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Abstract

Retrieval-Augmented Generation (RAG) is one
of the leading and most widely used tech-
niques for enhancing LLM retrieval capabil-
ities, but it still faces significant limitations
in commercial use cases. RAG primarily re-
lies on the query-chunk text-to-text similarity
in the embedding space for retrieval and can
fail to capture deeper semantic relationships
across chunks, is highly sensitive to chunking
strategies, and is prone to hallucinations. To
address these challenges, we propose TOBU-
Graph, a graph-based retrieval framework that
first constructs the knowledge graph from un-
structured data dynamically and automatically.
Using LLMs, TOBUGraph extracts structured
knowledge and diverse relationships among
data, going beyond RAG’s text-to-text similar-
ity. Retrieval is achieved through graph traver-
sal, leveraging the extracted relationships and
structures to enhance retrieval accuracy. This
eliminates the need for chunking configurations
while reducing hallucination. We demonstrate
TOBUGraph’s effectiveness in TOBU, a real-
world application in production for personal
memory organization and retrieval. Our eval-
uation using real user data demonstrates that
TOBUGraph outperforms multiple RAG im-
plementations in both precision and recall, sig-
nificantly enhancing user experience through
improved retrieval accuracy.

1 Introduction

Integrating Large Language Models (LLMs) with
external knowledge sources improves retrieval ac-
curacy and enhances reliability (Niu et al., 2024).
The state-of-the-art approach for such integration
is Retrieval Augmented Generation (RAG) (Lewis
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et al., 2021; Gao et al., 2024). Traditional RAG pre-
processes documents by chunking text and storing
the chunks in a vector database. During retrieval,
it retrieves the top-ranked chunks based on vector
similarity, and an LLM leverages those selected
chunks to generate a response accordingly.

While traditional RAG-based approaches allow
LLMs to incorporate external knowledge, this
methodology faces several key limitations:

* RAG relies on query-chunk similarity in vec-
tor embeddings, comparing the query to each
chunk individually without capturing broader
contextual connections among text chunks.
However, in many domains, data can be inter-
connected. Failing to represent and leverage
such relationships and structures beyond text-
to-text similarity across multiple chunks often
leads to low retrieval accuracy by RAG (Peng
et al., 2024).

* Chunking and embedding strategies, such as
chunk length and overlap size can significantly
affect retrieval performance (Qu et al., 2024).

* When relevant chunks do not exist in the
database for a given query, RAG may halluci-
nate (Huang et al., 2025).

Indeed, our evaluation of RAG approaches using
production data in a real-world application clearly
highlights these limitations (Section 3).

To address these limitations, it is important to
uncover the relationships among unstructured data
and leverage such relationships to improve retrieval
performance. A promising approach is to struc-
ture data as knowledge graphs (Su et al., 2024;
Hogan et al., 2021). Prior work (Jin et al., 2024;
Wu et al., 2024b) introduces a graph-augmented
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Hithere! Get started by telling me about your
memory

‘Where did this trick or treating ex;
take place?

year, you had a
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LM
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Figure 1: (a) Memory capturing workflow and (b) Memory retrieving workflow in TOBUGraph framework

implemented in TOBU app.

retrieval technique that uses LLM reasoning over
the knowledge graph through a chain-of-thought
process. While this approach enhances retrieval,
it assumes the existence of a predefined knowl-
edge graph and overlooks its construction, which
remains labor-intensive and lacks adaptability to
dynamic data (Hofer et al., 2024). Designing a
holistic graph-based retrieval framework that en-
ables automatic knowledge graph construction and
graph-based retrieval that captures deeper semantic
relationships remains an open challenge.

In this work, we propose TOBUGraph, a novel
graph-based retrieval augmentation framework.
TOBUGraph leverages LLMs to automatically con-
struct a knowledge graph from unstructured data.
Unlike traditional RAG that stores data chunks in a
vector database and compares query-chunk’s text
similarly, TOBUGraph extracts structured knowl-
edge and diverse relationships among data and rep-
resents the structures and connections of data in
a graph. Our novel graph structure is composed
of semantic nodes, representing the key seman-
tic information of data chunks, and relationship
nodes, to represent diverse semantic relationships
between semantic nodes. During retrieval, TO-
BUGraph leverages relationship nodes to prune
irrelevant data and prioritize the retrieval on highly
relevant data, improving retrieval precision. By
traversing the pruned graph of all relevant inter-
connected nodes, we mitigate the limitations of
traditional chunking and ensure completeness and
high recall for the retrieval.

We implemented TOBUGraph in a real-world
application called TOBU, designed for storing and
retrieving personal memories. We define "personal
memory" as user-provided images and videos cou-
pled with details, context and narratives around

them. When users upload an image, TOBUGraph
will first leverage a multimodal LLM to extract key
details and generate a summary of the image. Users
can provide more details and refinements through
a conversational Al assistant. TOBUGraph con-
structs a knowledge graph of such memories and
facilitates users to interact and query about them.

Using real-world user data of the TOBU app, we

evaluated TOBUGraph approach against multiple
RAG baseline implementations. TOBUGraph con-
sistently outperformed these baselines in retrieval
accuracy, efficiency, and user experience, receiving
higher preference ratings across diverse memory
retrieval scenarios.

The main contributions of this paper are as fol-

lows.

1. A novel approach to extracting structured
knowledge and diverse relationships among
unstructured data and representing the struc-
tures and connections of data in a graph.

2. A novel approach to leverage such a knowl-
edge graph to enable a more effective and
efficient retrieval mechanism.

3. Applying TOBUGraph in a real-world appli-
cation for personal memory organization and
retrieval.

4. A comprehensive evaluation against RAG sys-
tems using real-world user data. TOBUGraph
achieves 93.74% precision (vs. 89.23% best
baseline), 91.96% recall (vs. 82.26% best
baseline), and 92.84% F1-score (vs 85.56%
best baseline). Our user experience evaluation
shows that whenever TOBUGraph appears as
a response option, evaluators are 75% likely
to choose it over RAG baselines.

We plan to open-source our dataset and experi-

mentation for further study.
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2 TOBUGraph

In this section, we introduce TOBUGraph, a novel
graph-based approach for information capture and
retrieval. TOBUGraph overcomes RAG limitations
by structuring information in dynamic graph-based
representations that effectively capture data rela-
tionships. We describe TOBUGraph’s implementa-
tion in the TOBU app for personal memory capture
and retrieval.

During capturing (Figure 1a), TOBUGraph uses
an LLM to automatically extract semantics from
user inputs, transforming them into context-rich
memories. Our system establishes memory rela-
tionships, forming a structured and contextually rel-
evant memory graph. During retrieval (Figure 1b),
users interact with a conversational Al assistant to
retrieve information about the memories.

2.1 Memory Input Data Collection

Our system combines a multimodal LLM with a
conversational Al assistant to help users effortlessly
create memory entries (Figure 1a). When users pro-
vide multimedia inputs, such as images or videos,
the multimodal LLM applies object recognition,
emotion detection, scene recognition, and geoloca-
tion estimation to extract contextual details includ-
ing date, location, people, activities, and emotions.
Based on these details, the LLM generates an initial
summary. TOBU Al assistant then engages users
in a conversation, gathering additional information
and refining the extracted data as needed. The sum-
mary dynamically updates as users provide more
input, reflecting the most accurate and enriched
version of the memory.

2.2 Memory Graph Construction

The Memory Graph Construction Engine organizes
extracted contextual details and generated sum-
maries into a structured, graph-based representa-
tion (Figure 1a). This process occurs in two stages:
individual memory structuring and cross-memory
relationship discovery, which identifies and con-
nects related memories across the entire collection.

Individual Memory Structuring: Semantic
Nodes Extraction Module processes extracted
memory details such as date, location and sum-
maries to construct a graph for each individual
memory, where each semantic detail is stored in
a dedicated semantic node. These nodes link to
a central memory node representing the memory
itself. The initial memory graph is represented as

G = (V,E) where V = M U S contains memory
nodes M = {m1, mo, ..., m,, } and semantic nodes
S = {s1,82,...,5;}, withedge set E C M x S
connecting memory nodes to their semantic nodes.

Cross-Memory Relationship Discovery: TO-
BUGraph connects related memories across the
user’s entire collection forming a unified structure
called the Relational Memory Graph (RMG) (Fig-
ure 1a). Using LLMs, Relational Extraction Mod-
ule analyzes each memory node with its connected
semantic nodes to extract common themes such as
hobbies, locations, activities, significant dates, or
frequently mentioned people. For each identified
theme, a unique relationship node is created, con-
necting all relevant memory nodes that share this
common theme. To ensure robustness, the module
performs a normalization step where extracted rela-
tionship labels are compared against existing nodes,
merging variations and correcting minor spelling
inconsistencies to avoid creating duplicate relation-
ship nodes for the same semantic concept. The
resulting RMG therefore provides a consistent and
unified representation where shared relationships
serve as central access points enabling the system
to access all memories linked to a specific concept
or theme.

The RMG extends the individual memory graphs
GtoG = (V,E') where V.= M USUR
includes relationship nodes R = {ry,r2,...,7p},
and E' C (M x S)U (M x R) connects memory
and relationship nodes. For each memory node m;,
connected semantic nodes are S; = {s;|(m;, s;) €
E'} and connected relationship nodes are R; =
{rjl(mi,r;) € E'}.

2.3 Memory Retrieval

TOBUGraph enables users to retrieve memories
through an integrated conversational Al assistant
that interacts with the user’s RMG, as shown in Fig-
ure 1b. When a user initiates a memory retrieval
request, the system collects all relationship nodes
in the RMG and uses an LLM to filter the most rel-
evant ones according to the user’s request. The sys-
tem then traverses the RMG to retrieve the memory
nodes connected to the filtered relationship nodes,
along with their semantic content, which are passed
to the conversational Al assistant.

The conversational Al analyzes this retrieved
content to generate targeted responses. If the user’s
request provides sufficient detail without ambigu-
ity for the LLM, the response is direct; otherwise,
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the Al requests clarification. As conversations
progress, the LLM in the conversational Al con-
tinually filters out irrelevant memories, refining
the retrieved content to provide more accurate and
contextually relevant answers.

Retrieval Process Formalization: The process
follows three steps: (1) Relationship relevance:
f(¢,R) — R’ C R identifies relevant relation-
ship nodes R’ for query q. (2) Memory retrieval:
g(R',G"Y — M' C M retrieves memory nodes
M’ connected to R’ in the RMG. (3) Response gen-
eration: h(q, M',S’") — r generates response r
where S" = US;|m; € M'.

3 Evaluation

3.1 Baselines

To evaluate our proposed TOBUGraph approach,
we implement three versions of naive RAG systems
using LangChain and ChromaDB as baseline ap-
proaches. Three implementations differ primarily
in their chunking strategies and input data sources
as represented in Table 1. RAGv1 processes mem-
ory summaries by splitting them into fixed-size
chunks with a defined overlap. RAGv2 takes a
different approach by using user-assistant conver-
sations instead of summaries, with each chunk con-
taining one complete conversation. RAGv3 also
operates on memory summaries, but each chunk
corresponds to a single summary.

3.2 Dataset Construction

Using real memory data from 20 highly active
TOBU app users with extensive memory databases,
we anonymized the data and created 80 unique
memory retrieval requests. We then applied the
TOBUGraph memory retrieval technique to pro-
cess conversations and retrieve relevant memories
for each request. For comparison, we used the same
retrieval requests with baseline RAG approaches,
employing their respective retrieval techniques.

3.3 Quantitative Analysis

3.3.1 Retrieval Metrics Evaluation

To evaluate TOBUGraph against the baseline ap-
proaches discussed in Section 3.1, we use standard
information retrieval metrics: Precision, Recall,
and F'1 — score with 95% confidence intervals cal-
culated using the dataset described in Section 3.2.
As shown in Table 2, TOBUGraph demonstrates
significant performance improvement across all
metrics, achieving the highest Precision, Recall,

and F'1 — score. This indicates that TOBUGraph
significantly outperforms RAGvl, RAGv2, and
RAGV3 both in accurately retrieving relevant mem-
ories and avoiding irrelevant retrievals, with an av-
erage improvement of approximately 7% in overall
effectiveness in F'1 — score compared to RAGv3,
the next-best performing approach.

3.3.2 User Experience Evaluation

To quantitatively evaluate TOBUGraph against
baseline methods, we conducted a human-based
study using double-blind pairwise comparison via
crowd-sourcing using the SLAM tool (Irugalban-
dara et al., 2024). In each evaluation, participants
were presented with two responses for the same
user request from two different approaches and
asked to compare them side by side. A total of
480 evaluators each completed 10 comparisons, re-
sulting in 4,800 pairwise evaluations. Responses
from TOBUGraph and RAG baselines were each
evaluated 1,200 times against all other approaches.

We analyze evaluator preferences by measur-
ing the probability of selecting each approach, as
shown in Figure 2. Among the 480 evaluators, TO-
BUGraph responses are preferred 75% of the time
on average when presented as a response option in
pairwise comparisons, significantly outperforming
baseline methods. The distribution shows lower
variance for TOBUGraph, indicating more consis-
tent favorability. Among baselines, RAGv1 was
least favored, while RAGv3 performed better than
RAGV2 due to incorporating user-enriched memory
summaries instead of conversations. These results
highlight TOBUGraph’s effectiveness in delivering
a more satisfying user experience.

14

Response Preference Probability

Figure 2: Distribution of evaluator preference of each
approach, as probabilities. Among 480 human evalua-
tors, TOBUGraph responses are preferred 75% of the
time on average, when present as a response option in
a pairwise comparison. Furthermore, the preference
distribution for TOBUGraph has lower variance, indi-
cating more consistent performance compared to other
approaches.
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Table 1: Comparison of Baseline RAG Implementation Variants.

Notations: M: set of memories, m;: individual memory, n: total memories, C' set of chunks, ¢;: individual chunk, [: fixed chunk length
Baseline Input Source for RAG Database Chunking Strategy
RAGvI Al generated memory summaries discussed in Section 2.1 | Fixed-size chunks with specified overlap
¢; = split(summary(M)), |¢;| = L and |C| > | M|
RAGV2 Conversation between the user and Al assistant discussed | One complete memory as a single chunk
in section 2.1. ¢; = conversation(m;), |C| = [M|=n
RAGvV3 Memory summaries as in RAGv1. One complete memory as a single chunk
¢i = summary(m;), |C| = |M|=n

Table 2: Precision, Recall and F'1 — Score with 95%
confidence intervals for the TOBUGraph approach and
baseline methods.

RAGv1 | RAGv2 | RAGv3 | TOBU

Precision (%) 85.92 86.30 89.23 93.75
Recall (%) 66.40 79.60 82.26 91.96
F1— Score (%) | 74.53 82.88 85.56 92.84

Figure 3: Evaluator preferences for each approach, mea-
sured as probabilities across four categorization levels
based on memory retrieval complexity and nature. TO-
BUGraph consistently achieves the highest preference
among evaluators across all levels, outperforming other
approaches regardless of question complexity.

To further analyze results, we categorized user
requests of the dataset into four levels based on
complexity and nature of the memory retrieval tech-
nique (Table 3). Figure 3 shows evaluator prefer-
ences across these levels.

For Level 1 user requests involving single mem-
ory retrieval, TOBUGraph and baseline RAG ap-
proaches perform similarly with nearly equal eval-
uator preference, since answering these questions
does not require identifying relationships between
multiple memories. As we progress to Levels 2,
3, and 4, the preference for RAG approaches de-
clines due to the increasing complexity of mem-
ory retrieval (Figure 3). At Level 3, generating
complete responses may require fetching a large
proportion of the memory database, but RAG re-
trieves only top-k relevant chunks, risking missing
crucial context and leading to incomplete answers
and a reduced user preference. Additionally, RAG
embeddings prioritize text-to-text similarity, often

failing to capture complex relationships between
memories. This limitation affects memory retrieval
at Level 4, decreasing user preference for RAG.

In contrast, TOBUGraph consistently maintains
a higher preference across all levels, with an av-
erage selection rate of approximately 75%. This
strong performance is due to TOBUGraph’s ability
to capture deeper semantic relationships through
relationship nodes, enabling retrieval of highly rel-
evant memories. These results indicate that, re-
gardless of memory retrieval request complexity,
TOBUGraph remains a highly effective solution,
outperforming RAG-based methods.

User Study Feedback: Users participated for
evaluation further highlighted TOBUGraph’s
strengths, with comments such as "Response B
(TOBU) has a smoother flow and includes five
events, but Response A (RAGv2) only lists three
events. Also, Response B describes each event more
detail.", "Response A (TOBU) is clearer and infor-
mative. It presents two Disney park visits and ac-
tivities, But Response B (RAGv1) includes only one
visit and incorrectly names the show they watched."
and "Response A (TOBU) provided a detailed nar-
rative about two separate trips, while Response B
(RAGV3) focused on a single trip but merged details
from both.”

3.4 Qualitative Analysis

To evaluate TOBUGraph approach against baseline
RAG models using the dataset created in Section
3.2, we also conducted a qualitative analysis. Key
observations are summarized in Table 4, with de-
tailed discussion below.

(I1) Low recall due to top k. chunk limitation:
Baseline RAG approaches retrieve only the top k
chunks, potentially missing relevant memories if
their count exceeds k£ (I1 in Table 4). As illus-
trated in Figure 4c, TOBU retrieves all five relevant
memories by leveraging graph traversal through
the "California" relationship node, capturing all
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Table 3: Four categorization levels of user requests based on memory retrieval complexity and nature.

Category

Description

Example User Request

Level 1: Single memory retrieval

Simple questions requiring direct retrieval of a single memory.
No need for relationships between memories.

"When did I have my first dinner with my boarding
mates and how was that experience?"

Level 2: Linked memory retrieval

Requires connecting two or three directly related memories to
provide an answer.

trips?"

"What were the best parts of my hiking and rafting

Level 3: Multi-memory retrieval

When many memories within the database are contextually
relevant to formulating a response.

summer and fall?"

"What are the activities we have done during the

memory retrieval

Level 4: Semantic or pattern-based

Requires identifying patterns, trends, or deeper relationships
involving different times, locations, or people from multiple
memories.

"Tell me about the memorable places I enjoyed with
my friends, including James, over the past year."

User :| Can you tell me about family trips to Disney parks in August 2023 where you felt excitement, met characters, dined at amazing restaurants, or saw a special show? }

TOBU

RAGV1

RAGV2

RAGV3

Based on your request, here are the
relevant memories of your family trips to
Disney parks in August 2023:

1. Disney World Trip: You went to Disney
World with your family in the summer
before last. During this trip, you met
Mickey and dined at an amazing
restaurant, although you couldn't recall
the name. The experience was filled with
excitement.

2. Disneyland Trip: You visited

2023. You watched a nighttime water
show called "The Way of Color" and
enjoyed a delicious burger at the
Galactic Grill. This trip was also marked
by excitement.

Would you like more details on any of these
memories, o is there anything else you'd
like to add?

Disneyland with your family on August 2,

During your family trip to Disneyland in August
2023, you felt excitement and had several
memorable experiences. On August 2, 2023,
you were at Disneyland with your family,
where you met Mickey Mouse and dined at
an amazing restaurant. You also watched a
spectacular water show at night called
ofGolorand enjoyed

“The Way". @

Does this match your memory, and would you
like to know more details about this trip?

Based on the retrieved memory, it seems that
you went to Disneyland with your family
and experienced a memorable event in
August 2023. You watched a water show at
night called "The Way of Color" and
enjoyed a delicious burger at the Galactic
Grill.

Does this match your memory of the family
trip to Disney parks in August 20237 Would
you like to know more detals or is there
anything else specific you remember from this
trip?

It seems like you visited Disneyland with
your family on August 2, 2023. You felt
excitement as you watched the water show
called “The Way of Color" at night and
enjoyed a delicious burger at the Galactic
Grill

Would you like to know more details about this
visi

Are there any other visits to Disney parks'

Are there any other visits to Disney parks?

Yes, there was another visit to a Disney park.
You went to Disney World with your family
in the summer before last. During that trip,
you also met Mickey Mouse and dined at
an amazing restaurant.

Does this match your memory, and would you
like to know more details about this trip?

Are there any other

It seems that the retrieved memories are
primarily about your trip to the Grand
Canyon with your butler Claude in April
rather than additional visits to Disney parks.
To help you better, could you specify if there
were any other specific Disney parks you
visited or any particular events or

experiences you remember from those trips?

(a)

ToBU

The memory database does not have any
other visits to Disney Park visits. Would

you like to specify any other visit to Disney
park?

User: [Hnw many memories are there related to California? ]
RAGV1 (11) RAGV2

User :

What happened when we attended the inaugural
Women's Gold Cup final?

You attended the inaugural women's Gold Cup final
with Lypha and Zoey at Snapdragon Stadium in San
Diego. The event took place on March 10, 2024. Zoey
was cheering for the US team, and they won 1-0, with
the goal happening right in front of you. Would you like
to know more details or add anything else to this memory?

RAGV1

It sounds like you're recalling the inaugural Women's
Gold Cup final at Snapdragon Stadium in San Diego
with Lypha and Zoey. It was an exciting match, and
Zoey cheered enthusiastically for the US team, who
won 1-0. The goal happened right in front of you!
Would you like to know more about this memory or any
other specific details?

It seems like you went to the inaugural Women's Gold
Cup final after your trip to California. It was an exciting
RAGv2| experience. You even got a chance to meet one of the

players after the match. Would you like to know more @
details about this visit?

You attended the inaugural Women's Gold Cup final on
March 10, 2024, at Snapdragon Stadium in San Diego.
You were with Lypha and Zoey, and you felt excited
RAGv3| throughout the event. Zoey was cheering for the US
team, and they won the match 1-0, with the goal
happening right in front of you. Would you like to know
more details about this memory?

RAGV3

There are five memories related to California
in your database. Here is a brief summary of
each,

1 Proposal in Napa: You proposed o your

2. Fan's Birthday: Celebrated on June 9th,
2024, at Grandpa's house in Lakewood,
California. You, Jay, Leya, Lin, Lisa, and
Jane were there, and the highlight was
playing in the pool with a greased
watermelon.

3. First Day of Preschool: Your son started
preschool in California on September 4th,
2022. He was excited but got scared when it
was time to leave, giving you a big hug.

4. High School Basketball Achievement:
Your high school team was selected as one
of the top eight teams in Southern
California basketball on February 4th, 2024.
5. UCLA Beach Volleyball Tournament: On
March 19th, 2023, you attended the UCLA
East Meets West Beach Volleyball
‘Tournament at the Manhattan Beach Pier,
meeting your favorite player and others.
Would you like more details on any of these.
memories, or is there anything else you'd like
to add?

Based on the retrieved information, there are
several memories related to Califoria. Here
are some highlights: 3
1. You celebrated Fan's birthday in
California, where you felt joyful.

2. Your son started his first day of
preschool in California on September 4th.

3. You were with your wife, Sam, and Mary
in Napa, California, feeling nostalgic.

4. You proposed to your wife in Napa,
California, in 2012.

5. You were at Grandpa's house in
Lakewood, California, with Jane and

Leya.
Would you like more details about any specific
memor

Based on the retrieved information, there are
four memories related to California:
1. Proposal in Napa, California (2012): You
proposed to your wife in Napa, California,
in 2012. You were accompanied by your
good friends, Bill and Amy. Your wife was
surprised by how you managed to sneak
the ring without her noticing.
2. Son's First Day of Preschool (September
4th, 2022): Your son's preschool is in
California. On his first day, he was excited
but got a little scared when it was time to
leave, giving you a
3. High School Basketball Teams in
Southern California: A picture of the top.
eight high school basketball teams in
Southern California was taken after the
teams were announced online. Your high
school team was selected as one of the top
eight.
4.UCLA East Meets West Beach Volleyball
Tournament (March 16th, 2024): The event
took place at the Manhattan Beach Pier.
Winnie posed with Perry Brennan's mom's
dog. Dane Selznick, Perry's mom, and the
UCLA beach volleyball team played against

1. Proposing to Your Wife in Napa,
California: In 2012, you proposed to your
wife in Napa, accompanied by your friends.
Sam and Mary. She was very surprised by
the proposal.

2. Your Son's First Day of Preschool: On
September 1, 2022, you were in California
with your son for his first day of preschool.
He was excited but a bit scared when it was
time to leave.

3. High School Basketball Team
Achievement: On February 4, 2024, your
high school basketball team was selected
as one of the top eight teams in Southern
California, which was an exciting moment
for you.

4. Meeting a Favorite Player at a Volleyball
‘Tournament: On March 19, 2023, at the
UCLA East Meets West Beach Volleyball
‘Tournament at the Manhattan Beach Pier,
you met your favorite player and felt
excitement.

Would you lie more details about any of these
memories?

There are four memories related to Calvmma

Florida State. Winnie met her favorite
player, Devin Newberry.
Would you lie more details on any of these

memories?

©

(b)

Figure 4: Example conversations from the dataset discussed in section 3.2 where (a) having issues I1 and 12, (b)
representing hallucination as in I4 while (c) demonstrating issues I2 and I3 from Table 4.

Table 4: Qualitative comparison between memory re-

trieval techniques.

Qualitative Observations

(I1) Low recall due to top k& chunk limitation

(I2) Low recall due to embedding quality

(I3) Splitting a memory into multiple chunks

RAGV2 | RAGv3 | TOBU

(I4) Hallucinations during memory retrieval failures

[
Worst

Medium

Best

connected memories. In contrast, RAGv1l, RAGv2,
and RAGvV3 fail to retrieve all the relevant mem-
ories. While RAGv1 appears as it retrieves five
memories, two of them are redundant due to the
splitting of a single memory, an issue further dis-
cussed in I3. Meanwhile, RAGv2 and RAGv3
retrieve only four relevant memories, omitting the
memory labeled as 2’ in TOBUGraph’s retrieval.

(I2) Low recall due to embedding quality:
RAG approaches rely on the quality of chunk em-
beddings for precise retrieval. However, in our use
case, embedding quality declines as chunk length
increases in the order of RAGvl, RAGv3 and
RAGvV2. This degradation affects retrieval perfor-
mance, sometimes causing RAG methods to miss
relevant memories (I2 in Table 4). As illustrated
in Figure 4c, TOBUGraph retrieves two related
memories by traversing the graph via the "Disney"
relationship node, without relying on any chunk-
ing or embedding strategies. In contrast, RAGv2
and RAGV3 retrieve only one memory, even after
a follow-up query, omitting the "Disney World"
memory. While RAGvV1 retrieves both, it requires
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an additional follow-up question.

(I3) Splitting a memory into multiple chunks:
Unlike RAGv2 and RAGvV3 that treat each memory
as a single chunk, RAGv1’s chunking strategy un-
intentionally split memories (I3 in Table 4). This
can cause missing key details of a memory and mis-
interpreting a single memory as multiple distinct
ones. In Figure 4a RAGv1, memories ‘3’ and ‘4’
originate from the same entry but are mistakenly
treated as distinct, similar to ‘1’ and ‘5’. Figure
4c further highlights this issue as the first memory
retrieved by RAGv1 omits the correct name of the
water show, as the strike-through content is absent
in the response. In contrast, TOBUGraph avoids
this issue entirely, as it employs the graph-based
approach that preserves memory integrity without
the need for chunking.

(I4) Hallucinations during memory retrieval fail-
ures: Baseline RAG models hallucinate when
retrieval fails, fabricating information instead of re-
turning valid entries (I4, Table 4). Figure 4b shows
RAGV2 hallucinating because RAG relies on un-
structured data, losing relationships between mem-
ories. In contrast, TOBUGraph structures memo-
ries as a graph, leveraging relationships for better
retrieval. For example, when searching for the
Women’s Gold Cup final, TOBUGraph traverses
through related relationship nodes, "inaugural"”,
"Gold Cup", and "final" to retrieve relevant mem-
ories. This structured approach mitigates halluci-
nations by ensuring retrieval is based on existing
relationships.

4 Related Works

Information retrieval with LLMs (Niu et al.,
2024) often employs RAG, a state-of-the-art
method (Asai et al., 2023; Gao et al., 2024; Wu
et al., 2024a; Guu et al., 2020; Karpukhin et al.,
2020). However, RAG systems face several chal-
lenges: difficulty capturing deeper relationships be-
tween chunks beyond text-to-text similarities (Peng
et al., 2024), sensitivity to chunking strategies (Qu
et al., 2024), and hallucination risks (Sun et al.,
2025; Huang et al., 2025).

Graph-based retrieval methods often address
these issues (Jin et al., 2024; Wu et al., 2024b;
Hu et al., 2024; Su et al., 2024; Chen et al., 2024,
Zhang et al., 2022; Peng et al., 2024; Zhang et al.,
2024; Kim et al., 2024). While knowledge graph
construction is labor-intensive and struggles with
dynamic data (Hofer et al., 2024), Edge et al. use

LLMs to generate and update knowledge graphs
primarily for creating summaries and RAG-based
retrieval in GraphRAG, our approach retrieves in-
formation by traversing the graph.

5 Conclusion

In this paper, we introduce TOBUGraph, a novel
framework that integrates LLM-powered knowl-
edge graph construction with graph-based retrieval
to enhance information retrieval while addressing
RAG limitations. TOBUGraph improves retrieval
accuracy by capturing deeper semantic relation-
ships between entries. This approach is imple-
mented in a mobile application called TOBU for
memory retrieval. Our evaluation using real-world
data from the TOBU database demonstrates that
TOBUGraph consistently outperforms RAG base-
lines in precision, recall, and user preference rat-
ings, highlighting its effectiveness in real-world
scenarios.

Limitations

While TOBUGraph demonstrates strong perfor-
mance on the TOBU dataset, our evaluation is lim-
ited to users with relatively modest-sized memory
collections. In real-world scenarios, users may
accumulate thousands of memories, and scaling
to such large collections presents new challenges.
Specifically, graph construction and traversal at
this scale may introduce computational overheads,
latency, and storage bottlenecks that our current
evaluation does not capture. Addressing these scal-
ability issues is an important direction for future
work to ensure robustness when applied to substan-
tially larger personal knowledge bases.
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