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Abstract

Adapting language models to learn continu-
ously from data streams while retaining pre-
vious knowledge is a key challenge in artifi-
cial intelligence (AI), particularly in lifelong
language learning. Existing distillation meth-
ods are based on offline techniques, limiting
their ability to update in real-time and adapt
to dynamic environments. To address this, we
propose online dynamic mutual distillation – a
novel framework that enables continuous mu-
tual learning from task streams without relying
on domain-specific teachers. To our knowledge,
this is the first application of mutual learning in
lifelong language learning, providing dynamic
knowledge transfer without domain-specific
teachers. Moreover, our extensive experiments
demonstrate that the proposed method reduces
catastrophic forgetting, while improving task
performance on various benchmark datasets
making it suitable for real-world, dynamic nat-
ural language processing (NLP) applications
such as adaptive chat-bots and personalized
language systems. Our code is available in
https://github.com/sssrlll/L4.

1 Introduction

Catastrophic forgetting, a common challenge in
deep learning, refers to the difficulty faced by
neural networks in retaining proficiency in pre-
viously learned tasks after being exposed to new
ones (Goodfellow et al., 2013). This issue poses
significant obstacles, particularly in dynamic envi-
ronments where models are expected to continu-
ously learn from new data. Lifelong learning has
been proposed as a promising solution, designed
to enable models to sequentially learn new tasks
while preserving knowledge from previous tasks
(Chen et al., 2018). Among the various techniques
applied to address catastrophic forgetting, distil-
lation methods have emerged as highly effective
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in maintaining knowledge across tasks (Hinton,
2015). These methods have been widely adopted in
lifelong learning, particularly in NLP, due to their
ability to transfer and preserve knowledge from
previous models (Sun et al., 2019). Other studies,
such as De Lange et al. (2021); Parisi et al. (2019);
Li et al. (2024), have further explored continual
learning techniques that aim to balance learning
efficiency and memory retention on various tasks.

However, despite the broad application of dis-
tillation techniques, most approaches still rely on
independently trained domain-specific teachers, a
requirement that limits their flexibility and applica-
bility in general lifelong learning scenarios (Shin
et al., 2017). The need for domain-specific teachers
can be impractical, especially when dealing with
diverse or constantly evolving tasks, as it imposes
significant computational overhead and complex-
ity. In fact, for many application scenarios, such as
on-device deployment or online-serving language
models, resource constraints often make it imprac-
tical to employ teacher models with excessively
large parameter counts. For example, in real-world
applications, such as customer service chatbots,
models must continuously adapt to evolving user
queries and the information they have to provide
without retraining on static teacher models. As a re-
sult, traditional knowledge distillation methods that
rely on large teacher models may face significant
challenges in these settings.

To this end, we introduce L4, which integrates
mutual Learning into Lifelong Language Learning
so that student models distill knowledge from each
other, improving performance without relying on
a large teacher. Unlike traditional methods, our
approach eliminates the dependency on domain-
specific teachers by enabling models to engage in
peer-to-peer distillation, dynamically improving
each other’s performance. By doing so, L4 ad-
dresses the limitations of existing techniques and
broadens the scope of lifelong learning.
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(b) Lifelong Learning with Mutual Dis-
tillation.

Figure 1: Comparison between L2KD and L4: L2KD relies on domain-specific teachers, while L4 introduces
peer-to-peer distillation, enhancing flexibility and performance.

Our key contributions are as follows:

• We introduce a novel mutual learning mech-
anism into the lifelong language learning
paradigm, enabling models to collaborate and
enhance each other knowledge without rely-
ing on predefined domain teachers.

• We demonstrate through extensive experi-
ments that our method not only mitigates for-
getting, but also achieves performance that ri-
vals or even surpasses most baseline methods
on standard benchmark datasets, showcasing
robustness across diverse tasks.

2 Related Work

Lifelong Language Learning. Catastrophic for-
getting is a major challenge in Lifelong Language
Learning (LLL), particularly in NLP. One of the
pioneering methods, LAMOL (Sun et al., 2019),
used generative replay to alleviate forgetting by
using language models to generate data from pre-
vious tasks, avoiding the need for stored sam-
ples. Building on this, L2KD introduced domain
teacher distillation, using pre-trained models to
guide learning and further enhance performance by
incorporating domain-specific knowledge (Chuang
et al., 2020). Recently, with increasing attention to
large language models, some studies have explored
the performance of lifelong learning in such mod-
els (Zheng et al., 2025). Some works (Wang and Li,
2024; Yang et al., 2024) propose using Mixture-of-
Experts (MOE) models in lifelong learning scenar-
ios, leveraging multiple experts to store knowledge
from different tasks, which can effectively allevi-
ate the problem of catastrophic forgetting. Other

works (Gao et al., 2024) suggest that large language
models can enhance their ability to resist forgetting
by retrieving task-relevant knowledge, thus improv-
ing performance in lifelong learning settings.

However, most of these methods rely on domain-
specific teachers, specific model architectures (e.g.,
MOE) or require storing knowledge repositories
from past tasks, limiting their flexibility in broader
applications. Our method focuses on more general
scenarios and language models, aiming to improve
the performance of lifelong learning systems with-
out storing past task samples or relying on domain-
specific teachers.

Knowledge Distillation and Mutual Learning.
Knowledge distillation has been widely explored in
lifelong learning, mainly in computer vision. Meth-
ods such as Learning without Forgetting (LwF) (Li
and Hoiem, 2017), Generative Replay with Distilla-
tion (Shin et al., 2017), Replay-through-Feedback
(RtF) (Van de Ven and Tolias, 2018), and Lifelong
GAN (Zhai et al., 2019) have successfully applied
distillation to retain knowledge over time. More
recent work (Cha et al., 2021) has explored con-
trastive continual learning. However, most efforts
focus on computer vision, with little exploration
in NLP. Moreover, mutual learning, where student
models learn from each other, has shown promising
results, outperforming traditional teacher-student
setups (Zhang et al., 2018).

3 Method

3.1 LAMOL

The training objective of normal language mod-
eling is to minimize the negative log likelihood
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(a) Question answering (QA). Lifelong model is trained to solve
target task.
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(b) Language modeling (LM). Lifelong model is trained to gen-
erate pseudo data.

Figure 2: Illustration of QA and LM learning architec-
tures.

(NLL) of the model predicting the next word:

LNLL = −
T∑

t=t0

log(P (xt|x<t; θ)), (1)

where xt represents the t-th word in the sentence,
x<t represents all words before xt, and θ is a pa-
rameter of the language model.

Typically, language datasets comprise three com-
ponents: context, question, and answer. In con-
ventional training, the model generates the correct
answer based on the context and question provided,
as shown in Figure 2(a). Formally, the supervised
training loss is represented as follows:

LQA
NLL = LNLL(X; θ; t0 = a1), (2)

where a1 is the first token of the answer text.
However, the direct application of the aforemen-

tioned supervised loss for training often leads to
catastrophic forgetting under non-stationary data
stream settings. To better adapt to the continual
learning scenario, LAMOL introduces an innova-
tive strategy that mitigates forgetting by generating
pseudo-samples from previous tasks and concur-
rently training them with new tasks, thereby elimi-
nating the need to store old task data. Specifically,
the model not only generates answers for a given
question but also learns to model the entire training
sample simultaneously, as illustrated in Figure 2(b).
Formally, to equip the model with the ability to
generate pseudo training samples for each token,

Pseudo-Samples
Model 1

Model 2

Text 1

Text 2

Text 3

+

Prob. Label

KL(p2||p1) KL(p1||p2)

𝐿𝐶1

𝐿𝐶2

…

…

Figure 3: Illustration of our L4 framework. While a new
task is arriving, we train two models in parallel with
mutual learning on both the pseudo-samples generated
from past tasks and the data from the current task, and
employ cross-entropy loss to optimize the prediction
of each model, thereby enabling the models to enhance
each other performance mutually.

including content, questions, and answers, the train-
ing loss is designed as follows:

LLM
NLL = LNLL(X; θ; t0 = 0), (3)

which is computed from the first token.
This approach enables the LLL model to effec-

tively generate pseudo-samples from past tasks for
joint training with samples from the current task.
Given that LAMOL outperforms memory-based
methods such as those proposed by (Lopez-Paz
and Ranzato, 2017) and (Yogatama et al., 2019),
as well as regularization-based methods, we build
on its foundation by applying our L4 algorithm to
further enhance its performance.

3.2 Knowledge Distillation

Vanilla KD. In traditional knowledge distillation,
the cross-entropy between the output distributions
of the student and teacher models is minimized,
particularly when predicting the next word in a
sequence:

LKD(x; θS , θT )

=
∑

t,k

−P (yk|x1:t−1; θT ) logP (yk|x1:t−1; θS),

where x1:t−1 is the input sequence up to time step
t − 1, and yk represents the k-th word in the vo-
cabulary. Here, θS1 and θS2 are the parameters of
the student and teacher models, respectively. By
learning from these soft targets, the student model
can capture nuanced patterns and generalize better,
leading to more efficient knowledge transfer.

Further, we obtain two different word-level dis-
tillation losses based on the starting token position
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of the loss calculation, just as Equations 2 and 3:

LQA
KD = LKD(X; θ; t0 = a0)

LLM
KD = LKD(X; θ; t0 = 0).

(4)

Mutual Learning. In mutual learning, we typ-
ically consider two models, θ1 and θ2, initialized
identically. We train models on the data (x, y) us-
ing two components: cross-entropy loss, which
aligns their predictions with the true labels, and
distillation loss, which aligns their outputs with
each other. With denoting p1 := p(ŷ1|X; θ1) and
p2 := p(ŷ2|X; θ2), the cross-entropy losses for the
models are defined as:

LC1 = − log(p1(ŷ1 = y))

LC2 = − log(p2(ŷ2 = y)).
(5)

Moreover, mutual learning framework incorpo-
rates a Kullback-Leibler (KL) divergence loss DKL

to ensure that both models learn from each other.
Following (Zhang et al., 2018), the final loss func-
tions for both models are a combination of cross-
entropy loss and distillation loss:

L1 = LC1 + λ ∗DKL(p2||p1)
L2 = LC2 + λ ∗DKL(p1||p2).

(6)

By iteratively training the models with these
combined loss functions, both models benefit from
each other predictions, allowing them to achieve
better performance without the need for a pre-
trained teacher.

3.3 L4
In previous studies, distillation was generally ap-
plied directly to the lifelong learning setting, re-
quiring the training of a separate teacher model for
each task. This approach is often difficult to imple-
ment in data flow settings. To avoid the need for
pre-training a teacher model while still achieving
or surpassing the performance of simple distilla-
tion, we introduce mutual learning into lifelong
learning for the first time and our architecture is
shown in Figure 3. Using another network θS2 with
the same initialization, the two models θS1 and θS2

can learn from each other, improving performance
while avoiding the need for a separately trained
teacher model.

To introduce mutual learning in lifelong learn-
ing, we combine supervised loss and distillation
loss. Firstly, by combining QA loss (2) and LM
loss (3) on the current task in the following way,

we can obtain supervised losses for both models
separately:

LC1 = LQA
NLL(X0; θS1) + LLM

NLL(X0; θS1)

LC2 = LQA
NLL(X0; θS2) + LLM

NLL(X0; θS2).
(7)

Furthermore, as before, we define distillation
losses based on QA and LM separately and then
obtain the distillation losses of two models:

LKD1 = LQA
KD1 + LLM

KD1

LKD2 = LQA
KD2 + LLM

KD2.
(8)

Finally, we obtained the required training loss
on a single task:

LθS1
= LC1(X0; θS1) + λ · LKD1(X0; θS1)

LθS2
= LC2(X0; θS2) + λ · LKD2(X0; θS2),

(9)

where λ is the trade-off hyperparameters.
In the tasks that arrived later, we need to adjust

the losses to mitigate the Catastrophic Forgetting.
In order to avoid interference between the super-
vised loss and the distillation loss under the lifelong
learning setting, supervised loss is applied only to
the generated pseudo-samples, while distillation
loss is applied to the samples from the current task.
Similarly, by combining QA and LM losses in the
following way, we can obtain the supervised losses
of these two models separately. Note that we only
calculate this loss on past pseudo samples:

Lpast(X
past; θS1)

= LQA
past(X

past; θS1) + LLM
past(X

past; θS1)

Lpast(X
past; θS2)

= LQA
past(X

past; θS2) + LLM
past(X

past; θS2).

(10)

In addition, as mentioned earlier, we define the
distillation losses on the basis of QA and LM,
respectively. Here we can obtain the distillation
losses of two models separately, and we only cal-
culate this loss on the current task sample:

Lcur(X
cur; θS1) = LQA

cur(X
cur; θS1) + LLM

cur (X
cur; θS1)

Lcur(X
cur; θS2) = LQA

cur(X
cur; θS2) + LLM

cur (X
cur; θS2)

(11)

In the end, the respective losses and update meth-
ods for the two models are obtained as follows:

LθS1
= Lpast(X

past; θS1) + λ · Lcur(X
cur; θS1)

LθS2
= Lpast(X

past; θS2) + λ · Lcur(X
cur; θS2).

(12)

In this way, both models can learn to correctly
predict the true labels of the training instances
while matching the probability estimates of their
peer model.
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WOZ CNN SQL ACC CNN SQL WOZ ACC SQL WOZ CNN ACC

Finetune 0.0 26.3 64.3 30.2 6.8 2.1 84.6 31.2 0.0 0.1 26.0 8.7

LAMOL 67.6 27.3 62.5 52.4 27.8 60.8 83.0 57.2 55.0 76.1 26.0 52.4

L2KD* 82.4 27.6 65.0 58.3 27.5 63.2 86.1 59.0 59.6 79.5 26.2 55.1
L4 84.6 28.9 63.9 59.1 21.7 61.6 87.4 56.9 54.0 83.5 26.4 54.6

WOZ SQL CNN ACC CNN WOZ SQL ACC SQL CNN WOZ ACC

Finetune 0.0 0.0 25.8 8.6 24.5 3.6 64.0 30.7 0.0 7.3 85.0 30.8

LAMOL 76.1 59.3 26.3 53.9 27.3 79.8 64.1 57.0 58.7 27.2 84.0 56.6
L2KD* 81.4 59.6 26.7 55.9 28.6 83.7 64.8 59.0 58.8 26.2 84.7 56.6
L4 83.7 56.7 26.7 55.7 27.7 86.2 62.0 58.6 51.1 27.2 88.9 55.8

Table 1: Experimental results with different lifelong
learning orders on MultiWOZ (WOZ), CNN/DailyMail
(CNN), and WikiSQL (SQL). The order of datasets pre-
sented in the table corresponds to the order in which the
tasks are fed forward to the model. “ * ” represents the
method using pretrained teacher models. Bold values
indicate the best scores for each category.

3.3.1 Optimization
We implement a mutual learning strategy through-
out the entire training process, executing it at each
epoch. In every epoch, the predictions of the two
models are calculated separately, and the parame-
ters of both networks are iteratively updated based
on the predictions of the other model until conver-
gence. The optimization process is described in the
Algorithm 1 (Appendix A).

4 Experiments & Results

4.1 Evaluation Measures

Table 4 (Appendix A) summarizes the evaluation
measures used in this study: dsEM (Dialog State
Exact Match), ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) (Lin, 2004), IfEM
(Interaction-Level Exact Match) (Zhong et al.,
2017) and Forgetting Metric (Chaudhry et al.,
2018).

The dsEM evaluates dialogue systems by check-
ing if the predicted dialogue state ŷi exactly
matches the ground truth yi across all intents and
slots:

dsEM =

∑N
i=1 1(ŷi = yi)

N
, (13)

where N is the total number of dialogue states.
ROUGE measures summarization quality by as-

sessing n-gram overlap between generated and ref-
erence summaries:

ROUGEn =
A

B
, (14)

where A is the overlap of n-grams and B is the total
number of n-grams in the reference summaries.

The IfEM evaluates query generation tasks by
checking if the predicted query Q̂i matches the

Method E2E REST HOT TV LAPTOP AVG

SingleQA 48.8 64.0 65.4 70.8 73.0 64.4
SingleQA+LM 48.8 64.2 65.5 71.0 72.8 64.5
MultiQA 49.2 65.6 67.2 72.7 74.8 65.9
MultiQA+LM 49.5 65.2 66.7 73.4 74.6 65.9

LAPTOP-TV-HOT-REST-E2E

LAMOL 50.1 58.7 61.5 73.7 72.0 63.2
L2KD* 44.9 60.0 62.8 76.7 73.3 63.5
L4 53.5 66.4 68.1 71.5 72.4 66.4

E2E-REST-HOT-TV-LAPTOP

LAMOL 49.8 65.0 65.9 75.8 77.0 66.7
L2KD* 49.3 67.6 68.7 76.8 77.7 68.0
L4 49.2 54.5 50.9 77.5 78.6 62.1

Table 2: Experimental results across five domains for
lifelong learning tasks in two training orders: most diffi-
cult to simplest (LAPTOP → E2E) and simplest to most
difficult (E2E → LAPTOP). “ * ” represents the method
using pretrained teacher models. Bold values indicate
the best scores.

ground truth Qi:

IfEM =

∑M
i=1 1(Q̂i = Qi)

M
, (15)

where M is the total number of interactions.
The Forgetting Metric(FM) is used to measure

a model’s ability to alleviate forgetting in lifelong
learning. Formally, the forgetting measure of the
model on the i-th task is the difference between the
model’s highest performance a on that task and its
final performance a on the task after training on all
the k tasks:

fi = max
i=1,...,k

ai − ak. (16)

Then the Average Forgetting can be calculated as
follows:

FM =
1

k − 1

k∑

i=1

fi. (17)

4.2 Dataset
To evaluate the effectiveness of our approach in mit-
igating catastrophic forgetting, we performed ex-
periments using a dataset (more details can be seen
in Table 4 (Appendix A)) spanning three distinct
domains: MultiWOZ (WOZ), CNN/DailyMail
(CNN), and WikiSQL (SQL). WikiSQL is a dataset
designed for developing natural language inter-
faces for relational databases, where models gen-
erate structured queries from natural language in-
puts. CNN/DailyMail comprises a collection of
online news articles aimed at text summarization
tasks. MultiWOZ is a multi-domain wizard-of-
oz dataset tailored for task-oriented dialogue mod-
eling, where models are required to generate se-
mantic state sequences based on partial dialogues.
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Finetune LAMOL L2KD L4Student 1 L4Student 2
WOZ 85.5 6.0 5.3 3.3 2.9
SQL 62.7 4.2 4.8 4.9 3.1

Average Forgetting 74.1 5.1 5.1 4.1 3.0

Table 3: Forgetting metric (lower is better) under the
WOZ-SQL-CNN order in Lifelong Learning.
Following methodologies similar to LAMOL (Sun
et al., 2019) and L2KD (Chuang et al., 2020), we
performed sequential training on these datasets, uti-
lizing generative replay.

However, in real-world scenarios, lifelong learn-
ing models are more commonly trained to solve
tasks in different domains of the same problem,
which evolve over time. To simulate this, we also
performed experiments on natural language genera-
tion (NLG) datasets across five domains. These in-
clude the E2E-NLG dataset (Novikova et al., 2017),
which focuses on end-to-end natural language gen-
eration in the restaurant industry, and RNNLG
(Wen et al., 2015), a dataset tailored for spoken di-
alogue systems. RNNLG consists of four domains:
San Francisco restaurant search (REST), San Fran-
cisco hotel search (HOT), television sale/search
(TV), and laptop sale/search (LAPTOP). To main-
tain balance across domains, we use the complete
datasets for the first three domains and a reduced
dataset for the laptop domain.

4.3 Experimental Setup
Our approach employs the L2KD implementa-
tion to ensure comparable results. For our ex-
periments, we used the same pre-trained small
GPT-2 model (Radford et al., 2019) across all
Lifelong Learning (LLL) models. Following the
methodology of L2KD (Chuang et al., 2020), the
GPT-2 model was fine-tuned for 9 epochs on each
dataset, and we used task-specific tokens as [bos]
tokens and set the pseudo-data sampling rate to 0.2.
The following evaluation measures used in this
study: dsEM (Dialog State Exact Match), ROUGE
(Recall-Oriented Understudy for Gisting Evalua-
tion) (Lin, 2004), IfEM (Interaction-Level Exact
Match) (Zhong et al., 2017) and Forgetting Met-
ric (Chaudhry et al., 2018).

4.4 Results
In this subsection, we present and analyze our ex-
perimental results. We evaluated the effectiveness
of our method across two main settings: different
sequence generation tasks and the same task ap-
plied across varying domains. These settings were
specifically designed to test the robustness of our
proposed approach in mitigating catastrophic for-
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Figure 4: Performance variant with the trade-off param-
eter λ under the WOZ-CNN-SQL order.

getting, a key challenge in lifelong learning. All
results have been subjected to significance testing.

4.4.1 Results for Sequence Generation Tasks
For the sequence generation experiments, we per-
formed lifelong learning on three diverse datasets:
WikiSQL (SQL), CNN/DailyMail (CNN), and Mul-
tiWOZ (WOZ). These datasets were selected to rep-
resent different types of sequence generation tasks,
including structured query generation, summariza-
tion, and task-oriented dialogue. We trained the
models using various permutation orders and eval-
uated their performance at the end of each training
stream. The results, as shown in Table 1, report the
average scores for the three tasks, with normalized
values ranging from 0 to 100 for a fair comparison.
The performance of L4 shown in the Table 1 comes
from the Student 1 model.

As observed in Table 1, fine-tuning the model
directly leads to severe forgetting of tasks learned
earlier in the sequence. In contrast, both LAMOL
and L2KD demonstrate a strong ability to mitigate
catastrophic forgetting. However, the experimental
results highlight that our proposed method consis-
tently matches and in many cases surpasses the
performance of both LAMOL and L2KD, espe-
cially in scenarios where the task order was chal-
lenging. More importantly, for models that utilize
pre-trained teachers (marked with an asterisk), our
model is also able to achieve comparable perfor-
mance. This shows that L4 is particularly effective
in retaining knowledge and adapting to new tasks
without compromising past learning.

4.4.2 Results for Different Domains
To further validate the generalizability of our ap-
proach, we test in different domains under the same
task conditions. Specifically, we conducted experi-
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Figure 5: Learning curves of different methods during
training in the order of WOZ-SQL-CNN.

ments on five distinct domains, including four sub-
domains from E2E-NLG to RNNLG, which span
different language generation contexts. As shown
in Table 2, we provide results for two training set-
tings: one in which tasks are ordered from the most
difficult to the simplest (left → right), and the other
in reverse order (right → left), in order to analyze
the impact of task difficulty on lifelong learning
performance. The performance of L4 shown in the
Table 2 comes from the Student 1 model.

The results indicate that our method consistently
achieves high performance in both settings, match-
ing or surpassing the results of LAMOL and L2KD.
In particular, in the left → right setting, where tasks
progress from the most difficult to the simplest, our
approach shows a clear advantage, demonstrating
the robustness of L4 in challenging environments.
Under this setting, our method even significantly
outperforms the training approaches that use pre-
trained teachers. This suggests that our method is
capable of handling domain variations while effec-
tively mitigating catastrophic forgetting, making it
a versatile solution for lifelong language learning
in multiple domains.

4.5 Ablation Study

Average Forgetting. To verify whether our method
can truly alleviate the forgetting phenomenon in
lifelong language learning, we present the forget-
ting metrics of the first two tasks and the average
forgetting after model training under the task se-
quence WOZ-SQL-CNN in the Table 3. Experi-
mental results demonstrate that both student mod-
els trained with our method show fewer forgetting
compared to traditional baselines, effectively miti-
gating catastrophic forgetting. More detailed per-
formance variations of different methods during
training can be found in the Appendix A.

Trade-off Parameter λ. As shown in the Fig-
ure 4, to further analyze the impact of the hyper-
parameter λ on the performance of the lifelong
learning model, we conducted experiments with
different settings of λ in the range from 0.0 to 1.0,
and present the results for Student 1. The experi-
mental results indicate that when λ is set to 0.2, our
model achieves the best performance, suggesting a
good balance between the supervised learning loss
and the mutual learning loss at this point.

Learning Curves. To more intuitively com-
pare the differences between our method and other
strong baseline approaches, we plot the learning
curves for L2KD and our method. As shown in the
Figure 5, our method demonstrates a better ability
to prevent forgetting. For example, on the WOZ
task in the Figure 5(a), the performance of L2KD
significantly degrades as training progresses, while
our method effectively maintains its original per-
formance. Through this ablation study, we observe
that our method successfully alleviates the forget-
ting phenomenon during training, reducing the per-
formance drop on previous tasks when adapted to
new ones.

5 Conclusion

We proposed L4, a lifelong language learning algo-
rithm that utilizes mutual learning, which enhances
the performance of lifelong language models with-
out requiring pre-trained teacher models. By allow-
ing dynamic knowledge transfer between models,
our approach eliminates the need for pre-trained
teachers, reducing both the computational overhead
and training time. Our experimental results across
various tasks and domains demonstrate that our
approach achieves strong performance in mitigat-
ing catastrophic forgetting, making it a robust and
efficient solution for lifelong learning.
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Limitations

As part of our limitations, our aim is to optimize
the memory efficiency of mutual learning, mak-
ing it more suitable for deployment in memory-
constrained environments such as mobile and em-
bedded systems. Furthermore, while our approach
improves model performance, it does not explic-
itly address concerns related to fairness or bias,
critical factors in real-world applications. Future
research should explore the integration of fairness-
based mechanisms to ensure both accuracy and
equity in lifelong learning models, preventing un-
intended biases from influencing model outputs.
Moreover, exploring how L4 can be applied to dif-
ferent modalities (e.g., reinforcement learning or
speech processing) will help to assess its general-
izability and unlock its potential for broader cross-
domain applications. In addition, our goal is to
explore methods that enhance the model’s ability
to retain task-specific knowledge through sequen-
tial edits. Moreover, due to limited computing
resources, we are currently only able to train the
mutual learning algorithm on GPT-2.

Our method demonstrates clear advantages in
mitigating catastrophic forgetting, there are sev-
eral limitations that must be acknowledged. First,
mutual learning, although effective, can require
significantly more memory and computational re-
sources, especially during training, as multiple
models must be trained simultaneously. This could
present a challenge in memory-limited environ-
ments or when scaling the model for larger datasets.
Second, the effectiveness of our approach relies on
well-defined tasks and sufficient data for each task.
In real-world, where data may be scarce or noisy,
the performance of mutual learning and lifelong
language learning methods may be degraded.

Moreover, while our method generalizes well in
certain NLP tasks, its applicability to more com-
plex, cross-domain learning scenarios remains to
be fully explored. Lastly, our experiments have fo-
cused mainly on benchmarking tasks in NLP, and
the effectiveness of the method in other domains,
for example, reinforcement learning or speech pro-
cessing, remains untested. Future work should
explore the adaptability of our approach across
different modalities and consider optimizing its
computational efficiency for practical deployment.
Furthermore, robustness to noisy and low-resource
settings requires further experimentation to confirm
its general applicability.

Ethical Statement & Bias

Our work uses publicly available datasets, which
can inherently contain biases, such as underrepre-
sentation of certain demographic groups or skewed
language patterns. Models trained on these datasets
could unintentionally perpetuate these biases, lead-
ing to unfair or harmful outcomes in real-world
applications. For example, in automated decision
making or conversational agents, biased predic-
tions may disproportionately affect certain groups
or reinforce harmful stereotypes.

The risks are particularly significant in sensitive
domains such as healthcare, recruitment, or law
enforcement, where biased results could have pro-
found ethical and social implications. To mitigate
these risks, developers and users of these models
must take proactive steps to assess fairness and ad-
dress bias in both the data and the predictions of the
model. Future work should incorporate fairness-
sensitive learning objectives into mutual learning
frameworks, ensuring that the models are effective
and impartial. This may involve applying debiasing
techniques during training or employing post hoc
methods to identify and correct biases in output. In
addition, interpretability techniques should be uti-
lized to ensure transparent and equitable decision
making in diverse applications.
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Appendix

A Additional Experiments.

Performance Changes during Training Process.
To more intuitively demonstrate performance dur-
ing training, we present in the Figure 6 a line graph
showing the model’s performance at different train-
ing stages. Through this analysis experiment, we
can observe that our method effectively alleviates
the phenomenon of forgetting during the training
process, reduces the performance drop on previous
tasks when adapting to new ones, and successfully
retains the textual knowledge acquired during pre-
vious training.

Comparison between L4 Models. To verify
that the mutual learning method in continual learn-
ing is effective, we further need to confirm that
the models trained through mutual learning are not
entirely identical, in order to demonstrate that our
method does not lead to the problem of model col-
lapse. As shown in Table 6, the models trained
using the mutual learning framework exhibit dif-
ferent performances in various settings. This in-
dicates that, although their performances are rel-
atively close, they have learned a wide range of
knowledge, which enables them to improve each
other’s performance through mutual learning.

Comparison Between Models with Different
Parameter Sizes. To further explore the upper
bound of our method, we aim to verify the per-
formance difference between training two models
with smaller parameter sizes using mutual learning
and training a single model with a larger parameter
size using conventional continual learning meth-
ods. To this end, we compare the L4 framework
trained on two smaller GPT-2-S models with the
LAMOL framework trained on a GPT-2-M model
with nearly double the number of parameters.

As shown in the Table 5, training with a model
that has more parameters generally achieves bet-
ter performance than improving multiple smaller
models through mutual learning. This result sug-
gests that larger-parameter models may have better
resistance to forgetting compared to ensembles of
smaller models. However, in many practical sce-
narios, pre-trained large-parameter models may not
always be available. In such cases, our mutual
learning approach can help train smaller models to
achieve better results.

Computational Resources Analysis. To fur-
ther analyze the resource consumption of our algo-

Dataset Evaluation Measures Train Test

MultiWOZ dsEM 2,536 1,646

CNN/DailyMail ROUGE 6,604 2,250

WikiSQL IfEM 6,525 15,878

E2E NLG 6,000 2,000

RNNLG (REST) 6,228 1,039

RNNLG (HOT) ROUGE 6,446 1,075

RNNLG (TV) 8,442 1,407

RNNLG (LAPTOP) 7,944 2,649

Table 4: Dataset details and the evaluation measures.

Algorithm 1 Mutual Learning helps Lifelong
Language Learning (L4).

Require: Dataset {Dk}Kk=1, model fθS1
and fθS2

,
hyper-parameter λ1 and λ2, learning rate η1
and η2

1: Initialize model parameters θS1 and θS2

2: for k = 1, . . . ,K do
3: Construct Dprev by sampling γ ∗ |Dk|

pseudo-data from θS1

4: for epoch e = 1, . . . , N do
5: optimize θS1 to minimize LθS1

(Dprev ∪
Dk; θS1 , θS2)

6: optimize θS2 to minimize LθS2
(Dprev ∪

Dk; θS2 , θS1)
7: end for
8: end for

WOZ CNN SQL ACC

GPT2-s+L4Student 1 84.6 28.9 63.9 59.1

GPT2-s+L4Student 2 85.1 28.6 63.6 59.1

GPT2-m+LAMOL 87.2 30.4 68.5 62.0

Table 5: Ablation results on models with lifelong
learning orders on MultiWOZ (WOZ), CNN/DailyMail
(CNN), and WikiSQL (SQL).

rithm, we compare our method L4 with the existing
pre-trained teacher distillation framework L2KD
in terms of peak GPU memory usage and total
training time. We primarily measure the maximum
GPU memory occupied throughout the entire train-
ing process, as well as the total time required to
complete training under the assumption that the
teacher model can be trained in advance and in
parallel. As shown in the Table 8, our method ex-
hibits higher maximum GPU memory usage than
the existing pre-trained teacher distillation frame-
work L2KD. This is because our approach requires
two models to perform mutual knowledge distilla-
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(c) Performance of CNN task.

Figure 6: The overall performance of different methods
during training in the order of WOZ-SQL-CNN.

tion, whereas L2KD freezes the teacher model for
inference and trains only the student model, thus
consuming less GPU memory. However, L2KD
inevitably requires pre-training the teacher model,
making it less adaptable to certain online applica-
tion scenarios. In contrast, our method, despite a
larger memory footprint, achieves better adaptabil-
ity to online settings. In terms of training time, our
method outperforms L2KD. This advantage arises
because L2KD needs to repeatedly load datasets
and pre-train the teacher model, while our method
can train the model online. Compared to distillation
frameworks like L2KD that require a pre-trained
teacher, our approach better accommodates real-
world applications while maintaining a comparable
total training time.

Error Analysis. Although our experimental re-
sults approach or even surpass baseline methods in
most experimental settings, our method still under-

WOZ CNN SQL ACC CNN SQL WOZ ACC SQL WOZ CNN ACC

L4Student 1 84.6 28.9 63.9 59.1 21.7 61.6 87.4 56.9 54.0 83.5 26.4 54.6

L4Student 2 85.1 28.6 63.6 59.1 21.5 62.1 87.2 56.9 53.9 85.6 26.5 55.3

WOZ SQL CNN ACC CNN WOZ SQL ACC SQL CNN WOZ ACC

L4Student 1 83.7 56.7 26.7 55.7 27.7 86.2 62.0 58.6 51.1 27.2 88.9 55.8

L4Student 2 84.8 57.7 26.5 56.3 27.0 87.2 61.9 58.7 50.6 26.17 88.3 55.0

Table 6: Performance comparison between Student 1
and Student 2 in the L4 Method. Bold values indicate
the best scores for each category.

Correct Generation
Q __woz.en__ how about chinese? what is the

change in state?
A food : chinese ;

Incorrect Generation
Q __woz.en__ the table has columns player, posi-

tion, college, school, hometown, record and key
words max, min, count, sum, avg, =, >, <, op,
select, where, and, col, table, caption, page, sec-
tion, op, cond, question, agg, aggops, condops - -
which college has two players from the houston
city hall team? what is the translation from en-
glish to sql?

A select college from table where hometown = hous-
ton city hall

Table 7: Examples of the model generation. For the
correct generation, the model generates the WOZ task’s
question-answer pair successfully, which helps mitigate
forgetting. For the incorrect generation, the model gen-
erates examples with SQL format, which indicates that
model suffers from catastrophic forgetting.

performs in certain scenarios. Here, we conduct
an error analysis of our approach. Firstly, through
analysis of the results of the model testing, we ob-
served that the majority of the model responses
adhered to the required formats during the answer
to the test questions. Most errors stemmed from
direct inaccuracies in the answers. This suggests
that while our method demonstrates strong format
compliance capabilities, it remains insufficient in
alleviating knowledge forgetting issues. Further-
more, we present examples generated by models
trained under the “WOZ-CNN-SQL” task sequence.
As shown in the Table 7, there may be instances

Table 8: Comparison of peak memory usage and train-
ing time during training, where L2KD is the distillation
framework using a pre-trained teacher, and L4 is our
algorithmic framework based on mutual learning. Hours
- hs.

Peak Memory Usage Training Time

L2KD 19.3G 7hs
L4 21.2G 6.5hs
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where tokens generated for the WOZ task produce
outputs in SQL format. This inconsistency could
lead to catastrophic forgetting, as the reduced avail-
ability of generation examples from previous tasks
(e.g., “WOZ”) can cause the model to forget related
knowledge during subsequent training phases.
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