teacher. For more com-
plex extraction tasks, MetaIE (Peng et al., 2024)
employed distillation as a meta-learning framework
to create task-flexible information extraction sys-
tems capable of adapting to various relation and
entity types.

3 DiSTER

Our approach DiSTER first creates a distantly su-
pervised dataset, then fine-tunes an LLM on that
data to generate candidate terms, and lastly selec-
tively applies post-hoc heuristics. This pipeline is
illustrated in Figure 1. We cover the details of each
component in the following sections.

3.1 Dataset Creation

To create our synthetic dataset SynTerm for model
fine-tuning, we used the dataset of Zhou et al.
(2024) as a basis. Their synthetic NER dataset was
generated by prompting gpt-3.5-turbo-0301 to
identify named entities within text snippets taken
from The Pile (Gao et al., 2020). We utilize their
annotations as a starting point, but apply a filtering
step (as described next) to focus only on relevant
entity types and added labeled data from arXiv for
broader domain coverage.

Entity Type Filtering In order to filter, two au-
thors manually annotated the 130 most common
entity types covering approximately 74% of all ex-
tracted entities, labeling them as either terms or
non-terms (e.g., person names, locations, etc.) fol-
lowing the ACTER annotation guidelines (Rigouts
Terryn, Ayla, 2021). This manual annotation pro-
cess resulted in a Cohen’s kappa coefficient of
0.723, indicating substantial inter-annotator agree-
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Figure 1: An overview of the key components of our DiSTER approach.

ment. These human-provided labels were used for
all entities within the 130 most frequent types. For
the remaining 26% of entities, which belong to
less common types, we relied on GPT-4o (OpenAI
et al., 2024a) to classify whether phrases of a given
entity type represent terms (see Appendix C). To
assess consistency, we compared the model’s labels
with the human annotations on the 130 most com-
mon types, which yielded a lower Cohen’s kappa
of 0.45. Notably, the LLM tended to label fewer
entity types as terms than the annotators (109 vs.
127 and 136, respectively). For instance, GPT-4o
labeled entity types such as ‘event,’ ‘nationality,’
falsely as terms and instances of ‘medical condi-
tions’ as non-terms, whereas the annotators con-
sidered them valid terms. Overall, the potential
noise introduced by the LLM is expected to be lim-
ited, as most extracted entities fall within the 130
most common types and were annotated manually.
Manual annotation of all entity types would have
been prohibitively expensive, as the NER dataset
contains a total of 13,020 entity types. By focusing
on the most common types where noise reduction
matters most, we ensured high-quality filtering for
the majority of data while using GPT-4o only for
the long-tail of rare entity types.

Domain-Aware Data Augmentation To in-
crease domain diversity, we synthesized labeled
examples from two-sentence snippets from arXiv
abstracts using GPT-4o. The two-sentence snippets
were chosen to closely match the length of data
points from both The Pile and the test datasets.
As in the few-shot setup of Tran et al. (2024),
we included domain information in the extraction
prompt (see Appendix D). The domain information
was derived from the arXiv categories associated

Human:
Text: From this estimate we can deduce that the spa-
tially homogeneous Boltzmann equation is well posed
in a class of measure-valued processes. We also prove
in an appendix a basic lemma on the total variation
of time-integrals of time-dependent signed measures.
GPT:
I’ve read this text.
Human:
Please extract the terms from the text that are relevant
to the domain: Probability, Analysis of PDEs.
GPT:
["spatially homogeneous Boltzmann equation",
"measure-valued processes", "total variation", "time-
integrals", "time-dependent signed measures"]

Figure 2: Conversation example showing extraction
of domain-specific terms from an arXiv text. For data
points without specific domain, like the ones coming
from the Pile, we substitute the domain by “General”.

with each abstract. Given the domain-dependent
nature of termhood (Xu et al., 2025), we expect this
to improve the relevance of extracted terms. We
also incorporated domain labels into the final data
points used for fine-tuning, an example is shown
in Figure 2. In contrast, for data points based on
The Pile, where no domain labels are available and
thus not integrated in the data points, we prompted
the model during training to extract terms without
specifying a domain.

In summary, we created two data subsets:
TermPile (45,432 instances), the filtered NER
dataset based on The Pile and, TermArXiv (37,829
instances) the newly synthesized arXiv data points.
Combining the two yields our final SynTerm
dataset.
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Domain Example Sentence

corp (Corruption) The first criterion creates a link between the offence and the legal person.
equi (Dressage / Equity) They might go from a lengthened stride and half halt back to a working trot.
htfl (Heart Failure) Heart failure risk among patients with rheumatoid arthritis starting a TNF antagonist.
wind (Wind Energy) Wind turbine technology has developed rapidly in recent years and Europe is at the hub of this hightech industry.
coast (Coastal Science) Coastal communities are prone to a natural disaster such as tsunami.
genia (Biomedical) HB24 is likely to have an important role in lymphocytes as well as in certain developing tissues.
acl (Computational Linguistics) Word Identification has been an important and active issue in Chinese Natural Language Processing.

Table 1: Example sentences from each of the seven domains used in our experiments. Terms are bold.

3.2 LLM Fine-Tuning

After constructing the dataset for fine-tuning we
perform standard instruction tuning in order to
transfer the ATE skill to a smaller model. Pre-
cisely, we fine-tune two smaller instruction tuned
models, Llama-3-8B-Instruct (LLaMA) and Olmo-
7B-Instruct (Olmo), with standard next-token pre-
diction objective and conversation-style chat tem-
plates.2 In both cases, we use only completions
in order to compute the loss, that is, only the to-
kens generated by the language model after the last
“Assistant”-marker. The models were trained for
3 epochs, with learning rate of 2e − 4 and batch
size of 8. Only the final checkpoints were taken for
further analysis.

3.3 Post-hoc Consistency Enforcement

To address the inconsistent extraction behavior
of LLMs we introduce two lightweight post-hoc
heuristics for enforcing consistency. The first,
document-level consistency (DC) enforcement,
aims to correct the LLM’s tendency to return only
one instance of each extracted term per document,
even when multiple mentions occur. To remedy
this, we identify all exact string matches of each
LLM-extracted term within the document. This ap-
proach is conceptually aligned with prior work in
NER that enforces intra-document label agreement
for repeated spans (Krishnan and Manning, 2006;
Gui et al., 2020).

The second rule, corpus-level consistency (CC)
enforcement, promotes any term extracted in at
least 50% of the documents it appears in to all such
documents—addressing inconsistencies in LLM
output. This simple heuristic mirrors the Term
Re-extraction Model (TREM) by Vu et al. (2008),
which reintroduced globally validated terms into
individual documents, and aligns with frequency-
based termhood estimation methods (Kageura and
Umino, 1996). Such reinforcement mechanisms

2LLaMA model: https://huggingface.co/
meta-llama/Meta-Llama-3-8B-Instruct, Olmo model:
https://huggingface.co/allenai/OLMo-7B-Instruct

help align model outputs more closely with span-
level gold annotations and improve both recall and
consistency in document-level evaluations.

4 SOTA Approaches

To better evaluate DiSTER, we compare it against
two strong baseline approaches that represent the
current SOTA methodologies in ATE.

4.1 Sequence Labeling Approach

We adopt the approach introduced by Tran et al.
(2022a), which frames ATE as a sequence classi-
fication task using the IOB tagging scheme. This
approach employs an XLM-R-based token classi-
fier with standard hyper-parameters and has been
shown to achieve SOTA in term extraction. It re-
mains a strong baseline, as even recent few-shot
LLM-based methods could not consistently outper-
form it (Tran et al., 2024).

4.2 Few-Shot Approach

We re-implement the few-shot in-context learn-
ing approach of Tran et al. (2024), but use
cross-domain few-shot samples instead of sam-
ples from the target test data. Following Tran
et al. (2024), each prompt contains three ex-
amples. For every target test domain, we se-
lect examples showing the highest semantic sim-
ilarity to the domain name, as measured by
the paraphrase-multilingual-mpnet-base-v2
embedding model.3 Each example is structured
as a demonstration pairing a source sentence with
its corresponding extracted terms. In alignment
with Tran et al. (2024), we employ Direct Term
Extraction rather than IOB tagging, the LLM ex-
plicitly outputs the identified terms. We enriched
the prompt templates for extraction as introduced
in Tran et al. (2024), with complete specifications
of these templates provided in Appendix B.

3https://huggingface.co/sentence-
transformers/paraphrase-multilingual-mpnet-base-v2
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Model corp F1 equi F1 htfl F1 wind F1 coast F1 genia F1 acl F1 Avg F1

IOB sequence labeling (cross-domain) 31.35 41.64 14.60 44.26 14.14 18.20 10.55 24.96
IOB sequence labeling SynTerm 29.89 32.52 42.74 31.17 56.49 42.33 56.78 41.70

LLaMA few-shot (cross domain) 10.47 41.74 51.29 33.39 42.71 45.33 40.93 37.98
LLaMA few-shot SynTerm 32.64 43.53 41.71 38.47 36.67 46.99 51.62 41.94
Olmo few-shot (cross domain) 27.09 37.13 49.87 34.54 49.00 46.40 31.23 39.32

LLaMA fine-tuned SynTerm (DiSTER) 37.93 45.54 50.10 42.93 66.96 51.80 65.37 51.52
Olmo fine-tuned SynTerm (DiSTER) 32.03 34.37 45.10 35.28 57.48 44.29 57.73 43.75

Teacher Model zero-shot 38.18 50.96 51.54 45.83 62.58 50.19 62.66 51.70
Teacher Model few-shot (cross domain) 41.19 40.66 53.57 36.40 62.89 48.21 60.82 49.10

Table 2: Corpus-level F1 scores across seven datasets. Best result per dataset is marked in bold, second best results
are underlined. Teacher model performance is included for comparison.

5 Benchmark Datasets

We make use of several established benchmarks,
resulting in seven datasets. They are topically quite
distant, which leads to substantially different types
of terms, often including domain-specific jargon
(see Table 1). All datasets have predefined splits,
except for the ACTER datasets, which were in-
troduced in a cross-domain setting. While most
original studies report in-domain performance, we
only use cross-domain test splits in this work.

We employ the ACTER dataset introduced by
the TermEval 2020 Shared Task (Rigouts Terryn
et al., 2020), which includes four subsets with each
a different domain: heart failure (htfl), wind energy
(wind), dressage (equity) (equi), and corruption
(corp). Secondly, we use the CoastTerm (coast)
dataset (Delaunay et al., 2024) consisting of sci-
entific abstracts focused on coastal regions. Due
to the inherently interdisciplinary nature of coastal
studies, the texts include a wide range of special-
ized terms spanning domains such as environmen-
tal science, geography, ecology, and sociology. We
also incorporate the genia dataset, a standard bench-
mark for biomedical term extraction (Kim et al.,
2011). Finally, we use the ACL-RD-TEC 2.0 acl
dataset, which contains abstracts from the ACL
Anthology from the domain of computational lin-
guistics (QasemiZadeh and Schumann, 2016).

6 Experimental Setup

6.1 Evaluation Strategies

We employ both corpus-level and document-level
evaluation. The corpus-level approach aggregates
predictions and gold annotations across the en-
tire dataset before computing metrics, while the
document-level strategy calculates metrics per doc-
ument and then averages results.

6.2 Model Configurations

We evaluate three distinct model categories. First,
for our method, DiSTER, which relies on fine-
tuned models, we use two instruction tuned LLMs
on our synthetic data: Llama-3-8B-Instruct (LLaMA)
and Olmo-7B-Instruct (Olmo). Regarding the few-
shot prompted models, we evaluate the same
LLM architectures (LLaMA and Olmo) in a few-shot
setting, using cross-domain demonstrations from
the remaining datasets. For each target domain, we
construct prompts with semantically similar exam-
ples from other domains. Additionally, we evaluate
the better-performing model LLaMA using demon-
strations from our dataset SynTerm. For the IOB
sequence labeling approaches, we implement two
training configurations. Firstly, we implement a
leave-one-out approach where for each test domain,
we train on five domains and validate on the sixth.
We consistently use wind for validation (given its
STEM domain alignment) except when testing on
wind itself, where we validate on htfl. In our second
configuration, we train on our SynTerm dataset to
enable direct comparison with the fine-tuned LLMs
(the full DiSTER methodology).

This experimental design allows us to system-
atically evaluate the impact of model architecture,
training methodology, and data composition on
cross-domain generalization in ATE.

7 Results

Table 2 presents the corpus-level F1 scores. No-
tably, our models achieve the highest F1 scores in
most domains, surpassing both sequence-labeling
and few-shot prompting methods. The fine-tuned
LLaMA model reaches the best overall performance.
Olmo also performs consistently well across do-
mains, demonstrating the effectiveness of our ap-
proach even for open-data models. While few-
shot prompted models show competitive perfor-
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Val/Test corp F1 equi F1 htfl F1 wind F1

corp – 45.32 40.98 33.74
equi 6.10 – 46.68 30.78
htfl 6.40 51.80* – 42.57
wind 7.89 31.57 31.68 –

Table 3: F1 scores across ACTER domains using a leave-one-
out setup: one domain for testing, one for validation, and the
remaining two for training. The htfl score is reproduced from
Tran et al. (2022a) under the original Shared Task setting.

mance in specific domains (e.g., LLaMA on htfl),
their performance remains fundamentally incon-
sistent, with significant variability across different
domains such as corp. Using our SynTerm dataset
for demonstrations yields a four percentage point
average improvement compared to cross-domain
few-shot with LLaMA. Notably, the performance
gains for corp and wind, the two domains with the
lowest cross-domain few-shot scores, suggest that
SynTerm helps achieve more robust overall few-
shot performance. The supervised cross-domain
IOB models reveal inherent limitations, particularly
struggling with recall under domain shift. Even
when trained on our SynTerm dataset, these models
consistently underperform compared to our fine-
tuned LLM-based approaches. Remarkably, Ta-
ble 2 also shows that the fine-tuned LLaMA student
surpasses the teacher in corpus-level F1 on three of
seven test corpora and stays on-par on the macro
average. These findings provide strong support for
the generalizability and use of DiSTER as a piv-
otal strategy for the development of more domain-
robust and light-weight ATE systems.

8 Analysis

In this section, we begin by comparing the student
to its black-box teacher. Then we inspect the er-
ror sources causing the few-shot and IOB model
failure. Finally, we present a discussion about the
distinctions and use cases of document-level evalu-
ation and the impact of our post-hoc heuristics.

8.1 The Student Rivals Its Teacher
Table 2 shows that DiSTER effectively distills
ATE capabilities from the teacher into the much
lighter LLaMA student. The student outperforms
the teacher on three of seven domains and comes
within 1.5 F1 points on two more, demonstrating
strong competitive performance despite its smaller
size. The largest gains appear in domains semanti-
cally aligned with the synthetic corpus (acl, coast,
genia). Where overlap is weaker, the student tends

to lag further behind, suggesting that broader do-
main coverage in the pseudo-labeled training data
could close the remaining gaps. See Appendix §J
for an analysis of training data overlap.

We hypothesize that distillation works due to two
complementary factors: (i) sequence-level supervi-
sion encourages the student to mimic the teacher’s
span predictions exactly, reducing prompt sensitiv-
ity and reinforcing task-specific patterns; and (ii)
domain cues in the synthetic data act as scaffold-
ing: smaller models benefit from domain-specific
regularities, aiding generalization in overlapping
domains. This suggests that strong cross-domain
performance still depends on diverse fine-tuning
data, making automated labeling approaches like
DiSTER a cost-effective path to improving ATE
generalizability in smaller, deployable models.

8.2 Where IOB and Few-Shot Fail
Two systematic error sources (extraction count
and term-span length) explain much of the under-
performance observed in the baseline systems, as
thoroughly discussed in Appendix H. In brief, in
the few-shot setting, models often return few or no
candidates. On the corp subset, the median number
of predicted terms is zero. Even when terms are
extracted, their median length far exceeds the gold
standard, which severely depresses recall (Table 9).

The supervised IOB model exhibits the converse
pathology. When trained on SynTerm, the model as-
signs the term label to overly long spans that often
include stop words, thereby inflating recall while
harming precision. DiSTER’s LLM fine-tuning bet-
ter addresses this challenge by producing extraction
counts and term spans that are closer to the gold
standard. Therefore, we posit that the underlying
limitation is architectural. These findings are con-
sistent with the instability patterns observed under
cross-domain training (Table 3; see Appendix K for
a detailed analysis). Even within the original four
ACTER domains, F1 scores can drop by over 30
points depending on the validation split. Together,
these analyses highlight the need for a more flex-
ible architecture and targeted fine-tuning to best
leverage the distillation data SynTerm provides.

8.3 Document-Level Evaluation
While corpus-level ATE has been the primary fo-
cus in prior evaluations, document-level evalua-
tion better reflects downstream tasks like computer-
assisted translation and information retrieval (Šaja-
tović et al., 2019). As shown in Table 4, document-
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Model corp F1 equi F1 htfl F1 wind F1 coast F1 genia F1 acl F1 Avg F1

IOB sequence labeling (cross-domain) 25.66 46.91 8.01 49.90 11.41 13.49 8.72 23.44
IOB sequence labeling SynTerm 21.65 33.81 39.63 26.52 42.11 28.27 39.37 33.05

LLaMA few-shot (cross domain) 5.82 58.50 43.65 37.49 35.41 42.88 32.05 36.54
LLaMA few-shot SynTerm 29.22 38.57 25.23 41.25 30.23 45.77 42.20 36.07
Olmo few-shot (cross domain) 14.52 48.41 47.28 37.94 44.14 44.44 23.28 37.14

LLaMA fine-tuned SynTerm 38.25 51.60 49.03 49.87 63.19 51.10 56.31 51.34
Olmo fine-tuned SynTerm 35.63 43.77 47.51 39.12 55.60 38.55 50.07 44.32

Table 4: Document-level F1 scores across seven datasets. Best result per dataset is marked in bold, second best
results are underlined.

Model corp equi htfl wind coast genia acl Mean F1 Mean |R-P|
F1 |R-P| F1 |R-P| F1 |R-P| F1 |R-P| F1 |R-P| F1 |R-P| F1 |R-P| (%) (%)

LLaMA fine-tuned 38.25 7.74 51.60 15.33 49.03 10.27 49.87 4.11 63.19 19.92 51.10 18.55 56.31 22.53 51.91 13.63
LLaMA fine-tuned DC 39.87 10.78 54.27 12.77 51.36 8.21 53.06 9.01 64.25 18.73 52.87 21.88 65.14 12.72 54.40 13.73
LLaMA fine-tuned CC 40.05 14.89 54.79 5.68 52.01 1.92 51.30 11.89 63.74 12.47 51.76 27.51 55.98 17.84 52.80 13.74
LLaMA fine-tuned DC + CC 41.25 19.32 57.14 1.82 54.22 0.80 54.55 18.68 64.53 10.72 53.74 32.00 63.98 5.40 55.92 12.68

Table 5: F1 scores (bolded for highest score per dataset), absolute precision-recall gaps, and mean F1 score across
datasets. Showing the influence of the document consistency (DC) and corpus consistency (CC) heuristics.

level F1 scores are generally lower, reflecting the
greater challenge of consistently extracting terms
within individual documents. In particular, recall
is significantly lower and, in most cases, falls be-
low precision, reversing the trend observed at the
corpus-level (see Appendix E). At the corpus level,
terms from all documents are pooled, so consis-
tency within individual documents or term repeti-
tion matters less.

As shown in Table 5, applying consistency en-
forcement heuristics improves document-level F1
scores. Especially, the acl dataset, with many term
repetitions per document, sees a nine-point F1 gain.
Since the heuristics target different patterns, within-
document (DC) and cross-corpus (CC) term rep-
etition, their effects are complementary. When
combined, they yield the highest F1 scores in six of
seven evaluated datasets. Additionally, when pre-
cision exceeds recall, these heuristics narrow the
precision-recall gap, resulting in a more balanced
performance.

9 Conclusion

We introduced DiSTER, a scalable and robust ATE
framework combining synthetic data generation,
LLM fine-tuning, and post-hoc consistency heuris-
tics. By using pseudo-labels from a black-box
LLM, we built the diverse SynTerm corpus to sup-
port cross-domain generalization. The fine-tuned
LLMs, especially LLaMA, outperform both super-
vised sequence labeling and few-shot prompting
and perform competitively with the GPT-4o teacher
model, despite the size gap. Our results high-
light the importance of data composition in cross-

domain ATE and show that our approach general-
izes well even to less related domains. We also
show that document-level evaluation reveals impor-
tant limitations in consistency, which can be effec-
tively addressed using simple heuristics. Crucially,
DiSTER eliminates the need for domain-specific
training, making ATE more scalable and practical.

Limitations

Our approach, while effective, has several limita-
tions. First, the pseudo-labels used for training
are derived from a black-box LLM and may con-
tain noise, especially for rare or ambiguous terms.
Second, while our models perform well even in
domains with limited overlap in the training data,
generalization to entirely unseen or underrepre-
sented domains cannot be guaranteed. Expand-
ing the diversity of synthetic data could further
strengthen cross-domain robustness. Third, the
post-hoc consistency heuristics are simple heuris-
tics and do not handle paraphrases or semantic
variants, which could limit precision. Fourth, while
we use relatively lightweight LLMs, fine-tuning
still demands substantial computational resources,
potentially limiting accessibility for low-resource
settings. Lastly, our experiments are conducted
only in English, and computational cost of fine-
tuning open-weight models may hinder adoption
in low-resource settings.
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A Use Of AI Assistants

The authors acknowledge the use of ChatGPT
and Claude solely for correcting grammatical and
spelling errors, and providing assistance with cod-
ing.

B Few-shot prompt template

Extending the few-shot prompt templates intro-
duced by (Tran et al., 2024), we design two modifi-
cations:

• Context Enrichment (CE): At the beginning
of the user prompt, we add the ISO definition
of a term — Terms are “the designation of
a defined concept in a special language by a
linguistic expression.” (ISO 1087). A term is
a word or a phrase that has a specific mean-
ing in a particular context/domain, such as a
scientific term or a technical concept.

• Assistance Response Guidance (ARG): In-
stead of freely letting the language model be-
gin the assistant’s response, we prepend to the
to the response the sentence: I have extracted
the terms from the text. Here is the list of
terms:, and let the LLM complete it.

While CE aims to provide the LLM with more
knowledge about the task at hands, ARG deals with
the inherent structure-free and stochastic nature of
LLMs’ generations, in order to facilitate parsing.

C Prompt for Entity Type Labeling

Prompts 1 and 2 show the system and user prompts
used for entity-type-label generation, respectively.

System Prompt
You are a terminology research expert. Your task
is to help the user by answering the following
question.

Prompt 1: System prompt used for entity-type-label
generation.

D Prompts for Data Synthetization

Prompts 3 and 4 show the system and user prompts
used for pseudo-label generation, respectively.

E Precision and Recall per Domain and
Model

The Table 6 shows the corpus-level precision and
recall per dataset and model, while Table 7 shows
the document-level scores.
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Model acter_corp acter_equi acter_htfl acter_wind coast genia acl
P R P R P R P R P R P R P R

IOB sequence labeling SynTerm 19.2 67.52 21.83 63.71 30.4 69.86 19.32 80.69 49.04 66.5 30.49 69.17 47.75 70.02
IOB sequence labeling (cross-domain) 43.5 24.5 39.33 44.23 36.27 9.14 33.08 66.85 56.02 8.09 20.12 16.61 68.42 5.72

LLaMA few-shot (cross domain) 10.39 10.53 28.85 74.83 47.52 55.68 21.85 70.62 68.17 31.16 36.49 59.81 68.5 29.24
LLaMA few-shot SynTerm 23.09 55.65 35.05 57.44 47.48 37.19 26.64 69.20 72.55 24.54 37.13 63.98 71.20 40.48
Olmo few-shot (cross domain) 28.89 25.5 24.74 74.41 43.44 17.17 23.26 67.14 65.05 39.31 41.51 1.7 67.7 20.29

LLaMA fine-tuned SynTerm 26.34 67.74 33.81 69.73 39.89 67.34 29.82 76.55 73.87 61.24 40.86 70.75 71.66 60.1
Olmo fine-tuned SynTerm 22.08 58.31 25.81 51.42 35.34 62.31 23.44 71.28 61.71 53.8 34.63 61.4 65.21 51.78

Table 6: Corpus-level evaluation: Precision (P) and Recall (R) scores for each dataset across models.

Model acter_corp acter_equi acter_htfl acter_wind coast genia acl
P R P R P R P R P R P R P R

IOB sequence labeling SynTerm 13.08 62.73 23.15 62.65 28.83 63.38 16.42 68.77 30.81 66.5 18.23 62.88 27.05 72.28
IOB sequence labeling (cross-domain) 45.92 17.8 67.51 35.95 32.67 4.56 46.83 53.98 45.38 6.53 12.37 14.84 57 0.05

LLaMA few-shot (cross domain) 14.62 3.64 57.58 59.44 62.27 33.6 34.15 41.54 61.66 24.84 39.45 46.95 63.62 21.42
LLaMA few-shot SynTerm 29.20 29.23 57.91 28.92 56.08 16.27 40.92 41.58 69.78 19.29 39.27 54.85 66.84 30.84
Olmo few-shot (cross domain) 28.93 9.69 49.49 47.38 56.42 40.69 36.88 39.07 61.01 34.58 38.36 52.82 62.35 14.32

LLaMA fine-tuned SynTerm 34.77 42.51 60.38 45.05 54.7 44.43 47.9 52.01 74.68 54.76 43.46 62.01 69.75 47.22
Olmo fine-tuned SynTerm 28.15 48.54 49.13 39.46 47.4 47.62 32.03 50.25 60.44 51.48 28.54 59.37 60.66 42.63

Table 7: Document-level evaluation: Precision (P) and Recall (R) scores for each dataset across models.

F Qualitative Examples

Table 8 presents a qualitative comparison of dif-
ferent models on the same input sentence. The
extracted terms are highlighted in bold. This exam-
ple underscores the contrast in recall capabilities
between various approaches.

In particular, the IOB sequence labeling model
trained on SynTerm demonstrates high recall, but
low precision. In contrast, the few-shot approaches
tend to miss key terms, reflecting their compar-
atively lower recall. Fine-tuned models perform
significantly better than their few-shot counterparts,
aligning more closely with the gold terms.

G Unique terms among datasets

Figure 3 shows the amount of unique terms per
dataset on the diagonal and the amount of unique
common terms among the datasets on the lower
triangular part. We observe that, as expected,
SynTerm has the highest overlap with its source
datasets, TermPile and TermArXiv. Furthermore,
SynTerm shows considerable overlap with all other
datasets considered. Contrary to the expected, the
overlap comes not only from TermPile, but also
from the TerArXiv dataset, as it shows also common
unique term counts in the same order of maginitude
as TermPile. Interestingly, SynTerm has almost all
unique terms present in TermArXiv, which speaks
to the relatively restricted domain and language
used in the original dataset.

Figure 3: Counts of unique terms among the considered
datasets. Off-diagonal counts represent common terms.

H Term Length and Extraction Counts

A possible explanation for the low performance
of the few-shot models in some domains like corp
is given in Table 9. The median number of terms
extracted per document for corp is zero for both
few-shot models (with means of 0.61 and 0.82,
respectively). Another contributing factor to the
poor performance of the few-shot LLaMA model on
corp is the extraction of overly long terms. Table 9
reveals that the median length of extracted terms is
27 characters, compared to 11 characters for gold-
standard terms.

Although the IOB model trained on SynTerm
shows a large number of extracted terms per docu-
ment, many extracted terms are short and imprecise,
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Model Text

IOB sequence labeling SynTerm This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.
IOB sequence labeling (cross-domain) This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.

Olmo few-shot (cross domain) This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.
LLaMA few-shot (cross domain) This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.

LLaMA fine-tuned SynTerm This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.
Olmo fine-tuned SynTerm This is due to the fact that corruption is often referred to as the crime without ( direct ) victim.

Table 8: Models and their extracted terms highlighted in the sentence. The gold-terms are : [’corruption’, ’crime’,
’victim’].

Model corp equi htfl wind coast genia acl
Len Cnt Len Cnt Len Cnt Len Cnt Len Cnt Len Cnt Len Cnt

IOB sequence labeling SynTerm 6 11 4 8 7 9 5 8 6 11 7 10 6 45
IOB sequence labeling (cross-domain) 14 806 9 1530 12 556 13 1029 10 258 15 2460 11 181

Olmo few-shot (cross domain) 11 0 8 3 13 3 13 2 11 3 13 4 16 3
LLaMA few-shot (cross domain) 27 0 8 3 14 2 13 3 11 1 15 4 18 6
LLaMA few-shot SynTerm 15 2 10 2 17 1 14 2 13 1 15 4 18 7

LLaMA fine-tuned SynTerm 15 3 9 2 15 3 14 2 14 3 14 4 18 10
Olmo fine-tuned SynTerm 11 4 8 2 13 4 10 3 13 4 10 5 17 10

Actual 11 2 7 3 9 4 11 1 13 4 11 3 16 14

Table 9: Combined median term lengths (Len) and median term counts per document (Cnt) for each model and
dataset.

often including stopwords like “a” or “and” (see
Table 9). This results in relatively high F1 scores,
but with an imbalance between precision and recall
(see Appendix E). This imbalance and performance
gap underscores the effectiveness of DiSTER and
can be attributed to several key differences in model
design and training paradigms. XLM-R-based mod-
els, fine-tuned for sequence labeling, are optimized
for local contextual understanding within narrow
task boundaries. In contrast, LLMs are trained on
a broader range of tasks and contexts, equipping
them with more adaptable reasoning. We posit that
this flexibility allows LLMs to better leverage the
SynTerm dataset, treating it as a text generation
task rather than a sequence labeling problem. Qual-
itative examples for these effects can be found in
Appendix F and an analysis of the cross-domain
instability of the sequence-labeling models in Ap-
pendix K.

I Directional overlap with k-Nearest
Neighbors

In order to observe the total average overlap among
two datasets, we extend the analysis introduced by
Kambhatla et al. (2023) and include, for that, all
data on both sets. Our indicator can be defined as
follows. Let

• D = {D1, . . . , DN} be a collection of text
datasets, each embedded in Rd;

• k ∈ N the fixed neighbourhood size;

• Nk(x) ⊂
⋃N

i=1Di the (unordered) set of the
k nearest neighbours of sample x measured
wṙ.t. cosine distance in the embedding space;

• 1D(y) the indicator that neighbour y belongs
to dataset D.

Then the Directional Overlap score OA→B , for two
datasets A,B ∈ D, is

OA→B :=
1

|A| k
∑

x∈A

∑

y∈Nk(x)

1B(y),

i.e. the expected fraction of a point’s k closest
neighbours that originate from B. For convenience,
one may symmetrize OA→B , such that

O(A,B) := 1
2

[
OA→B +OB→A

]
,

and by construction O(A,B) = O(B,A) ∈ [0, 1]
and O(A,A) = 1. However, in this work, we
prefer the Directional Overlap indicator because it
reflects the asymmetry of test and train datasets.

J Domain and Term Overlap Analysis

To quantify dataset relationships, we extend the
embedding-based Nearest Neighbors analysis from
(Kambhatla et al., 2023) to construct a directional
overlap indicator (defined in Appendix I). Figure 4
shows the percentage of each origin dataset’s near-
est neighbors found in each target dataset. For
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User Prompt
### Context
- Terms are “the designation of a defined concept
in a special language by a linguistic expression.”
(ISO 1087).
- A term is a word or a phrase that has a specific
meaning in a particular context, such as a scien-
tific term or a technical concept.
- The goal is the identify domain-specific con-
cepts not named entities.
- A numerical value or date is not considered a
term.
- A organization, group or person is not consid-
ered a term.
- Any non-scientific content such as websites,
URLs, email addresses, HTML tags, code snip-
pets, etc, are not considered terms.
- A location (country, state, place, ...) is not
considered a term.
### Instructions
- You will be given a question about a type of
expressions in natural language.
- Your task is to determine whether the given
expression is either:
1) a term type, or
0) no term in the sense of the definition above.
- Do not overthink the question. Answer based
on your intuition and knowledge.
- If the context is not clear, use the most common
interpretation of the expression type.
- After you explain your answer, produce a json
object with the following format: { "answer":
[Option Number] }, where [Option Number]
is 0, 1, or 2.
### Question
Given expressions of the type {expression_type},
would you consider it
- a term (1), or
- no term (0)?
"""

Prompt 2: User prompt used for entity-type-label gener-
ation.

System Prompt
You are a terminology research expert. Your
task is to help the user extracting terms from
scientific abstracts.

Prompt 3: System prompt used for pseudo-label genera-
tion.

User Prompt
### Context
- Terms are “the designation of a defined concept
in a special language by a linguistic expression.”
(ISO 1087).
- A term is a word or a phrase that has a specific
meaning in a particular context/domain, such as
a scientific term or a technical concept.
- Only extract terms that are relevant to the do-
main.
- The goal is to identify domain-specific concepts
not named entities.
- A numerical value or date is not considered a
term.
- An organization, group or person is not consid-
ered a term.
- A location (country, state, place, ...) is not
considered a term.

### Instructions
- You will be given an excerpt from a scientific
abstract.
- Your task is to extract all terms from the text.
- Please return only a comma separated list of
correct extractions without any additional infor-
mation.
- If there are no terms in the text, return an empty
string.

### Question
The domain: {domain}
The abstract: {abstract}

## Return list of extracted terms:

Prompt 4: User prompt used for pseudo-label generation.

Figure 4: Directional k-NN domain overlap score.
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Figure 5: Directional k-NN overlap score for corpus-
level terms across domains.

interpretation, read each row as the percentage of
an origin dataset’s nearest neighbors found in each
target dataset.

We observe that SynTerm has measurable over-
lap with all test domains, illustrating the dataset’s
diversity and broad coverage across different areas.
For example for wind, we see that 4.6 percent of its
nearest neighbors come from the TermPile dataset.
By adding TermArXiv to our SynTerm dataset, we
add more nearest neighbors for all datasets but es-
pecially data points neighboring points from acl
and coast. Analyzing term-level overlap (Figure 5)
reveals similar patterns, with most nearest neigh-
bors for coast and acl terms coming from either
TermArXiv or TermPile. This also holds true for all
other test domains to a greater or lesser extent.

These findings explain the strong performance
of models fine-tuned on SynTerm when evaluated
on coast and acl. The effect is consistent across
architectures, with the IOB-based approach gaining
46 and 42 F1 points on acl and coast respectively
when trained on SynTerm (Table 2). For corp and
equi, corpus-level term neighbors are prevalent in
our synthetic datasets, but domain overlap scores
are low. This may explain why the IOB-based
approach leverages SynTerm to a lesser degree. In
order to provide a more precise picture on term
overlap, we also provide in Appendix G counts of
unique common terms among all datasets.

Notably, LLaMA fine-tuned on TermArXiv (con-
taining only scientific terminology with limited
overlap to most test domains) demonstrates strong
transfer capabilities to unrelated domains like equi
and corp. This suggests LLMs can learn domain-
independent representations of terminology, con-

trasting with sequence tagging models that degrade
significantly on out-of-domain data. Such findings
highlight LLMs’ potential to capture general prin-
ciples of termhood beyond surface-level domain
characteristics.

K Instability using supervised
cross-domain Data

While prior work on ACTER reports F1 scores
above 50 on htfl using the same IOB baseline, these
results rely solely on a specific four-domain setting.
Expanding to seven domains with varied valida-
tion sets reveals a sharp performance drop on htfl
(Table 2 and Table 4). Surprisingly, increasing do-
main diversity using leave-one-out training does
not guarantee better generalization and sometimes
harms performance on individual domains. The
directional k-NN overlap heat-map in Appendix
J confirms that htfl exhibits only maximum 1.9%
term-level overlap with the average training mix
in this case, explaining its heightened brittleness.
This highlights a key trade-off: broader training
data may improve average cross-domain results
but can reduce domain-specific effectiveness, espe-
cially in setups with limited resources.

Replicating the four-domain setup from the AC-
TER Shared Task confirms that strong results are
possible, but only under specific domain splits. As
shown in Table 3, the F1 scores of the sequence
labeling model vary substantially depending on
which domains are used for training and validation.
This instability suggests that ATE performance in
prior work is highly sensitive to the choice of do-
mains and data splits, raising concerns about the
robustness and generalizability of such models. In
contrast, using pseudo-labeled data from a LLM
yields a more diverse and abundant training cor-
pus, improving cross-domain robustness. Although
some domain variance remains, both encoder-based
and LLM-based models generalize better, under-
scoring the importance of data composition and not
only model architecture in cross-domain ATE.
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