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Abstract

Recently, the demand for small and efficient
reasoning models to support real-world applica-
tions has driven the development of knowledge
distillation techniques that balance reasoning
performance and inference speed. In this pa-
per, we further extend the DistilQwen model
family, initialized from the Qwen models, by
introducing four model series specifically de-
signed to meet industrial requirements. The
distilled model collection comprises: (1) slow-
thinking models, optimized for reasoning tasks
that require high accuracy; (2) two series of
adaptive-thinking models, which dynamically
adjust reasoning strategies based on input tasks
to maximize efficiency across diverse scenar-
ios; and (3) distilled reward models, which en-
able further reinforcement learning of reason-
ing models using distilled knowledge. Com-
prehensive evaluations across multiple bench-
marks demonstrate both high inference effi-
ciency and strong reasoning performance for
these models, as well as the practical utility of
distilled reward models. We further show that
these models support industry practitioners by
providing scalable training and inference func-
tionalities on the Alibaba Cloud PAI (Platform
for Artificial Intelligence) platform.1

1 Introduction

In the rapidly evolving landscape of large lan-
guage models (LLMs), the need for efficient rea-
soning models that can seamlessly integrate into
real-world applications has become increasingly
urgent. Industries worldwide increasingly rely on
advanced LLMs, which require not only high rea-
soning performance but also fast inference speeds
to support timely decision-making (Vrdoljak et al.,

∗The work was conducted during the internship at Alibaba
Cloud Computing.

†Corresponding author.
1Resources are released in the EasyDistill toolkit (Wang

et al., 2025a). URL: https://github.com/
modelscope/easydistill
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Figure 1: Roadmap for training DistilQwen reasoning
and reward models.

2025; Zhong et al., 2025; Cha et al., 2025). These
dual requirements have fueled growing interest
in knowledge distillation (KD) methods, which
aim to balance accuracy with computational ef-
ficiency (Xu et al., 2024).

In response to these industrial needs, we present
a comprehensive extension of the DistilQwen
model family (Wang et al., 2025b), introducing
four model series tailored for a wide array of rea-
soning scenarios:

• Slow-thinking models: Optimized for tasks
where accuracy is paramount, these models
ensure consistently high precision.

• Adaptive-thinking models (two series): Mo-
tivated by recent insights that reasoning length
and depth should vary by task (Sui et al., 2025;
Cai et al., 2025b), these models dynamically
adjust their reasoning strategies to specific re-
quirements and outperform previous ones.

• Adaptive-thinking-based reward models:
Derived from our training strategies for above
series, these models support further reinforce-
ment learning using distilled knowledge.
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Figure 2: High-level process for obtaining DistilQwen reasoning and reward models.

The development roadmap for these model series
is shown in Figure 1. DistilQwen reasoning and re-
ward models are evaluated on diverse benchmarks,
demonstrating robust performance. Furthermore,
practicality is demonstrated by their integration
into industrial AI platforms for fine-tuning and on-
line deployment.

2 Related Work

Knowledge distillation (KD), first introduced by
Hinton et al. (2015), has been key to reducing pa-
rameter counts in language models. Before LLMs,
several studies distilled BERT-based models (Sanh
et al., 2019; Jiao et al., 2020; Sun et al., 2020; Pan
et al., 2021), mainly for natural language under-
standing. Distillation for LLMs poses additional
challenges due to complex token dependencies.

In the literature, MiniLLM (Gu et al., 2024)
uses a reverse Kullback-Leibler divergence (KLD)
objective to transfer knowledge from white-box
LLMs to student models. An adaptive strategy (Wu
et al., 2025) combines forward and reverse KLD
via dynamic weighting. f -Distill (Wen et al., 2023)
minimizes a generalized f -divergence function at
the sequence level. Li et al. (2025) propose a bi-
directional logits difference loss to improve KD per-
formance. For black-box KD (where only APIs are
available), knowledge distillation signals like out-
put logits are absent; researchers leverage data aug-
mentation with instruction-response pairs (Hsieh
et al., 2023; Li et al., 2024; Lou et al., 2024; Ranaldi
and Freitas, 2024; Kim et al., 2024; Yue et al., 2024;
Ma et al., 2025).

With the rise of large reasoning models such
as DeepSeek-R1 (DeepSeek-AI, 2025), distilling
Chain-of-Thought (CoT) reasoning ability has at-
tracted attention (Wang et al., 2025c). Chen et al.
(2025) study the effect of granularity, format, and
teacher choice on CoT distillation. Cai et al.

(2025b) improve reasoning in small models by con-
sidering cognitive gaps. Multi-teacher KD (Tian
et al., 2025) uses teacher forcing to transmit diverse
reasoning skills. Self-training methods (Zhang
et al., 2025) activate latent reasoning capacity in
small models.

In our work, we open-source a range of small
models for challenging reasoning tasks to facilitate
further research and industrial applications.

3 Algorithm Implementation

We elaborate on our industrial practice for training
the DistilQwen reasoning and reward models. The
overall pipeline is illustrated in Figure 2.

3.1 Data Source Collector

The foundation of our approach is the Data Source
Collector, which aggregates CoT datasets from plat-
forms such as Hugging Face2 and ModelScope3.
These datasets span domains including mathe-
matics, code, science, and more, providing rich
and diverse sources for training reasoning mod-
els such as OpenThoughts24, DeepMath-103K (He
et al., 2025), OpenCodeReasoning5, etc. We subse-
quently perform task-aware re-sampling to balance
the distributions across different types of tasks.

3.2 LLM-Based CoT Processors

Directly performing vanilla SFT training on raw
CoT datasets does not necessarily yield strong stu-
dent models. Below, we describe our LLM-based
CoT processors, which effectively and efficiently
generate and refine CoT datasets for knowledge
distillation (KD).

2https://huggingface.co/datasets
3https://modelscope.cn/datasets
4https://huggingface.co/datasets/

open-thoughts/OpenThoughts2-1M
5https://huggingface.co/datasets/

nvidia/OpenCodeReasoning
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3.2.1 Elastic Teacher LLM Inference
In our implementation, directly invoking third-
party APIs for teacher LLM inference is not fea-
sible due to the requirements for robust, scalable,
and elastic inference. Instead, we deploy inference
services for DeepSeek-R1 (DeepSeek-AI, 2025),
DeepSeek-R1-05286, and QwQ-32B7 on our com-
puting clusters, where each server is equipped with
eight NVIDIA H20 GPUs (96GB each). Because
the queries per second (QPS) requirements for
these models vary across subsequent steps, the
number of inference nodes per model can be elasti-
cally adjusted to maximize computational resource
utilization. These inference APIs form the founda-
tion of our system; thus, we do not need to manage
hardware for CoT generation and processing later.

3.2.2 Slow-Thinking CoT Processor
The slow-thinking CoT processor is employed
to optimize CoT training sets for slow-thinking
models, i.e., the DistilQwen2.5-R1 series (using
DeepSeek-R1 (DeepSeek-AI, 2025) as the teacher
model and the Qwen2.5 series as students).
CoT Generator. The core module is the CoT Gen-
erator, which leverages DeepSeek-R1 to generate
structured CoTs by exploring complex solution
spaces. However, the output reflects how this ultra-
large model (with 671B parameters) solves prob-
lems, which may not be entirely suitable for smaller
models to learn from. To create diverse solution
paths, multiple inference outcomes are generated
using varying temperatures.
CoT Difficulty Scorer. A key challenge in improv-
ing KD effectiveness for smaller student models is
addressing the capacity gap between teacher and
student models. Several concurrent works (Cai
et al., 2025b; Yu et al., 2025) propose assessing
and rewriting CoTs to better suit student learning;
however, these methods often require iterative pro-
cessing and incur high computational costs. In
our approach, the CoT Difficulty Scorer evaluates
the complexity of each generated CoT using the
same teacher LLM (DeepSeek-R1). By assigning
difficulty levels (easy, medium, hard), the scorer
distinguishes intricate CoTs from simpler or ex-
cessively challenging ones, enabling students to
prioritize learning on medium-level CoTs. This
systematic scoring helps models develop a deeper
understanding of complex reasoning scenarios.

6https://huggingface.co/deepseek-ai/
DeepSeek-R1-0528

7https://huggingface.co/Qwen/QwQ-32B

CoT Re-writer and Verifier. As reported by Cai
et al. (2025b), rewritten and verified versions of
CoT datasets often enable smaller LLMs to achieve
stronger reasoning abilities. However, the complex-
ity of these processing steps limits parallelization
over millions of CoTs in our dataset. Therefore,
we adopt a simple yet effective strategy by rewrit-
ing and verifying CoTs only at the easy and hard
difficulty levels in a one-pass process. Incorrect
CoTs are discarded based on the verifier, which
serves as a safeguard to preserve reasoning cor-
rectness. Since multiple CoTs are generated per
problem, in most cases, at least one suitable CoT is
obtained. Overall, integrating these steps results in
large, higher-quality CoT training sets that consti-
tute the foundation for training our slow-thinking
models.

3.2.3 Adaptive-Thinking CoT Processor
Beyond the slow-thinking processor, the adaptive-
thinking CoT processor further optimizes CoT
training sets for adaptive-thinking models,
namely the DistilQwen-ThoughtX series (using
DeepSeek-R1 and QwQ-32B as teacher models
and the Qwen2.5 series as students), and its up-
dated version following the release of DeepSeek-
R1-0528: the DistilQwen-ThoughtY series (us-
ing DeepSeek-R1, DeepSeek-R1-0528, and QwQ-
32B as teacher models and the Qwen3 series8 as
students). These models dynamically adjust the
lengths of CoTs according to problem complexity,
thereby further improving reasoning abilities and
avoiding “over-thinking.”
CoT Generator. The implementation of the CoT
Generator here is largely similar to that of the slow-
thinking processor. The key difference is that we
generate multiple CoTs per problem using differ-
ent teacher models. Additionally, the inference
temperatures are varied to increase diversity.
RV and CD Scorers. During the upgrade of
DistilQwen reasoning models, we discovered that
rewriting alone is insufficient, as it does not ad-
dress situations where models tend to “over-think”
simpler problems (Sui et al., 2025). Our Reasoning
Verbosity (RV) and Cognitive Difficulty (CD) Scor-
ers, derived from the work in (Cai et al., 2025a),
further assess the quality of CoTs by ensuring they
are appropriately verbose for challenging problems
and match the cognitive capacity of the student
models. This dual scoring mechanism ensures that
models are exposed to a broad spectrum of CoT

8https://qwenlm.github.io/blog/qwen3/
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processes that are better aligned with their capa-
bilities and the problem difficulty. Consequently,
the models can learn to adaptively think based on
the input problems, leading to higher accuracy and
faster inference.
Target-aware Dataset Sampler. Finally, given a
target student model, we sample an optimal sub-
set of CoTs for training. Note that our CoT-based
system is not static; as more powerful LLMs be-
come publicly available, we can continually collect
higher-quality CoTs to train stronger small mod-
els. This is further demonstrated by the signifi-
cant improvement of DistilQwen-ThoughtY over
DistilQwen-ThoughtX shown in our experiments.

3.3 Distilled Model Trainer
SFT Trainer with Curriculum Learning. To ef-
fectively train our slow-thinking and adaptive-
thinking models, we adopt supervised fine-tuning
(SFT) enhanced with curriculum learning princi-
ples (Soviany et al., 2022). The training pipeline
begins with medium-level CoT examples to en-
sure stable convergence and prevent overfitting. As
training progresses, the curriculum gradually in-
corporates more challenging samples, promoting
generalization and robustness across diverse sce-
narios. Please refer to the experimental results for
additional details.
RM Trainer with RV and CD Score Estima-
tion. Beyond evaluating CoT quality, RV and CD
scores are also leveraged to train lightweight mod-
els as reward predictors, which can subsequently
enhance the model’s reasoning ability via rein-
forcement learning (RL). To this end, our reward
model (RM) trainer produces two dedicated reward
models, each initialized from Qwen2.5-7B-Instruct:
one for RV and one for CD. This constitutes a spe-
cial case of knowledge distillation (KD), as the
prediction outcomes are derived from very large
teacher models. This approach circumvents the
need to directly employ the original teacher models
as RMs during the more resource-demanding RL
training process.

Although RL training is not the primary focus of
this work, we briefly describe how DistilQwen-
Reward models are integrated into RL train-
ing. We use Group Relative Policy Optimization
(GRPO) (DeepSeek-AI, 2025) as a representative
RL algorithm. Let fRV(x) and fCD(x) denote the
predicted RV and CD scores by our models, given
input x. Note that the predicted scores are nor-
malized to [0, 1]. The corresponding RV and CD

rewards are defined as follows:

RRV
(
x
)
= −

∣∣fRV(x)− Clip(fRV(x), LRV, HRV)
∣∣

(1)
RCD

(
x
)
= −

∣∣fCD(x)−Clip(fCD(x), LCD, HCD)
∣∣

(2)
where (LRV, HRV) and (LCD, HCD) are the respec-
tive score intervals for the output CoTs. If a score
lies within its designated interval, the penalty term
is zero; outside the interval, the penalty increases
linearly with the distance to the nearest boundary.
Combined with the conventional accuracy and for-
mat rewards (denoted as Rfmt and Racc, respec-
tively) used in standard GRPO, the revised overall
reward function is:

R = Rfmt +Racc + λRV RRV
(
x
)
+ λCDRCD

(
x
)

(3)
where λRV and λCD are tunable hyperparame-
ters that determine the weighting. In our ex-
periments, we further validate the effectiveness
of the DistilQwen-Reward models relative to
vanilla GRPO. We plan to continue developing RL-
enhanced lightweight reasoning models in future
work, which may extend beyond the scope of the
KD techniques presented in this paper.

4 Evaluation

In this section, we present the evaluation results for
all DistilQwen reasoning and reward models.

4.1 Evaluation Benchmarks

To comprehensively evaluate the reasoning capa-
bilities of our models, we conduct experiments
on challenging benchmarks spanning mathematics,
programming, and question answering. Among
these, AIME20249 features problems that require
multi-step reasoning and intricate mathematical un-
derstanding. MATH500 (Hendrycks et al., 2021)
comprises 500 difficult mathematical problems
across various domains, including algebra, geom-
etry, number theory, and calculus. GPQA Dia-
mond (Rein et al., 2023) is a complex question-
answering benchmark designed to assess general-
purpose reasoning and comprehension abilities. Fi-
nally, LiveCodeBench V2 (Jain et al., 2025) eval-
uates models’ programming and code generation
skills, comprising coding tasks that range from al-
gorithmic challenges to practical problems.

9https://artofproblemsolving.com/wiki/
index.php/2024_AIME_I
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Model Training Set Size AIME2024 MATH-500 GPQA Diamond LiveCodeBench V2
Qwen2.5-3B-Instruct - 6.7 62.6 32.8 11.3
DistilQwen2.5-3B-R1 105K 16.7 70.0 34.3 18.0
Qwen2.5-7B-Instruct - 10.0 73.6 33.3 30.7
OpenThinker-7B 114K 31.3 83.0 42.4 39.9
DistilQwen2.5-7B-R1 105K 43.3 88.4 42.9 46.4
Qwen2.5-14B-Instruct - 16.7 78.2 43.4 37.4
DistilQwen2.5-14B-R1 105K 46.7 90.8 51.5 54.4
Qwen2.5-32B-Instruct - 16.7 81.4 45.5 47.3
OpenThinker-32B 114K 66.0 90.6 61.6 68.9
DistilQwen2.5-32B-R1 105K 70.0 93.8 62.1 66.0

Table 1: Performance comparison among slow-thinking models in terms of deep reasoning abilities. Note that
DistilQwen2.5-R1 and OpenThinker models leverage the same set of source reasoning problems (with a few filtered
out by our verifier) and the same teacher model for training.

Model AIME2024 MATH500 GPQA Diamond LiveCodeBench V2
Experiments on DistilQwen-ThoughtX
Qwen2.5-7B-Instruct 10.0 73.6 33.3 30.7
DistilQwen-ThoughtX-7B 56.7 90.2 50.0 56.8
Qwen2.5-32B-Instruct 16.67 81.4 45.5 47.3
DistilQwen-ThoughtX-32B 80.0 92.6 64.0 73.4
Experiments on DistilQwen-ThoughtY
Qwen3-4B (thinking mode) 73.3 93.2 54.0 75.7
DistilQwen-ThoughtY-4B 76.7 95.2 56.1 75.8
Qwen3-8B (thinking mode) 76.7 94.0 62.0 62.8
DistilQwen-ThoughtY-8B 76.7 94.6 62.1 78.1
Qwen3-32B (thinking mode) 76.7 94.8 65.7 72.2
DistilQwen-ThoughtY-32B 90.0 95.2 63.6 76.3

Table 2: Performance of adaptive-thinking models. Note that the Qwen2.5 models are non-reasoning models,
while the Qwen3 models can act as reasoning models with their thinking modes enabled.

4.2 Evaluation of Slow-Thinking Models

Slow-thinking models, namely the DistilQwen2.5-
R1 series, encompass model scales of 3B, 7B, 14B,
and 32B parameters. The source reasoning prob-
lems are taken from OpenThoughts10, with CoTs
generated, rewritten, and verified using DeepSeek-
R1. We perform SFT training on medium-level
CoTs for three epochs, followed by additional train-
ing on harder examples. After SFT, direct prefer-
ence optimization (DPO) (Rafailov et al., 2023)
is applied, yielding modest further improvements,
though this is not our main focus here.

As presented in Table 1, our proposed approach
markedly enhances the reasoning abilities of ex-
isting LLMs, delivering consistent and substantial
gains across multiple benchmarks compared to the
original Qwen2.5 models and the OpenThinker
models11, which are trained on the same set of
reasoning problems with the same teacher model.

Additionally, we evaluate DistilQwen2.5-R1
models using inference-time scaling, where the

10https://huggingface.co/datasets/
open-thoughts/OpenThoughts-114k

11https://huggingface.co/open-thoughts/
OpenThinker-7B

models generate k answers for the same question
and are measured using the Pass@K metric. The
findings indicate that increasing the number of rea-
soning attempts K leads to significant accuracy
improvements for both models. Notably, the 7B
model exhibits a steep upward trend on MATH500
and GPQA Diamond, gradually approaching the
performance level of the 32B model while reducing
inference computation requirements.

4.3 Evaluation of Adaptive-Thinking Models

In Table 2, we present the evaluation results for
our adaptive-thinking models. The DistilQwen-
ThoughtX series, built upon Qwen2.5 models and
trained with the dataset from (Cai et al., 2025a),
encompasses model scales of 7B and 32B. The
results demonstrate substantial improvements at
all scales, surpassing the slow-thinking models.
The DistilQwen-ThoughtY series, initialized from
Qwen3 models with reasoning modes enabled,
achieves further advances. These models span
three scales (4B, 8B, and 32B) and are trained
on the previous series’ dataset and a subset of
365K CoTs generated from DeepSeek-R1-0528
(to be released). The experiments confirm that
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(a) Task: MATH500.

(b) Task: GPQA Diamond.

Figure 3: Performance of DistilQwen2.5-R1 models in
terms of Pass@K under multiple inference attempts.

Model GSM8K MATH500 AIME2024
7B-R1 1223.61 6586.36 12856.23
ThoughtX-7B 834.36 6031.11 14597.96
ThoughtY-8B 844.23 5932.95 15632.85
32B-R1 1178.92 6434.50 13583.19
ThoughtX-32B 742.04 5927.32 16387.53
ThoughtY-32B 723.18 5723.08 17231.84

Table 3: Analysis of averaged output CoT lengths of
adaptive-thinking models. “DistilQwen” and “Dis-
tilQwen2.5” prefixes are omitted from model names.

our adaptive-thinking CoT processor and training
strategies effectively enhance reasoning capabili-
ties across model scales and tasks.

In addition, Table 3 analyzes the output CoT
lengths according to the difficulty of reasoning
problems. The results clearly demonstrate that our
adaptive-thinking models generate more optimal
CoTs based on their understanding of the input. For
example, the adaptive-thinking models produce
shorter CoTs for simpler problems in GSM8K12,
and generate longer CoTs for more challenging
problems in MATH500 and AIME2024.

12https://huggingface.co/datasets/
openai/gsm8k

Further Discussion. The reason why the results
obtained with adaptive-thinking models are signifi-
cantly better than those with slow-thinking models
is that adaptive-thinking models utilize substan-
tially more training data. Adaptive-thinking models
sample from over 2 million CoTs, resulting in train-
ing sets of at least 500K, while slow-thinking mod-
els train on only approximately 100K data points.

Although the slow-thinking recipe can effec-
tively enhance a model’s reasoning capabilities,
it is unsuitable for customized, diverse training
requirements due to its lack of quantitative CoT
evaluation information. Therefore, we proposed
the adaptive-thinking recipe, and we did not further
increase the training data for slow-thinking models.

However, this does not imply that the slow-
thinking recipe is obsolete. In scenarios where
training data is inherently limited, the sampling
process of the adaptive-thinking recipe would fur-
ther reduce available training data. In such cases,
we recommend using the slow-thinking recipe to
ensure satisfactory training results.

4.4 Evaluation of Reward Models
Table 4 presents comparison results between the
standard GRPO algorithm and GRPO augmented
with our RV- and/or CD-based distilled reward
models. We use Qwen2.5-7B-Instruct as the base
model and randomly sample 10K mathematical
problems from the previous training set for RL
training. Specifically, we conduct RL training on
the model directly, with no CoT-based SFT on
mathematical problems, ensuring that models learn
mathematical reasoning purely via RL. As shown,
GRPO enhanced with RV/CD-based reward models
consistently outperforms vanilla GRPO, corrobo-
rating our hypothesis that RV/CD scores distilled
from teacher models can effectively benefit RL
training, which is a promising direction for future
work.13

5 Industrial Solutions

In addition to releasing all our DistilQwen reason-
ing models to the open-source community for use
in various local environments, we have integrated
these models into the Alibaba Cloud PAI (Plat-
form for Artificial Intelligence) platform that sup-
ports the entire lifecycle of LLM usage, including

13In SFT training, we utilize over 500K training samples,
whereas in RL training, we use only 10K samples. Conse-
quently, the results in Table 4 are lower than those in Tables 1
and Table 2.
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(a) List of model cards. (b) Training panel. (c) Deployment panel.

Figure 4: Snapshots of the integration of DistilQwen reasoning models with the AI platform.

Reward Setting MATH500 AIME2024
Qwen2.5-7B-Instruct (Raw) 73.6 10.0
Vanilla GRPO 78.8 13.3
GRPO+RV 79.0 13.3
GRPO+CD 80.8 16.7
GRPO+RV+CD 81.4 20.0

Table 4: Performance of distilled reward models. RL
performance is measured on a subset of mathematical
problems using various reward settings. None of the
models have undergone CoT-based SFT for mathemati-
cal reasoning tasks.

training, evaluation, compression, and deployment.
Snapshots of model cards as well as the training
and deployment panels are shown in Figure 4.

By embedding the DistilQwen reasoning models
into AI platforms, businesses can leverage and fur-
ther adapt these specialized capabilities to support
real-world applications, including but not limited to
decision making, code generation, problem solving,
and multi-agent systems. The platform’s deploy-
ment functionalities enable seamless integration of
these models into existing systems via RESTful
APIs compatible with the OpenAI format, thereby
facilitating easier and more efficient usage.

6 Conclusion and Future Work

In this work, we have expanded the DistilQwen
model collection by introducing four model se-
ries tailored to address diverse reasoning require-
ments. Our slow-thinking models prioritize ac-
curacy for demanding tasks, while the adaptive-
thinking models dynamically optimize reasoning
strategies to balance efficiency and performance.
In addition, the distilled reward models facilitate
further enhancement through reinforcement learn-
ing based on distilled knowledge. Extensive eval-

uations demonstrate that our models achieve a fa-
vorable trade-off between inference efficiency and
reasoning capability. Furthermore, by integrating
these models into a scalable AI platform, we pro-
vide practical tools that effectively support industry
practitioners in model training and deployment.

Limitations

Although the proposed DistilQwen reasoning mod-
els perform well across several benchmarks, their
effectiveness may vary in highly specific or dy-
namic real-world contexts where benchmarks do
not fully capture operational complexity. Further-
more, the reinforcement learning framework sup-
ported by the distilled reward models depends on
the quality of the distilled knowledge, which may
propagate biases or errors inherent in the teacher
models. We suggest that future research focus on
addressing these limitations and further improv-
ing model adaptability and precision in real-world
applications.

Ethical Considerations

The development and deployment of the Dis-
tilQwen reasoning models requires careful consid-
eration of ethical implications. It is essential to
address potential biases introduced by the training
data, as such biases may influence reasoning out-
comes. Since our models are intended for research
and industrial use, issues of data privacy, security,
and compliance with relevant regulations should
be rigorously addressed during practical implemen-
tation.
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