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Abstract

Modern recommendation systems grapple with
reconciling users’ enduring preferences with
transient interests, particularly in click-through
rate (CTR) prediction. Existing approaches
inadequately fuse long-term behavioral pro-
files (e.g., aggregated purchase trends) and
short-term interaction sequences (e.g., real-
time clicks), suffering from representational
misalignment and noise in transient signals. We
propose HierDiffuse, a unified framework that
redefines interest fusion as a hierarchical de-
noising process through diffusion models. Our
approach addresses these challenges via three
innovations: (1) A cross-scale diffusion mech-
anism aligns long- and short-term representa-
tions by iteratively refining long-term interests
using short-term contextual guidance; (2) A
Semantic Guidance Disentanglement (SGD)
mechanism explicitly decouples core interests
from noise in short-term signals; (3) Trajectory
Convergence Constraint (TCC) is proposed to
accelerate diffusion model reasoning without
reducing generation quality to meet the con-
straints of high QPS (Queries Per Second) and
low latency for online deployment of recom-
mendation or advertising systems. HierDif-
fuse eliminates ad-hoc fusion operators, dy-
namically integrates multi-scale interests, and
enhances robustness to spurious interactions
as well as improves inference speed. Exten-
sive experiments on real-world datasets demon-
strate state-of-the-art performance, with signif-
icant improvements in CTR prediction accu-
racy and robustness to noisy interactions. Our
work establishes diffusion models as a princi-
pled paradigm for adaptive interest fusion in
recommendation systems.

1 Introduction

Modern recommendation systems and advertising
systems face a fundamental tension: how to recon-

*Equal contribution
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cile users’ enduring preferences with their momen-
tary interests. This challenge manifests acutely in
click-through rate (CTR) prediction(Zhou et al.,
2018; Liu et al., 2022a,b, 2023; Sang et al.,
2025a,b), where the interplay between long-term
behavioral patterns and short-term contextual sig-
nals determines recommendation relevance (Zhou
et al., 2018). While existing approaches have made
progress in modeling these temporal scales inde-
pendently (Chen et al., 2019), their fusion remains
an open problem with significant implications for
real-world performance.

A critical limitation stems from representa-
tional misalignment: long-term models rely on
aggregated behavioral profiles (e.g., monthly pur-
chase trends), whereas short-term models process
fine-grained interaction sequences (e.g., real-time
clicks). This mismatch in feature granularity ren-
ders conventional late fusion operators ineffec-
tive (He et al., 2023). For instance, when a fit-
ness enthusiast suddenly browses dessert recipes,
the system fails to adapt recommendations be-
cause static long-term preferences dominate tran-
sient contextual signals. Moreover, the signal-to-
noise trade-off in short-term behavior remains un-
resolved. While recent interactions provide valu-
able contextual cues, they also introduce spurious
noise (e.g., accidental clicks or exploratory brows-
ing). Without principled noise suppression, fusion
mechanisms struggle to distinguish meaningful sig-
nals from ephemeral fluctuations (Hochreiter and
Schmidhuber, 1997). These limitations highlight
the need for a unified modeling framework that
jointly optimizes multi-scale interest representa-
tion and adaptive fusion.

In this paper, we propose HierDiffuse, a frame-
work that reconceptualizes interest fusion as a hi-
erarchical denoising process. Our key insight is
that the diffusion paradigm naturally addresses all
challenges through its unique combination of iter-
ative refinement and conditional generation: For
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representation alignment and joint modeling, we
formulate a cross-scale diffusion process where
short-term interests guide the gradual denoising
of long-term representations through intermedi-
ate latent states. For noise robustness, Semantic
Guidance Disentanglement (SGD) mechanism
achieves interest perturbation decoupling through
explicit decomposition of core interests and ran-
dom noise. Meanwhile, it is well known that the
diffusion model has a high computational cost, es-
pecially its reasoning process, which is contrary to
the requirements of high QPS and low latency of
online systems. We proposed Trajectory Conver-
gence Constraint (TCC) to accelerate reasoning
without reducing production effects, thereby meet-
ing the requirements of online deployment.

There are several contributions of our work:

• Unified Fusion Framework: By treating fu-
sion as conditional generation, we eliminate
the need for ad-hoc combination operators and
their inherent linearity constraints.

• Interest-Perturbation Disentanglement:
SGD realizes interest-perturbation decoupling
regulation.

• Online Deployment Optimization: TCC sig-
nificantly reduces the inference cost of Hi-
erDiffuse without compromising the genera-
tion effect.

• Empirical Validation: Comprehensive exper-
iments have achieved better results than the
baseline, demonstrating practical viability.

2 Related Work

Traditional approaches to user behavior model-
ing typically bifurcate user behaviors into separate
long-term and short-term sequences, employing
distinct architectures for each. Long-term model-
ing has evolved from RNNs (Hidasi et al., 2016)
to sophisticated attention mechanisms (Zhou et al.,
2019) with noise handling capabilities (Cao et al.,
2022), while short-term modeling leverages trans-
former variants (Xia et al., 2023) and graph net-
works (Wu et al., 2019) to capture session dynam-
ics. However, this artificial separation creates a
fundamental disconnect in modeling the continu-
ous spectrum of user interests, where behaviors
naturally transition between temporal scales.

Current interest fusion techniques attempt to
bridge this gap through concatenation (Zhou et al.,

2018), cross-scale attention (Li et al., 2019), or gat-
ing networks (Lv et al., 2019). While these meth-
ods have advanced the field, they universally treat
fusion as a post-hoc combination step constrained
by linear interaction assumptions. This limitation
becomes particularly apparent when handling mis-
aligned feature spaces between temporal scales or
disentangling meaningful signals from transient
noise in short-term behaviors. Recent attempts to
apply diffusion models in recommendations (Wang
et al., 2023; Li et al., 2023) have shown promise
in denoising user behaviors, but focus narrowly on
single-scale sequences without addressing the core
fusion challenge.

Meanwhile, existing studies of diffusion recom-
mendation systems like DMCDR (Li et al., 2025)
and DreamRec (Yang et al., 2023) overlook the
online deployment challenges caused by the diffu-
sion model’s inherent computational complexity,
despite its fundamental importance for real-world
applications.

3 Methodology

Fig.1 briefly illustrates the overall framework of the
proposed HierDiffuse. It receives the output from
the transformer-based long-term behavior sequence
encoder and the short-term behavior sequence en-
coder, and uses the generated representation for
the downstream CTR prediction task through the
diffusion process. HierDiffuse introduces two new
modules: SGD and TCC, which are used for in-
terest perturbation decoupling of guidance and and
diffusion reasoning acceleration, respectively.

3.1 Preliminaries

We formalize user behavior sequence modeling
through dual-sequence representation learning.
Given a user’s long-term behavior sequence BL =
{bLi }Mi=1 and short-term session sequence BS =
{Sk}Kk=1 where Sk = {bSj }nk

j=1, we construct long-
term encoder hL = fL(BL) ∈ RdL , and short-term
encoder: {hS

k }Kk=1 = fS(BS) ∈ RdS . The fu-
sion objective learns Fθ : (hL, {hS

k }) 7→ hfusion

through a diffusion process. Our key innovation
reformulates this as conditional denoising:

hfusion = Denoise(hL ⊕ ϵT , {hS
k }) (1)

where ϵT ∼ N (0, I) and ⊕ denotes noise injection.
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Figure 1: The framework of the proposed HierDiffuse.
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Figure 2: The process of the proposed Trajectory Convergence Constraint (TCC).

3.2 Diffusion Process in User Interest
Modeling

Our framework consists of a forward noising pro-
cess and a conditional reverse process.

Forward Process Gradually adds Gaussian noise
to the latent representation hL over T steps:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)

where x0 = hL and βt controls the noise scale.

Reverse Process In order to reduce computa-
tional overhead, we perform average pooling on
the short-term interests of multiple sessions, as
shown in Eq. (3).

hS = AvgPooling({hS
k }) (3)

Then we learn to denoise while conditioned on
short-term behaviors hS :

pθ(xt−1|xt,h
S) = N (µθ(xt, t,h

S),Σt) (4)

The network µθ integrates current state xt,
timestep t and short-term behaviors hS . In prac-
tice, we implement it through Multi-Layer Percep-
tron (MLP) based on computational complexity
considerations. Starting from xT ∼ N (0, I), the
process performs T iterative refinements guided
by behavioral contexts following the DDPM (Ho
et al., 2020) paradigm, enabling joint modeling of
long-term and short-term user patterns.

3.3 Semantic Guidance Disentanglement

In CTR prediction systems, user behavior se-
quences often exhibit complex semantic patterns
where different interactions carry varying levels of
information reliability and predictive value. Tradi-
tional conditional guidance approaches, such as the
CFG framework (Ho and Salimans, 2022), address
this through a uniform scaling mechanism:

ϵ̂θ(xt, t, g) = (1− ω)ϵθ(xt, t) + ϵθ(xt, t, g) (5)
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While effective in simple scenarios, this homoge-
neous scaling strategy fails to capture the semantic
heterogeneity inherent in real-world user behaviors.
We observe that user interactions naturally form
distinct semantic categories, for example, niche
item clicks that reflect strong personal preferences
versus trend-driven clicks that indicate broader in-
terests. These semantic categories exhibit different
information densities and noise characteristics, ne-
cessitating differentiated treatment in the guidance
process.

To address this semantic imbalance, we propose
SGD (Semantic Guidance Disentanglement) that
extends conditional guidance through semantic-
aware decomposition. SGD is grounded in the
insight that semantically independent guidance con-
ditions where p(y1, y2 | xt) = p(y1 | xt)p(y2 | xt)
enable natural factorization of the conditional score
function. This leads to our reformulated guidance
mechanism:

∇xt log p(xt | y1, y2) = (1− ω1 − ω2)∇xt log p(xt)

+ω1s1(xt, y1) + ω2s2(xt, y2)

(6)

where si(xt, yi) = ∇xt log p(yi | xt) represents
the semantic guidance direction for condition yi,
and ωi ≥ 0 denotes its adaptive scaling factor.
SGD enable each guidance component si(xt, yi) to
capture the distinct semantic characteristics of its
corresponding behavior category. The scaling fac-
tors ωi dynamically adjust based on the information
density and reliability of each semantic category.
And the additive structure naturally accommodates
multiple semantic conditions without interference.

3.4 Trajectory Convergence Constraint

Diffusion models generate data through iterative
denoising, requiring about 100 to 1000 neural
function evaluations (NFEs). While methods like
DDIM (Song et al., 2020) reduce steps via non-
Markovian processes, they remain bound to sequen-
tial computation. We propose a novel Trajectory
Convergence Constraint (TCC) method as shown
in Figure 2 that accelerates generation by learning
deterministic mappings from any noisy sample to
the target distribution. The reverse diffusion tra-
jectory inherently contains redundant steps due to
Markovian assumptions. We hypothesize that a
deterministic mapping from any noisy state xt to
the target x0 can be learned while preserving distri-
butional fidelity.

Given a diffusion process {xt}Tt=0, we define the
ideal trajectory Γ(x0) terminating at x0. For any
xt, xt′ ∈ Γ(x0), we enforce:

Φ(xt, t) = Φ(xt′ , t
′) ∀t, t′ ∈ [0, T ] (7)

where Φ is our learned mapping network. We pa-
rameterize Φ as fθ(xt, t) with loss:

L(θ) = Ex0,t∥fθ(xt, t)− x0∥22︸ ︷︷ ︸
Reconstruction

+λ ∥fθ(xt, t)− fθ(x̂t−∆t , t−∆t)∥22︸ ︷︷ ︸
Trajectory Regularizer

(8)

where x̂t−∆t is the intermediate state obtained by
forward diffusing from xt to step t−∆t, and the
convergence of the trajectory is achieved by con-
straining the stability of adjacent mappings.

Under Lipschitz continuity (∥fθ(x)− fθ(y)∥ ≤
L∥x− y∥), the approximation error decays expo-
nentially:

∥x0 − fθ(xt)∥ ≤ C · e−αt (9)

which shows that it is possible to approximate x0
by a finite-step mapping. TCC is equivalent to
learning a deterministic probability flow ODE in
Wasserstein space, whose solution curve is asymp-
totically consistent with the true reverse trajectory
of the diffusion model, but skips the numerical
integration process through explicit mapping.

4 Experiment

In this section, we describe how we conduct our
experiments of the proposed HierDiffuse for user
interest modeling in CTR prediction task. Using
the user feedback collected from a real-world on-
line advertising platform, we train the CTR models
and conduct offline experiments against various
baselines.

4.1 Experimental Settings
4.1.1 Datasets
We performed experiments on several benchmark
datasets, including the Amazon Book Dataset1

(McAuley et al., 2015) and Taobao Dataset2, both
of which are extensively utilized in behavior se-
quence modeling studies. Additionally, we incor-
porated a real-world industrial dataset obtained
from a major e-commerce platform. For pub-
lic datasets, the Amazon Book dataset comprises

1http://jmcauley.ucsd.edu/data/amazon/
2https://tianchi.aliyun.com/dataset/649
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Table 1: Model performance (AUC) on three datasets. The best results are highlighted in bold.

Model Amazon Taobao Industrial

Avg-Pooling DNN 0.7689 0.8539 0.7512
DIN 0.7862 0.8995 0.7564

DIEN 0.8377 0.9222 0.7611
DiffuRec 0.8395 0.9258 0.7607

DreamRec 0.8421 0.9286 0.7619

HierDiffuse 0.8472 0.9327 0.7680

75,053 users, 358,367 items, and 150,016 interac-
tion samples. In comparison, the Taobao dataset
is significantly larger, containing 7,956,431 users,
34,196,612 items, and 7,956,431 samples. For the
industrial dataset, we use real 14-day exposure sam-
ples for training and the 15th-day samples for eva-
lution.

4.1.2 Evaluation Metrics
We use AUC as the evaluation metric, which is
widely used in CTR estimation tasks (Pi et al.,
2020; Zhou et al., 2018). Notably, in CTR pre-
diction scenarios, even a 0.001 AUC gain is con-
sidered practically significant (Zhou et al., 2018,
2019). At the same time, we use the number of
batches inferred per second to measure the model
time consumption (Chang et al., 2023; Si et al.,
2024).

4.1.3 Implementation Details
We perform training and inference using A100
GPUs. For noise scheduling, we adopt a cosine-
based approach to ensure stable and effective noise
scaling throughout the process:

ᾱt =
cos

(
π
2 · t/T+s

1+s

)

cos
(
π
2 · s

1+s

) (10)

αt =
ᾱt

ᾱt−1
, βt = 1− αt (11)

Meanwhile, we adopt a progressively increas-
ing span sampling strategy to handle ∆t during
TCC training: initially constrained to small spans
(∆t ≤ 0.1T ) to stabilize early learning, then grad-
ually expanded to uniformly cover medium spans
(∆t ∼ U(0.1T, 0.5T )) as training progresses. This
curriculum learning approach ensures smooth ini-
tial convergence before tackling harder long-span
predictions.

Concurrently, the trajectory regularizer loss
weight λ follows a linear decay schedule from
1.0 to 0.2, prioritizing cross-step alignment in early
phases while progressively shifting focus to single-
step accuracy. The complementary scheduling of
∆t and λ creates a balanced transition from strict
trajectory preservation to final output quality opti-
mization.

4.2 Baselines

We benchmark our model against prominent
baseline algorithms including Avg-Pooling DNN,
DIN (Zhou et al., 2018), DIEN (Zhou et al., 2019),
DiffuRec (Li et al., 2023), and DreamRec (Yang
et al., 2023).

4.3 Offline Experiment

4.3.1 Comparing to Baseline Methods
Table 1 shows the comparisons of the proposed
method with various baselines. From the table,
we can see the proposed method HierDiffuse out-
performs baseline methods by leveraging diffu-
sion models for superior CTR prediction, capturing
complex user dynamics and noise robustness, while
its SGD module and trajectory convergence con-
straint design further enhance performance across
diverse datasets.

4.3.2 Ablation Study
We conducted extensive ablation experiments to
demonstrate the necessity of each component of
HierDiffuse. Table 2 illustrate the performance of
each component including guidance method choice
(ablation of SGD method, comparison between
SGD and custom CFG (Ho and Salimans, 2022)),
reverse backbone choice for µθ, diffusion direction,
loss function and using TCC method or falling back
to DDPM (Ho et al., 2020) or DDIM (Song et al.,
2020). It is clear to see that:
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Table 2: Ablation Study on Industrial Dataset. ∆ shows relative AUC vs our method. Infer. shows the number of
batches inferred per second.

(a) Guidance Method

Variant AUC ∆ Infer.

w/ CFG 0.7663 ↓0.0017 16.9
w/ SGD (ours) 0.7680 - 16.1

(b) Reverse Backbone

Variant AUC ∆ Infer.

w/ Transformer 0.7684 ↑0.0004 14.8
MLP (ours) 0.7680 - 16.1

(c) Loss Function

Variant AUC ∆ Infer.

w/o LRecon 0.7629 ↓0.0051 16.2
w/o LTR 0.7669 ↓0.0011 16.4
ours 0.7680 - 16.1

(d) TCC Method

Variant AUC ∆ Infer.

w/ DDPM 0.7682 ↑0.0002 9.98
w/ DDIM 0.7681 ↑0.0001 13.01
ours 0.7680 - 16.1

(e) Diffusion Direction

Variant AUC ∆ Infer.

+Short→ ϕ 0.7640 ↓0.0040 15.7
+Long→ ϕ 0.7644 ↓0.0036 15.5
+Short→Long 0.7647 ↓0.0033 16.0
+Long→Short (ours) 0.7680 - 16.1

1. Guidance Method Choice: SGD module out-
performs CFG (Ho and Salimans, 2022) via ef-
fective perturbation-interest disentanglement.

2. Reverse Backbone Choice: Employing a
transformer backbone for reverse process
yields a marginal AUC gain but fails to com-
pensate for the added computational overhead
from extended training and inference. This
likely stems from the fact that user interests
have already been comprehensively modeled
in preceding stages. Consequently, the dif-
fusion stage only requires focus on interest
fusion, where even the modest nonlinearity of
a simple MLP proves sufficient.

3. Diffusion Direction: The Long→Short de-
noising paradigm (the results of the Full
Model in Table 2) with hybrid losses yields
optimal performance by progressively refin-
ing stable long-term interests with dynamic
short-term guidance.

4. Loss Function: Both the reconstruction loss
LRecon and trajectory regularizer loss LTR

demonstrate statistically significant positive
impacts on both user interest fusion and AUC
performance enhancement.

5. Using of TCC Method: TCC method signif-
icantly accelerates inference. Removing this
module and switching to a multi-step genera-
tion paradigm (e.g., DDPM (Ho et al., 2020)
or DDIM (Song et al., 2020)) fails to deliver
meaningful AUC gains while drastically de-
grading inference performance.

Overall, the ablation results show that removal
of any component causes significant performance
drops, confirming their complementary roles in
modeling complex user behavior dynamics.

5 Conclusion

We presented HierDiffuse, a unified framework
that reformulates user interest fusion systems as a
denoising process. By integrating SGD for noise-
robust disentanglement and TCC for diffusion
reasoning accelerating, our approach effectively
bridges the gap between long-term preferences and
short-term signals. Experiments demonstrate sig-
nificant improvements over existing methods, offer-
ing both theoretical insights and practical benefits
for adaptive interest fusion, while also providing a
solution to the problem of reasoning constraints for
diffusion models used for sequence modeling in
production settings.. Future work may explore ex-
tensions to multi-modal settings and finer-grained
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interest decomposition. HierDiffuse provides a
principled and scalable solution to a core challenge
in modern user interest modeling.

6 Limitations

While HierDiffuse demonstrates strong perfor-
mance in CTR prediction and offers a principled
approach to interest fusion, several limitations re-
main to be addressed in future work. Computation-
ally, the training phase remains resource-intensive
despite our efficient TCC inference. The Semantic
Guidance Disentanglement (SGD) may not fully
capture the nuance in highly ambiguous user be-
haviors, and its performance in domains with ex-
tremely sparse data requires further validation. In
terms of broader impact, as a data-driven model, it
risks amplifying historical biases from the training
data, potentially reinforcing filter bubbles without
explicit fairness constraints.
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