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Abstract

Natural language interfaces (NLIs) democra-
tize data analytics by enabling non-technical
users to query relational databases via Text-
to-SQL systems. While large language mod-
els (LLMs) have achieved state-of-the-art ac-
curacy on benchmarks like Spider and BIRD,
two critical challenges persist for real-time de-
ployment: (1) inference latency due to se-
quential autoregressive decoding (e.g., aver-
age inference latency on BIRD (Minidev) is
14.3 seconds per query for Qwen2.5-Coder-
32B and 22.86 seconds for Llama-70B.), and
(2) schema hallucinations (e.g., invalid col-
umn references like customer_ids instead of
cust_id). (2) schema hallucinations (e.g.,
Qwen2.5-Coder-32B Instruct generated ...
COUNT(users.UserId) ... = users.Id
..., using users.Id correctly in JOIN but
hallucinating users.UserId in COUNT). To ad-
dress these, we propose Tree-Guided Token De-
coding (TTD-SQL), a lightweight framework
that integrates SQL grammar and database
schema constraints into the decoding process
without modifying the underlying LLM. TTD
precomputes token-level decision trees over
SQL keywords, table names, and column iden-
tifiers, enabling deterministic "auto-fill" tran-
sitions for uniquely determined tokens (e.g.,
"Song_" → "ID") while retaining flexibility
for unconstrained reasoning. Across five LLMs
(CodeLlama, Phi-4, Qwen2.5, Granite, Llama-
70B), TTD achieves up to 19.96% token-rate
speedups by eliminating redundant forward
passes (e.g., CodeLlama: 8.97→10.76 token-
s/s on Spider) and reduces schema hallucina-
tions by +17.7% in executable-SQL rates (e.g.,
CodeLlama on BIRD). By bridging rigid parser-
based methods and flexible LLM generation,
TTD offers a practical path toward reliable,
high-performance SQL generation in both pub-
lic benchmarks and enterprise settings.

1 Introduction

Natural language interfaces (NLIs) to relational
databases have the potential to democratize data an-
alytics by enabling non-technical users to query
databases through conversational English (Liu
et al., 2024; Li et al., 2024a). Text-to-SQL sys-
tems, which translate natural language queries into
executable SQL statements, are central to this vi-
sion (Deng et al., 2022; Katsogiannis-Meimarakis
and Koutrika, 2023). Recent advances in large
language models (LLMs) have pushed state-of-the-
art accuracy on benchmarks like Spider (Yu et al.,
2018) and BIRD (Li et al., 2024b). However, real-
time deployment in high-stakes domains—such as
finance, healthcare, and enterprise analytics—faces
two persistent challenges:

• Inference Latency: Autoregressive LLMs
process tokens sequentially, requiring a
full forward pass per token. On BIRD
Minidev, Qwen2.5-Coder-32B and Llama-3.3-
70B-Instruct take 14.3s and 22.86s per query
under autoregressive decoding (AR), respec-
tively. Such delays hinder applications like
conversational assistants or real-time dash-
boards.

• Schema Hallucinations: Models often
generate invalid SQL constructs (e.g.,
Qwen2.5-Coder-32B Instruct generated ...
COUNT(users.UserId) ... = users.Id
..., using users.Id correctly in JOIN but
hallucinating users.UserId in COUNT.),
leading to incorrect data retrieval. These
errors undermine trust in NLIs, particularly
in regulated domains where schema validity
is critical (e.g., financial reporting, clinical
databases).
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Figure 1: Overview of TTD. Left: Autoregressive decoding requires 3 forward passes for tokens "istrict", "_id",
and "=" (sequential processing). Right: TTD deterministically auto-fills "istrict" and "_id" via precomputed
schema trees (solid lines), eliminating redundant LLM calls. For ambiguous tokens like "=", TTD reverts to standard
autoregressive generation (dashed line).

Existing solutions trade off between efficiency
and correctness. Grammar-constrained decoding
methods (Ugare et al., 2024; Torsten Scholak,
2021) eliminate invalid generations but incur parser
overhead. Schema linking (Wang et al., 2019)
reduces hallucinations at the cost of fine-tuning,
while prompting strategies like chain-of-thought
(Wei et al., 2022) increase token usage and latency.
No prior work simultaneously optimizes both met-
rics under resource constraints—a gap we address
with Tree-Guided Token Decoding (TTD-SQL),
a lightweight framework that integrates schema-
aware constraints into LLM decoding without mod-
ifying the model itself.

1.1 Core Innovation: Schema-Aware Token
Trees

TTD enhances SQL generation by precomputing
domain-specific token-level decision trees over
SQL keywords, table names, and column identi-
fiers. Given context like "Song_" (tokenized as
["Song", "_"]), TTD deterministically fills schema-
valid continuations (e.g., "ID" for "Song_ID")
while retaining flexibility for unconstrained reason-
ing. This hybrid strategy bridges the gap between
rigid parser-based methods and flexible LLM gen-
eration, offering two key advantages:

1. Latency Reduction: By skipping forward
passes for schema-determined tokens, TTD
achieves speedups upto 19.96% in token
rate. For example, CodeLlama 7B reaches
8.97→10.76 tokens/s on Spider (Table 2), re-
ducing query latency by≥1s in 51% of BIRD

queries (Qwen2.5-Coder-32B).

2. Hallucination Mitigation: Schema-aligned
pruning increases executable-SQL rates by
+17.7% (CodeLlama on BIRD), critical for
domains requiring strict schema validity.

Figure 1 illustrates TTD’s mechanism: deter-
ministic transitions (solid lines) eliminate redun-
dant LLM calls, while ambiguous contexts (dashed
lines) retain autoregressive generation.

1.2 Technical Breadth and Model
Compatibility

TTD’s design ensures broad applicability across
LLMs and deployment scenarios:

Model Agnosticism: Evaluated across 7B–70B
parameter models (CodeLlama, Phi-4, Qwen2.5,
Granite, Llama-3.3) from diverse training
paradigms (code-specialized, multilingual).

Tokenization Sensitivity: Performance gains cor-
relate with subtoken granularity. CodeLlama’s
split of cust_id into [cust, _, id] enables deeper
decision paths (16.1% auto-fill on Spider) versus
coarser tokenization (Llama-70B: [cust, _id] →
7.4% auto-fill on BIRD).

Enterprise Scalability: Anticipated benefits am-
plify in proprietary schemas with complex identi-
fiers (e.g., "tbl_usr_dtl"), where deeper token
trees enable more deterministic predictions than
public benchmarks.
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1.3 Paper Organization

Section 3 details TTD’s schema-aware decoding
algorithm. Sections 4–7 present experimental re-
sults, discussion, and limitations. Appendices pro-
vide implementation details (e.g., tree construction)
and supplementary analyses. By addressing both
latency and hallucination challenges in a unified
framework, TTD offers a practical path toward reli-
able, high-performance SQL generation for public
benchmarks and enterprise applications alike.

2 Relevant Work

We categorize prior work into two streams:
Category 1: Grammar-Constrained Decod-

ing Grammar-constrained decoding enforces syn-
tactic validity during LLM generation. Recent ap-
proaches include:

In-Context Learning: Grammar rules as few-
shot examples guide decoding (Wang et al., 2023).
Lightweight but limited in handling complex SQL
schemas (e.g., nested queries).

Finite-State Machines (FSMs):
Black-box methods: Sketch-guided decoding
(Geng et al., 2024) and iterative constraints (Beurer-
Kellner et al., 2023) enforce grammar without mod-
ifying LLMs.

White-box methods: Syncode (Ugare et al., 2024)
restricts token selection via grammar-aware logits
but adds parser overhead. Grammar-agnostic APIs
(Zhang et al., 2023; Wang et al., 2024) improve
flexibility.

Speculative Decoding: Fast approximate token
prediction using draft models (Yaniv Leviathan,
2023) accelerates generation but lacks schema
awareness.

Category 2: Constrained Decoding for SQL
Generation Key innovations in SQL generation
include:

Schema Linking: RAT-SQL (Wang et al., 2019)
uses relation-aware transformers to align utterances
with schema elements. Synchromesh (Poesia et al.,
2022) adds 22% overhead for schema validation.

Incremental Parsing: PICARD (Torsten Scholak,
2021) enforces SQL grammar via restricted beam
search, though parser integration slows inference
(Arcadinho et al., 2022).

Prompting Strategies:
Chain-of-Thought (CoT) (Wei et al., 2022): Boosts
reasoning but harms execution accuracy (e.g.,

Codellama’s EX% drops from 23.2% to 12.0% on
BIRD; Table 3).

Chain-of-Draft (CoD) (Xu et al., 2025): Prioritizes
speed at the cost of Exec% (e.g., Phi-4’s Exec%
drops from 98.8% to 98.4% on Spider; Table 2).

Hybrid Approaches: DIN-SQL (Pourreza and
Rafiei, 2023) combines dynamic reasoning with
schema linking, while SQLGen (Pourreza et al.,
2024) uses grammar-guided fine-tuning for schema
alignment.

2.1 TTD’s Distinctive Advantages

• Minimal Overhead: Avoids parser integra-
tion (Syncode (Ugare et al., 2024), PICARD
(Torsten Scholak, 2021)) or beam-search mod-
ifications.

• Token-Level Efficiency: Auto-fill rates (e.g.,
16.1% for Codellama on Spider) reduce la-
tency without schema-linking overhead (Poe-
sia et al., 2022).

• Plug-and-Play Design: Operates post-
training, unlike SQLGen (Pourreza et al.,
2024), which require fine-tuning.

3 TTD-SQL: Our Proposed Approach

We propose Tree-Guided Token Decoding for SQL
generation (TTD-SQL), a framework that embeds
domain-specific SQL syntax and schema con-
straints into LLM decoding through a token-level
decision tree, enabling deterministic predictions
where possible while preserving generative flexi-
bility.

3.1 Formal Framework

Let D denote the SQL domain vocabulary con-
taining SQL keywords (e.g., SELECT) and schema
elements (e.g., table/column names). We define
a domain-aware token set T ⊆ V (LLM vocabu-
lary), where each t ∈ T matches a substring of
some ai ∈ D that aligns with LLM tokenization
(e.g., "Singer_ID" decomposed into "Singer",
"_", "ID").

Token Chain Transition Tree We build a di-
rected tree over T where nodes represent token
chains (prefixes of schema elements/keywords).
For a token chain c = [t1, t2, . . . , tk], its children
in the tree are defined as in Equation 1.
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Figure 2: Token transition tree example. Solid lines
show deterministic paths (e.g., "Singer"→"_"),
dashed lines allow ambiguity resolution (e.g.,
"Singer_"→"ID" vs "Name").

Next(c) =




{ t′ ∈ T }, if ∃ai ∈ D such that

c ◦ t′ is a prefix of ai,
V, otherwise.

(1)
Context-sensitive transitions resolve ambigui-

ties by considering preceding tokens: For token
chains like ["Song", "_"] or ["Stadium", "_"], the
system deterministically selects valid schema con-
tinuations ("Name" or "ID" respectively), ensuring
adherence to defined database structures.

3.2 Tree-Guided Decoding Algorithm
Our hybrid strategy combines deterministic transi-
tions with LLM sampling:

h(S,V∗) =
{
t, if |V∗| = 1

fLLM(S,V∗), otherwise

where S is the token sequence, V∗ =
Next(c), c is the last word’s token chain (e.g.,
["Singer","_"]), and fLLM is standard sampling
(e.g., greedy decoding).

Algorithm 1 formalizes this process. Key advan-
tages:

1. Efficiency: Eliminates 19.9% LLM passes via
deterministic token selection (Section 4)

2. Coherence: Schema-constrained branches re-
duce hallucinations (e.g., ["Stadium","_"]
only permits "ID", not "Name")

3.3 Tree Invocation Rules
Trees activate during decoding based on context:
Keyword Trees: Auto-complete SQL keywords
(e.g., "ORDER"→"BY") when prefixes exist in key-
word tree
Schema Table Trees: Trigger after "FROM",
"JOIN", or "ON" to prevent hallucinated tables

Algorithm 1 Tree-Guided Token Decoding

Require: S = [t1, . . . , ti]: Initial token sequence;
N : Maximum generation length

1: while not terminated and len(S) < N do
2: c ← ExtractLastWord(S) {Find tokens

forming the last word/sub-word}
3: V∗ ← Next(c) {Retrieve valid continua-

tions for the word}
4: if |V∗| = 1 then
5: t∗ ← V∗ {Deterministic token selection}
6: else
7: t∗ ← fLLM(S,V∗) {LLM-guided sam-

pling}
8: end if
9: S ← S ◦ t∗ {Append new token}

10: end while

Schema Column Trees: Activate when
"." follows non-numeral tokens (e.g.,
"table."→column names)

3.4 Offline Tree Construction

Three-stage pipeline creates domain-specific trees:

Schema Augmentation: Generate case variants,
quoted forms, and whitespace-padded versions of
schema elements (Appendix A)

Tokenization-Aware Decomposition: Tokenize
augmented strings using LLM tokenizer

Tree Assembly: Build prefix tree from token
chains and valid transitions

4 Experiments

We evaluate TTD on two text-to-SQL benchmarks
using 1–4 NVIDIA A100 40GB GPUs. This sec-
tion details datasets, models, evaluation metrics,
and implementation details. All experiments op-
erate in a zero-shot regime with no error cor-
rection—SQL outputs are generated directly from
prompts without iterative refinement, re-ranking,
or post-hoc validation.

4.1 Datasets

We use two standard benchmarks:

Spider (Yu et al., 2018): Development split with
992 questions from 19 databases.

BIRD (Minidev) (Li et al., 2024b): Lightweight
dataset with 500 high-quality pairs from 11
databases.

1290



4.2 Models and Baselines

Table 1 shows the five LLMs evaluated. We com-
pare three decoding strategies:

• AR: Standard autoregressive decoding

• GCD (Ugare et al., 2024): Grammar-
constrained decoding

• TTD: Our tree-guided method (Section 3)

For reasoning-based generation, we also test:

• CoT (Wei et al., 2022): Chain-of-thought with
“‘sql marker

• CoD (Xu et al., 2025): Minimal-step drafts (5
words/step)

Due to resource constraints, the 70B model was
only tested with AR/GCD/TTD.

4.3 Prompts

All methods use a shared base prompt template
tailored to SQL generation, with dataset-specific
adaptations:

BIRD Prompt : Identical to Spider’s structure
but includes additional schema-aware evidence
(provided in the dataset) to guide complex query
generation.

For reasoning-based strategies (CoT/CoD), we
extend the base prompt with:

• "Let’s think step by step" for chain-
of-thought (CoT) and chain-of-draft (CoD)
generation.

• "Keep drafts to 5 words" for CoD’s
minimal-step drafts.

For GCD, we add "\n\n" as an additional stop
token to enforce valid SQL output termination.

Full prompt templates, are provided in Ap-
pendix B.

4.4 Evaluation Metrics

We measure:

• Execution Accuracy (EX): Matches ground-
truth results using Spider framework

• Token Rate (TR): Tokens per second during
generation (higher=better)

• Executable SQL %: Valid SQL queries %

• Auto-fill Rate: Proportion of tokens determin-
istically predicted by TTD (no LLM decoding
required)

5 Results

We evaluate TTD across five LLMs and four decod-
ing strategies on Spider/BIRD benchmarks. Key
findings:

• Execution Accuracy (EX%): TTD match-
es/exceeds AR baseline. GCD achieves high-
est Spider accuracy for Qwen2.5 (82.1%)
but underperforms on BIRD (50.2% vs AR’s
54.6%).

• Token Rate (TR): TTD delivers largest
speedups (Codellama: +19.96% over AR).
Marginal slowdown only for Phi-4 on BIRD
(8.24 vs AR’s 8.31 tokens/s).

• Executable SQL (Exec%): TTD signifi-
cantly improves valid SQL generation. Codel-
lama’s exec rate rises +17.7% on BIRD
(57.6% → 67.8%), Granite improves +6.3%
on BIRD.

• CoT/CoD Trade-offs: CoT reduces EX% by
–48.3% (Codellama on BIRD), while CoD
shows mixed accuracy impacts.

• Actual inference latency: TTD achieves ≥
1.0 s gains in 51 % and 60 % of queries for
Qwen2.5 and Llama-70B, respectively, over
BIRD Minidev vs AR (Table 5).

5.1 Statistical Significance
Friedman tests (Friedman, 1937) reject equal me-
dian token rates χ2 (df=4) and p<0.001 for all mod-
els). Wilcoxon tests confirm TTD’s superiority:

• TTD vs AR: All models significant (p<10−4)

• GCD vs AR: Significant for all except Granite
(p=0.0923 )

• CoT/CoD vs AR: Significant in all but Granite
CoD (p=0.1685 )

See Appendix C for details.

6 Discussion

We introduced Tree-Guided Token Decoding (TTD),
a structured decoding framework that integrates
schema-aware constraints during SQL generation.
Key benefits:

• Inference Speedups: Deterministic token
prediction yields improvements in token-rate
(TR) upto 19.96% over autoregressive de-
coding (Tables 2, 3), with stronger gains
for higher auto-fill rates (e.g., Llama-70B:
+12.3% TR with 10.9% auto-fill on Spider).
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Table 1: LLM models used in experiments.

Model Size URL
CodeLlama 7B-Instruct 7B https://huggingface.co/meta-llama/

CodeLlama-7b-Instruct-hf
Microsoft Phi-4 13B https://huggingface.co/microsoft/phi-4
Qwen2.5-Coder-32B-Instruct 32B https://huggingface.co/Qwen/Qwen2.

5-Coder-32B-Instruct
Granite-34B-Code-Instruct-8K 34B https://huggingface.co/ibm-granite/

granite-34b-code-instruct-8k
Llama-3.3-70B-Instruct 70B https://huggingface.co/meta-llama/Llama-3.

3-70B-Instruct

Table 2: Spider dataset results. Metrics: EX% (execution accuracy), TR (tokens/sec), Exec% (executable SQL).
Baselines: AR, GCD, CoT, CoD. TTD matches/exceeds baseline accuracy while improving token rates by >12%
over AR. GCD underperforms on Llama-70B (8% slower than TTD).

Method CodeLlama Phi-4 Qwen2.5 Granite Llama-70B
EX TR Exec EX TR Exec EX TR Exec EX TR Exec EX TR Exec

AR 59.5 8.97 91.8 72.2 7.75 98.8 80.5 4.1 98.6 68.8 5.04 96.2 80.9 2.76 99.5
GCD 60.6 9.53 93.4 65.7 8.97 98.8 82.1 4.21 99.1 69.4 5.16 96.1 59.2 2.85 76.8
CoD 48.2 10.27 81.8 73.1 8.64 98.4 80.4 3.99 98.4 71.1 4.94 96.1 - - -
CoT 47.0 10.31 80.2 69.6 8.63 98.7 79.2 4.03 99.2 69.7 5.00 96.6 - - -
TTD 59.5 10.76 93.7 72.9 8.81 98.9 80.7 4.65 98.6 69.2 5.78 96.9 80.9 3.1 99.5

Table 3: BIRD dataset results. TTD matches/exceeds baseline accuracy with >6% token-rate gains over AR (except
Phi-4).

Method CodeLlama Phi-4 Qwen2.5 Granite Llama-70B
EX TR Exec EX TR Exec EX TR Exec EX TR Exec EX TR Exec

AR 23.2 8.83 57.6 42.6 8.31 92.8 54.6 3.94 94.6 27.0 4.84 65.2 56.6 2.70 97.4
GCD 21.8 8.89 51.2 36.8 8.64 80.0 50.2 4.05 84.0 26.0 4.92 63.8 36.4 2.78 75.0
CoD 19.0 9.11 45.4 43.8 8.50 93.0 54.2 3.91 94.8 27.4 4.77 67.2 - - -
CoT 12.0 8.95 49.4 41.2 8.35 91.8 49.6 4.02 95.2 25.8 4.80 64.8 - - -
TTD 24.2 9.41 67.8 43.0 8.24 93.4 54.6 4.31 95.4 27.2 5.19 69.6 56.6 2.90 97.2

Table 4: TTD auto-fill rates (%).

Model Codellama Phi-4 Qwen2.5 Granite Llama-70B
Dataset Spider BIRD Spider BIRD Spider BIRD Spider BIRD Spider BIRD
TTD 16.1 10.3 12.0 7.8 14.2 8.6 14.7 7.2 10.9 7.4

Table 5: Actual inference latency

Model % Queries (≥1s faster)
CodeLlama 23.69 %
Phi-4 2.81 %
Qwen2.5 51 %
Granite 27.11 %
Llama-70B 60.04 %

• Hallucination Reduction: Schema-aligned
pruning improves executable-SQL rates upto
10.2% on complex BIRD queries, enhancing
deployment reliability.

6.1 Speedup Mechanism

TTD achieves efficiency through deterministic to-
ken filling (Table 4):

• Auto-fill rates (7.2–16.1%) directly correlate
with TR gains.

• Tokenization sensitivity: Finer tokenization
(e.g., CodeLlama splits "cust_id" into 3 to-
kens) enables deeper decision paths (16.1%
auto-fill, +19.96% TR), while coarser tok-
enization (e.g., Llama-70B’s "cust_id"→2 to-
kens) yields smaller gains (7.4% auto-fill,
+7.4% TR).

6.2 Enterprise Schema Potential

TTD’s benefits may amplify in enterprise settings:

• Deeper token trees: Complex identifiers
(e.g., "tbl_usr_dtl") tokenize into longer se-
quences, enabling more deterministic predic-
tions than public benchmarks (max 16.1%).

• Stronger hallucination prevention: Strict
enforcement reduces invalid generations be-
yond BIRD’s +17.7% gain for CodeLlama.
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• Scalability: The cost of constructing the
schema trees scales linearly with the schema
elements, detailed results in Appendix A.

7 Conclusion

TTD enhances SQL generation through schema-
aware decoding, delivering consistent speedups (up
to 19.96% TR) and reduced hallucinations (+17.7%
executable SQL) across five LLMs. By bridging
parser rigidity and LLM flexibility, TTD offers reli-
able performance for public benchmarks and enter-
prise applications, with straightforward extension
to domain-specific schemas.

8 Limitations

Static schema requirement: TTD relies on pre-
computed decision trees for fixed schemas; dy-
namic or evolving databases require efficient in-
cremental updates. Designing of algorithms for
incremental tree updates to handle schema changes
without full recomputation will be part of the future
work.

Tokenization sensitivity: Auto-fill rates and re-
sultant speedups depend heavily on how schema
items are tokenized by each model’s tokenizer (e.g.,
CodeLlama vs. Phi-4 vs. Granite).
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A Implementation Details of Tree
Construction

We implement tree construction using Python’s
networkx library, with three core components:

A.1 Schema Augmentation
For each schema element s, we generate variations
via:
• Case transformations:
s.lower(), s.upper(), s.capitalize()

• Delimiters: "s", ‘s‘
• Whitespace padding: s+ , + s, etc.
• SQL-specific syntax: Parentheses, aliases (e.g.,
AS t1)

A.2 Tree Assembly with NetworkX
Prefix trees are built using networkx.DiGraph:

def tree_generator(input_list):
G = nx.DiGraph()
for i in input_list:

for j in range(1, len(i)+1):
G.add_edge(str(i[:j-1]),

str(i[:j]))

Table 6: Time taken to construct schema trees

Tokenizer Time (s)
CodeLlama 7B-Instruct 0.43
Microsoft Phi-4 0.28
Qwen2.5-Coder-32B-Instruct 0.27
Granite-34B-Code-Instruct-8K 0.28
Llama-3.3-70B-Instruct 0.37

return G

A.3 SQL Grammar Special Cases
We explicitly handle:
• Nested queries: Allow ( after FROM/JOIN
• Column references: Enforce column after "."

(non-numeric context)
• Aliases: Support AS table_alias patterns

A.4 Cost for constructing schema trees
Schema tree construction is a one-time offline step.
Time taken for constructing schema trees for each
tokenizer used in the experiments is reported in
Table 5.

B Prompts

B.1 Spider
B.1.1 Basic prompt

### Task
Generate a SQL query to answer the

given user question.

### Instructions
- If you cannot answer the question

with the available database schema,
return 'I do not know'

- Do not use "ilike" or "ILIKE"
command, as it's not supported in
sqlite database.

- Do not generate any text other than
SQL, no explanation nothing.

- Use complete table name before all
the columns to be used in the
generated SQL, like
table_name.column_name

### Database Schema
The query will run on a sqlite database

with the following schema:
{table_metadata_string}

### Question
{user_question}
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### SQL

This prompt was used for AR, GCD, as well as
TTD. For CoT and COD methods additions are
made to the basic prompt above as mentioned in
Section 4.3.

B.1.2 CoT prompt

### Task
Generate a SQL query to answer the

given user question.

### Instructions
- If you cannot answer the question

with the available database schema,
return 'I do not know'

- Do not use "ilike" or "ILIKE"
command, as it's not supported in
sqlite database.

- Use complete table name before all
the columns to be used in the
generated SQL, like
table_name.column_name

- Let's think step by step. Return the
answer (final SQL query) at the end
of the response after a separator
```sql.

### Database Schema
The query will run on a sqlite database

with the following schema:
{table_metadata_string}

### Question
{user_question}

### SQL

B.1.3 CoD prompt

### Task
Generate a SQL query to answer the

given user question.

### Instructions
- If you cannot answer the question

with the available database schema,
return 'I do not know'

- Do not use "ilike" or "ILIKE"
command, as it's not supported in
sqlite database.

- Use complete table name before all
the columns to be used in the
generated SQL, like
table_name.column_name

- Think step by step, but only keep a
minimum draft for each thinking
step, with 5 words at most. Return
the answer (final SQL query) at the
end of the response after a
separator ```sql.

### Database Schema
The query will run on a sqlite database

with the following schema:
{table_metadata_string}

### Question
{user_question}

### SQL

B.2 BIRD (Minidev)

B.2.1 Basic prompt

Prompt used for the BIRD (Minidev) dataset is just
addition of Extra knowledege, i.e., evidence, to the
basic prompt of the Spider dataset provided above.

### Task
Generate a SQL query to answer the

given user question.

### Instructions
- If you cannot answer the question

with the available database schema,
return 'I do not know'

- Do not use "ilike" or "ILIKE"
command, as it's not supported in
sqlite database.

- Do not generate any text other than
SQL, no explanation nothing.

- Use complete table name before all
the columns to be used in the
generated SQL, like
table_name.column_name

### Database Schema
The query will run on a database with

the following schema:
{table_metadata_string}

### Extra knowledge
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Make use of the following information
if needed:

{evidence}

### Question
{user_question}

### SQL

C Statistical tests

Background on Statistical Tests

To assess whether the differences in decoding speed
(token rate per question) across prompting strate-
gies are statistically meaningful, we employ a suite
of well-established non-parametric tests suitable
for repeated-measures designs.

We first use the Friedman test (Friedman, 1937)
to detect overall differences in token rates across
the five decoding strategies: AR, TTD, GCD, CoT,
and CoD. The Friedman test is a non-parametric
alternative to the repeated-measures ANOVA, de-
signed for comparing more than two related sam-
ples when the normality assumption may not hold.
It tests the null hypothesis that the median ranks of
all groups are equal. A significant result indicates
that at least one method differs from the others in
terms of performance.

Following a significant Friedman test, we con-
duct pairwise comparisons between the baseline
AR strategy and each alternative method. Since
token rate differences are computed per question
(i.e., paired), we test the null hypothesis that the
median of differences between paired observations
is zero. To determine whether to use a parametric
or non-parametric test, we apply the Shapiro–Wilk
test (Shapiro and Wilk, 1965) on each set of paired
differences. If the data is approximately normal,
we use the paired t-test; otherwise, we use the
Wilcoxon signed-rank test, a non-parametric test
for paired samples that does not assume normality.

Because we conduct multiple pairwise compar-
isons, we apply the Holm–Bonferroni correction
(Holm, 1979) to control the family-wise error rate.
This method sequentially adjusts p-values, provid-
ing more statistical power than the standard Bon-
ferroni correction while still guarding against Type
I error.

These tests provide rigorous evidence as to
whether any observed token-rate improvements are
statistically robust across the evaluation datasets.

The CoT and CoD prompts addition are same as
that in case of Spider dataset.

Sample code

import numpy as np
from scipy.stats import shapiro,

ttest_rel, wilcoxon,
friedmanchisquare

from statsmodels.stats.multitest import
multipletests

# Suppose these are your per-question
token rates:

rates_AR = np.array([...])
rates_TTD = np.array([...])
rates_GCD = np.array([...])
rates_CoT = np.array([...])
rates_CoD = np.array([...])

# 1) Overall Friedman test
stat, p = friedmanchisquare(rates_AR,

rates_TTD, rates_GCD, rates_CoT,
rates_CoD)

print("Friedman:", stat, "p=", p)

# 2) Pairwise comparisons
methods = {"AR": rates_AR, "TTD":

rates_TTD, "GCD": rates_GCD,
"CoT": rates_CoT, "CoD":

rates_CoD}
pairs = [("AR","TTD"), ("AR","GCD"),

("AR","CoT"), ("AR","CoD")]
p_vals = []
for m1, m2 in pairs:

diffs = methods[m1] - methods[m2]
if shapiro(diffs).pvalue > 0.05:

_, pv = ttest_rel(methods[m1],
methods[m2])

else:
_, pv = wilcoxon(methods[m1],

methods[m2])
p_vals.append(pv)

# 3) Correct for multiple comparisons
rej, p_corr, _, _ =

multipletests(p_vals, alpha=0.05,
method='holm')

for (m1,m2), pv, rc in zip(pairs,
p_corr, rej):
print(f"{m1} vs {m2}: p={pv:.3e},

significant? {rc}")
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Table 7: Statistical tests on per-question token rates over Spider. Friedman χ2 (df=4) and p; pairwise Wilcoxon
p-values vs. AR (Holm–Bonferroni–corrected).

Model χ2 p (Friedman) AR vs TTD AR vs GCD AR vs CoT AR vs CoD
Phi-4 3748.8 < 10−3 4.10e-153 4.10e-153 2.68e-163 2.68e-163
CodeLlama-7B 2784.1 < 10−3 2.30e-151 4.28e-17 3.23e-155 1.90e-154
Qwen2.5-32B 3207.9 < 10−3 1.16e-150 1.87e-12 3.46e-163 1.01e-155
Granite-34B 1048.9 < 10−3 1.43e-145 6.78e-18 1.99e-07 4.02e-02
Llama-70B 847.5 < 10−3 1.80e-161 1.36e-31 – –

Table 8: Statistical tests on per-question token rates over BIRD (Minidev). Friedman χ2 (df=4) and p; pairwise
Wilcoxon p-values vs. AR (Holm–Bonferroni–corrected).

Model χ2 p (Friedman) AR vs TTD AR vs GCD AR vs CoT AR vs CoD
Phi-4 1765.6 < 10−3 5.26e-22 9.79e-67 1.07e–82 1.07e–82
CodeLlama-7B 1295.8 < 10−3 5.02e-10 2.03e-05 8.85e–74 2.62e–81
Qwen2.5-32B 1621.2 < 10−3 9.37e-80 2.48e–07 1.07e–82 3.47e–80
Granite-34B 175.5 < 10−3 3.33e-22 9.23e–02 1.56e–14 1.69e–01
Llama-70B 493.2 < 10−3 9.75e-81 6.38e–49 – –

D Query generation time distribution

This appendix presents detailed execution time dis-
tributions across models and query subsets to an-
alyze TTD’s latency behavior. Figure 1 visual-
izes the per-query token generation time for five
LLMs (CodeLlama-7B, Phi-4, Qwen2.5-Coder-
32B, Granite-34B, and Llama-3.3-70B) under two
scenarios:

TTD Faster: Subsets where TTD outperforms
autoregressive (AR) decoding (e.g., 93.4% of
queries for Qwen2.5-Coder-32B and 94.2% for
Llama-3.3-70B-Instruct).

TTD Slower: Subsets where TTD incurs over-
head (e.g., 69.4% of queries for Phi-4 and 32.4%
for Granite-34B).

The distributions highlight TTD’s adaptive effi-
ciency: deterministic auto-fills accelerate genera-
tion for structured patterns, while LLM sampling
retains flexibility for complex reasoning.
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Figure 3: Execution Time Distributions: TTD vs. Autoregressive Decoding (AR) Across Models

(a) CodeLlama-7B: TTD Faster (Blue) vs. AR (Orange) (b) CodeLlama-7B: TTD Slower (Blue) vs. AR (Orange)

(c) Phi-4: TTD Faster (Blue) vs. AR (Orange) (d) Phi-4: TTD Slower (Blue) vs. AR (Orange)

(e) Qwen2.5-32B: TTD Faster (Blue) vs. AR (Orange) (f) Qwen2.5-32B: TTD Slower (Blue) vs. AR (Orange)

(g) Granite-34B: TTD Faster (Blue) vs. AR (Orange) (h) Granite-34B: TTD Slower (Blue) vs. AR (Orange)

(i) Llama-70B: TTD Faster (Blue) vs. AR (Orange) (j) Llama-70B: TTD Slower (Blue) vs. AR (Orange)
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