
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1265–1274
November 4-9, 2025 ©2025 Association for Computational Linguistics

JSON Whisperer: Efficient JSON Editing with LLMs

Sarel Duanis1 Asnat Greenstein-Messica1 Eliya Habba1,2

1Lightricks 2The Hebrew University of Jerusalem

{sarel, asi, ehabba}@lightricks.com

Abstract

Large language models (LLMs) can modify
JSON documents through natural language
commands, but current approaches regenerate
entire structures for each edit, resulting in com-
putational inefficiency. We present JSON Whis-
perer, a framework that enables LLMs to gener-
ate RFC 6902 diff patches-expressing only the
necessary modifications-rather than complete
documents. We identify two key challenges in
patch-based editing: (1) LLMs often miss re-
lated updates when generating isolated patches,
and (2) array manipulations require tracking
index shifts across operations, which LLMs
handle poorly. To address these issues, we in-
troduce EASE (Explicitly Addressed Sequence
Encoding), which transforms arrays into dic-
tionaries with stable keys, eliminating index
arithmetic complexities. Our evaluation shows
that patch generation with EASE reduces token
usage by 31% while maintaining edit quality
within 5% of full regeneration with particular
gains for complex instructions and list manip-
ulations. The dataset is available at: https://
github.com/emnlp2025/JSON-Whisperer/

1 Introduction

Large language models have demonstrated capa-
bilities in generating and manipulating structured
data formats, with JSON emerging as a primary
interface between natural language commands and
programmatic operations. This capability has en-
abled applications across diverse domains, from
web development (Voronin, 2024) to creative tools
(Sultan et al., 2024; Kolthoff et al., 2025), where
users can specify structural modifications through
natural language. In film production platforms, for
instance, entire projects-comprising scenes, char-
acters, and shot compositions-are represented as
JSON documents that creators modify through con-
versational interfaces.

However, current approaches suffer from a fun-
damental inefficiency: LLMs regenerate entire

JSON structures for even minor edits. This regen-
eration approach, while straightforward, becomes
computationally expensive as document complex-
ity grows. A film project might contain thousands
of nested objects representing scenes and shots;
changing a single character’s name triggers regener-
ation of the entire structure, consuming substantial
computational resources and introducing latency
that disrupts creative workflows.

We observe that LLMs can generate RFC 6902
(Bryan, 2013) diff patches-a standard format for
expressing minimal changes to JSON documents-
when appropriately prompted. This finding sug-
gests an alternative approach: instead of regenerat-
ing complete structures, models could output only
the necessary modifications. Yet this seemingly
simple solution introduces unexpected challenges.

We identify two critical issues that emerge when
LLMs generate patches. First, the fragmented na-
ture of patch generation causes models to miss
necessary updates. When editing a character’s at-
tributes across multiple scenes, models generat-
ing patches often update some occurrences while
overlooking others-a problem that full regenera-
tion naturally avoids. Second, and more surpris-
ingly, LLMs struggle with array index arithmetic.
Consider removing an element from a list: subse-
quent operations must account for shifted indices
as illustrated in Figure 1. Our experiments reveal
that even state-of-the-art models frequently mis-
calculate these shifts or conflate zero-based and
one-based indexing.

In this work, we present JSON Whisperer, a
framework that enables efficient JSON editing
through patch generation while addressing these
challenges.

Our contributions are as follows:

1. we demonstrate that patch-based editing can
achieve performance comparable to full re-
generation when using appropriate few-shot

1265

https://github.com/emnlp2025/JSON-Whisperer/
https://github.com/emnlp2025/JSON-Whisperer/

(a) Using normal list indexing (b) Using EASE

Figure 1: (a) Using normal list indexing, LLMs fail to account for index shifts after removing Bob, leading to an
error. (b) Using EASE, stable keys ensure correct updates, making the patch process execution order-invariant.

examples. To this end, we propose a method
for synthetically generating such high-quality
examples.(Section 3).

2. we introduce EASE (Explicitly Addressed Se-
quence Encoding), a novel representation that
eliminates array indexing complexities. EASE
transforms positional arrays into key-value
mappings with stable identifiers, making all
operations order-invariant and removing the
need for index arithmetic (Section 3.2).

3. we evaluate our approach on JSON editing
scenarios from a film production platform,
showing that patch generation with EASE re-
duces token usage by 31% while maintaining
edit quality within 5% of full regeneration
approaches, with particularly strong improve-
ments for complex instructions and list manip-
ulations (Section 4).

Our work demonstrates that patch-based editing,
when combined with EASE encoding, can serve as
a practical alternative to full regeneration for JSON
manipulation tasks. This combination addresses
the fundamental challenge of array indexing that
makes standard patch generation error-prone, of-
fering significant efficiency gains for real-world
applications where structured data editing is com-
mon.

2 Background and Definitions

RFC 6902: RFC 6902 (Bryan, 2013) specifies
a format for representing modifications to JSON
documents as a sequence of operations, as shown
in Listing 1. Each operation includes:
op: The operation type (add, remove, replace)
path: A JSON Pointer that identifies the target lo-
cation using forward-slash-separated tokens (e.g.,
/scene/weather), with zero-based indices for ar-
rays (e.g., /users/0/name)
value: The data to be used for add and replace
operations

[{"op":" replace", "path ":" users /0/ name",
"value": "John"},

{"op":" add","path ":" users/1",
"value": {"name ":"Sam "}}]

Listing 1: This patch will replace the first user name to
"John" and add a new user called "Sam"

3 JSON Whisperer Framework

We present JSON Whisperer, a framework for effi-
cient text-guided JSON editing using LLMs. The
framework comprises two main components: diff-
based editing using RFC 6902 patches and EASE
(Explicitly Addressed Sequence Encoding) for han-
dling ordered lists.

1266

3.1 Diff-based JSON Editing

Our method leverages RFC 6902 JSON Patch for-
mat to enable targeted modifications. Given an
input JSON and a natural language edit request, the
LLM generates only the necessary patch operations
rather than regenerating the entire structure.

The process follows three steps: (1) the LLM
receives the original JSON and edit instruction,
(2) it generates an RFC 6902 patch specifying the
required changes, and (3) a standard patching al-
gorithm applies these operations to produce the
updated JSON.

This approach reduces token usage and latency
compared to full regeneration, as the model outputs
only the specific modifications needed (e.g., a few
patch operations versus an entire JSON document).

Synthetic Dataset Creation. To enable effective
few-shot learning for diff patch generation, we auto-
matically create a dataset of high-quality examples
using a state-of-the-art LLM. Each JSON schema
requires its own example set, generated through a
fully automated pipeline. The generation process
consists of four steps. First, given a target JSON
schema, we prompt Claude-3.5-Sonnet (Anthropic,
2024) to generate diverse JSON instances follow-
ing that schema. Second, for each instance, the
LLM creates natural language edit requests simu-
lating realistic user modifications. These requests
span from simple field updates to complex struc-
tural changes. Third, for each (JSON, request) pair,
we use the same LLM to produce a completely
rewritten JSON incorporating all requested modifi-
cations. Finally, we apply a standard diff algorithm
to compute RFC 6902 patches between original
and modified JSON pairs. These patches accurately
capture the complete transformation specified by
each edit request. The resulting dataset provides a
pool of examples for few-shot prompting, where
each example contains an input (original JSON +
edit request) and its corresponding RFC 6902 patch.
Using DSPy (Khattab et al., 2024), we optimize the
selection of few-shot examples from this synthetic
dataset to maximize evaluation metrics (Section
5.1).

3.2 EASE - Explicitly Addressed Sequence
Encoding

To improve list manipulation in language mod-
els, we introduce EASE - Explicitly Addressed
Sequence Encoding, a method for transforming
JSON arrays into a more order-independent format.

Instead of relying on numerical indices, EASE con-
verts lists into dictionaries where each element is
assigned a unique two-character key (e.g., "ax",
"cd"). The original sequence is preserved using a
display_order key (e.g., "ab,cd,ef"); elements can
be added, removed, or reordered by replacing only
the value of this key.

This approach provides dual order invariance: el-
ement storage becomes order-independent through
dictionary-based addressing, and operation execu-
tion becomes order-independent since patch opera-
tions can be applied in any order without affecting
the final result.

EASE particularly benefits complex list manipu-
lations where multiple operations would tradition-
ally require careful index arithmetic. By decou-
pling element identity from order, the encoding
allows to focus on the semantic changes rather than
bookkeeping details, thereby significantly improv-
ing accuracy in edit scenarios.

{
"Scene ": {
"voice_over ": "Every step brought me

closer to the family.",
"weather ": "Sunny",
"shots": [
{
"type": "Wide -shot",
"action ": "Buddy sitting on a

sidewalk ."
},
...

]
}

}

Listing 2: Scene JSON Example

4 Evaluation Setup

Models and Prompting Strategies We evaluate
our JSON editing approach using two models of
different scales: GPT-4o-mini (8B parameters) and
Claude Sonnet (175B parameters). For each model,
we test two prompting strategies: zero-shot prompt-
ing without examples and DSPy-optimized few-
shot learning using examples from our synthetic
dataset. The prompts for standard list indexing and
EASE indexing are detailed in Appendix A.1 and
Appendix A.2, respectively.

Tasks and Dataset Our experiments use JSON
objects representing complete scenes from an AI-
powered platform. Each scene contains shallow
fields and a list of shots, where each shot is a nested
object, as shown in Listing 2.

1267

We generate a dataset of approximately 400
examples using Claude-Sonnet, covering diverse
JSON editing scenarios across four complexity lev-
els:

• Simple: Affects a single field without impact-
ing others.
e.g., "Change the weather to ’Partly cloudy
with a light breeze.’"

• Creative: Involves generating new content
that doesn’t exist in the original JSON.
e.g., "Add one more shot to the scene."

• Complex: Requires modifying multiple re-
lated elements while preserving logical con-
sistency.
e.g., "Change the scene so that Melody’s ex-
partner is in the audience, and she notices
him halfway through her performance."

• List Manipulation: Involves ordering, filter-
ing, or updating items within a list.
e.g., "Remove every third shot from the scene."

Evaluation Metrics We assess model perfor-
mance using three key metrics. First, we measure
structural accuracy through the F1 score of patch
operations, comparing only the ’op’ and ’path’
fields against dataset labels while excluding ’value’
fields due to their potential for multiple valid vari-
ations. Second, we evaluate the semantic quality
of generated values using an LLM-as-a- judge,(see
Appendix A.4 for the prompt used). Finally, we
track the patch execution success rate as the pro-
portion of patches that do not fail to apply due to
syntax errors, missing fields, or invalid paths.

5 Results

EASE Encoding Outperforms Standard List In-
dexing EASE encoding consistently outperforms
standard list indexing across all instruction cate-
gories, with the most pronounced improvements in
complex instructions and list manipulations. Fig-
ure 2 breaks down EASE encoding contributions
across different request types. The comparison
shows EASE improved accuracy and reduced er-
rors across all instruction categories, while stan-
dard list indexing produces suboptimal results due
to index tracking challenges. This approach par-
ticularly benefits scenarios involving multiple list
operations that would traditionally require careful
index arithmetic, leading to improved f1 score, se-
mantic accuracy and patch execution.

0.25

0.50

0.75

1.00

0.44

0.62

0.27

0.52
0.65 0.69

0.44

0.75

F1 Score

0.4

0.6

0.8

1.0

0.50

0.88

0.60
0.54

0.67

1.00
0.80

0.83

LLM as a Judge

Simple
Instruction

Creative
Instruction

Complex
Instruction

Lists
Manipulations

0.8

0.9

1.0

0.89 0.89 0.89 0.89

0.98 0.98 0.98 0.98

Patch Execution Success

List indexing EASE indexing

Figure 2: EASE Encoding Outperforms Standard List
Indexing, broken down by different request types gener-
ated by GPT-4o-Mini

Few-Shot Learning Enables Effective Patch
Generation Synthetic few-shot examples pro-
vide substantial performance improvements in
JSON patching tasks, having the most significant
impact on performance. As demonstrated in Fig-
ure 3, comparing zero-shot performance with syn-
thetic few-shot learning using standard list index-
ing reveals significant accuracy gains across model
sizes. This improvement demonstrates that LLMs
can effectively learn patch generation patterns from
automatically generated examples, even when us-
ing conventional list indexing approaches.

Patch Generation Matches Full Regeneration
Performance Our diff patching approach with
synthesized few-shot examples and EASE achieves
comparable performance within a 5% margin to
full regeneration while reducing token usage by
31%, as shown in Figure 4. The approach demon-
strates effectiveness across both model sizes, with
smaller models achieving performance comparable
to larger ones when using our method (prompts for
full regeneration are provided in Appendix A.3).

Substantial Cost and Efficiency Gains The effi-
ciency gains are twofold, as shown in Table 1: first,
by enabling smaller, more cost-effective models
to perform comparably to larger ones, and second,
by reducing token consumption for each operation.
These benefits compound to create substantial cost
and time savings in production environments. The

1268

0.00

0.25

0.50

0.75

1.00

0.61

0.28

0.09

0.63 0.58
0.48

F1 Score

0.00

0.25

0.50

0.75

1.00
0.73

0.33

0.05

0.85
0.75

0.33

LLM as a Judge

Claude 3.5
Sonnet

GPT-4o
Mini

Mistral
Tiny

0.00

0.25

0.50

0.75

1.00
0.99 0.74

0.32

0.97 0.98
0.83

Patch Execution Success

Zero-Shot Patch Few-Shot Patch

Figure 3: Using Synthesized Few-shots provide substan-
tial performance improvements across models

token reduction translates directly to faster process-
ing times and lower computational costs, making
the approach practical for real-world applications
where efficiency is paramount.

Table 1: Costs & Time Comparison

Claude 4o-mini

Token Count (In/Out)
Full 918 / 918 677 / 677
Diff 1,890 / 529 1,500 / 464

Time (seconds)
Full 11.62 8.26
Diff 6.70 5.66
Improvement 42.3% 31.5%

Cost ($ / K requests)
Full 13.8$ 0.41$
Diff 7.94$ 0.28$
Improvement 42.5% 31.7%

Model pricing: Claude ($15.00 per M Out tokens),
GPT-4o-mini ($0.60 per M Out tokens).
TPOT (Claude) = 0.0127, TPOT (GPT-4o-mini) = 0.0122.
Data source: https://artificialanalysis.ai/

6 Related Work

LLMs for Structured Data Manipulation
In recent years, significant research has been
directed toward guiding large language models
(LLMs) to generate structured outputs, such as
JSON (Geng et al., 2025; Shorten et al., 2024).
Recent studies further show promising results in
LLM-guided generation of JSON objects that repre-
sent visual entities such as websites, virtual reality

0.0

0.5

1.0
0.67 0.600.63 0.580.61

0.28

F1 Score

0.0

0.5

1.0
0.96

0.850.85
0.750.73

0.33

LLM as a Judge

Claude 3.5
Sonnet

GPT-4o
Mini

0.0

0.5

1.0
1.00 1.000.97 0.980.99 0.74

Patch Execution Success

Claude 3.5
Sonnet

GPT-4o
Mini

0

200

400

600

800

1000
909

711

598

464

529

198

Output Token Count

Full rewrite
Few-Shot+EASE (Ours)

Zero-Shot Patch

Figure 4: Our method achieves comparable performance
within a 5% margin to full regeneration while reducing
token usage by 31%

environments, or video effects (Chen et al., 2025;
Voronin, 2024; Kolthoff et al., 2025; Sultan et al.,
2024).

Schema-guided decoding has emerged as a cen-
tral technique for ensuring that model outputs con-
form to well-defined formats. Early approaches
such as PICARD (Scholak et al., 2021) demon-
strated how constrained autoregressive decoding
can enforce syntactic validity by rejecting illegal
continuations. These advances highlight the impor-
tance of structural validity as a guiding principle in
structured text generation.

Complementing these efforts, research on
streaming JSON parsers has focused on reducing
the computational overhead of handling large struc-
tured documents. Notable examples include Mi-
son (Li et al., 2017), which introduced specula-
tive, field-aware parsing to bypass irrelevant fields,
and subsequent extensions that further improved
throughput using SIMD and incremental index-
ing (Langdale and Lemire, 2019). Unlike these
studies, the approach presented here enables effi-
cient manipulation of structured data objects such
as JSON by patch generation (Benjamine, 2024),
thereby reducing both cost and latency.

Automated Patch Generation

Research on automated patch generation and pro-
gram repair by LLM-guided code updates and bug

1269

https://artificialanalysis.ai/

fixes provides valuable insights for JSON editing
with LLMs. Fan et al. (Fan et al., 2024) explored
LLMs’ capabilities for code-change-related tasks,
showing that few-shot learning and fine-tuning ap-
proaches are promising for such scenarios. Zhang
et al. (Zhang et al., 2025) demonstrate how LLMs
can generate patches for code, which closely par-
allels the concept of creating JSON diff patches
for structured data. By leveraging similar method-
ologies, LLMs can be guided to generate targeted
modifications within JSON structures rather than
regenerating entire objects, thereby improving both
efficiency and accuracy in structured data editing.

7 Conclusion

This paper introduces an efficient approach for text-
guided JSON editing using LLMs to generate only
the necessary modifications instead of regenerat-
ing entire JSON objects. The method leverages
the RFC 6902 JSON patch standard, significantly
reducing token usage, computation costs, and la-
tency, which are key factors for scalable AI-driven
applications. To improve accuracy, a framework
for synthetic data generation was developed along-
side EASE, a novel encoding method that enhances
LLMs’ ability to handle ordered lists in JSON struc-
tures. Experimental results demonstrate that the
approach reduces token generation by over 30%,
while maintaining JSON edit quality within a 5%
margin of full JSON regeneration.

For future work, the method could be extended
to YAML and Git diff formats, while fine-tuning
open-source LLMs might improve accuracy. Given
the widespread use of JSON in software develop-
ment, this research contributes to more efficient and
intelligent AI-powered editing tools for structured
data manipulation.

8 Limitations

Our approach faces two key limitations. First,
both training and evaluation rely on synthetic data,
which may not fully reflect real-world JSON edit-
ing scenarios. This limitation could be mitigated
once user data consented for training is available.
Second, while our method reduces output token
usage and latency, the in-context learning approach
increases input token overhead as JSON objects
grow larger. This increase could offset the cost sav-
ings and ultimately lead to context window limita-
tions. These challenges could be addressed through
model fine-tuning, which would eliminate the need

for few-shot examples and enable more efficient
processing of larger JSON documents.

1270

References
Anthropic. 2024. Claude 3.5 sonnet. https://www.

anthropic.com/claude/sonnet.

GitHub Contributors Benjamine. 2024. jsondiff-
patch – diff and patch javascript objects. https:
//github.com/benjamine/jsondiffpatch. Ac-
cessed: March 11, 2025.

Salesforce.com Bryan. 2013. Rfc – proposed
standard. https://datatracker.ietf.org/doc/
html/rfc6902. Accessed: April 2013.

Jiangong Chen, Xiaoyi Wu, Tian Lan, and Bin Li. 2025.
Llmer: Crafting interactive extended reality worlds
with json data generated by large language models.
arXiv preprint arXiv:2502.02441.

Lishui Fan, Jiakun Liu, Zhongxin Liu, David Lo, Xin
Xia, and Shanping Li. 2024. Exploring the capa-
bilities of llms for code change related tasks. ACM
Transactions on Software Engineering and Method-
ology.

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel
Jenkins, Julian Berman, Nathan Ranchin, Robert
West, Eric Horvitz, and Harsha Nori. 2025. Generat-
ing structured outputs from language models: Bench-
mark and studies. arXiv preprint arXiv:2501.10868.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling
declarative language model calls into self-improving
pipelines. In The Twelfth International Conference
on Learning Representations.

Kristian Kolthoff, Felix Kretzer, Christian Bartelt,
Alexander Maedche, and Simone Paolo Ponzetto.
2025. Guide: Llm-driven gui generation decom-
position for automated prototyping. arXiv preprint
arXiv:2502.21068.

Geoff Langdale and Daniel Lemire. 2019. Pars-
ing gigabytes of json per second. arXiv preprint
arXiv:1902.08318.

Yinan Li, Nikos R. Katsipoulakis, Badrish Chan-
dramouli, Jonathan Goldstein, and Donald Kossmann.
2017. Mison: A fast json parser for data analytics.
Proceedings of the VLDB Endowment, 10(10):1118–
1129.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901. Association for Computational
Linguistics.

Connor Shorten, Charles Pierse, Thomas Benjamin
Smith, Erika Cardenas, Akanksha Sharma, John

Trengrove, and Bob van Luijt. 2024. Structuredrag:
Json response formatting with large language models.
arXiv preprint arXiv:2408.11061.

Oren Sultan, Alex Khasin, Guy Shiran, Asnat
Greenstein-Messica, and Dafna Shahaf. 2024. Visual
editing with llm-based tool chaining: An efficient dis-
tillation approach for real-time applications. arXiv
preprint arXiv:2410.02952.

Diana Nguyen Voronin. 2024. Development and Evalu-
ation of an LLM-Based Tool for Automatically Build-
ing Web Applications. Ph.D. thesis, Massachusetts
Institute of Technology.

Yuwei Zhang, Zhi Jin, Ying Xing, Ge Li, Fang Liu, Ji-
axin Zhu, Wensheng Dou, and Jun Wei. 2025. Patch:
Empowering large language model with programmer-
intent guidance and collaborative-behavior simula-
tion for automatic bug fixing. ACM Transactions on
Software Engineering and Methodology.

1271

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://github.com/benjamine/jsondiffpatch
https://github.com/benjamine/jsondiffpatch
https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/rfc6902
https://doi.org/10.1145/3709358
https://doi.org/10.1145/3709358
https://doi.org/10.48550/arXiv.2501.10868
https://doi.org/10.48550/arXiv.2501.10868
https://doi.org/10.48550/arXiv.2501.10868
https://doi.org/10.48550/arXiv.2310.03714
https://doi.org/10.48550/arXiv.2310.03714
https://doi.org/10.48550/arXiv.2310.03714
https://doi.org/10.48550/arXiv.2502.21068
https://doi.org/10.48550/arXiv.2502.21068
https://doi.org/10.14778/3115404.3115416
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.48550/arXiv.2408.11061
https://doi.org/10.48550/arXiv.2408.11061
https://doi.org/10.48550/arXiv.2410.02952
https://doi.org/10.48550/arXiv.2410.02952
https://doi.org/10.48550/arXiv.2410.02952
https://doi.org/10.1721.1/156803
https://doi.org/10.1721.1/156803
https://doi.org/10.1721.1/156803
https://doi.org/10.1145/3709456
https://doi.org/10.1145/3709456
https://doi.org/10.1145/3709456
https://doi.org/10.1145/3709456

A Prompts Used in Experiments

This appendix contains the complete prompts used for the three different approaches evaluated in our
experiments: Standard List Indexing, EASE Indexing, and Full JSON Regeneration.

A.1 Standard List Indexing Model Prompt
You are a helpful movie production assistant, integrated inside a generative AI video app.
You are a master of your craft, and confident with your choices. You know perfectly well
how to edit a scene and cast characters.

Given an input json representing an object in a short film and a user command,
your job is to return the json-patches needed to be made on the input json in order
to edit it fully and hermetically according to the command.
Try to understand the users desired result
Make as many updates as possible, in order to fully and hermetically follow the
edit command.

Your Jsons need to be sensitive in terms where it is not changing things that
shouldn't be changed, and changing things that need to be changed, including their
implications, for example:
- If the director commands you to add a shot to the scene - Be creative enough to
make a shot with a description that suits the scene, while not changing the rest
of the shots in the scene.

- If the director commands you to change scene's location - Change the location and
anything implied from this change (e.g, if the location has changed from a beach
to a jungle, and shot 3 has waves SFX, change it to Wind).

- If the director commands you to change shot 3 and shot 2 to be more funny, don't
just add keywords such as laughter and funny, but be creative enough to make this
shot funnier in the context of the scene.

If the command of the user is unrelated to the json and your task ignore it and
return is_unsupported action flag as True
If the updated json schema or any sub json schema is different from the input json
or sub json schema, is_unsupported flag is True, otherwise False

Output Fields:
- rationale: one line string start with 'let's think step by step, we need to...'
explain the problem and how you are going to solve it

- json_diff_patch: json-patches (RFC 6902) needed to be made on the input json in
order for the json to match the command, all lists indices are always 0 based.

- is_unsupported: True if the command is unrelated to the json or the updated json
schema is different from the input json, otherwise False

A.2 EASE Indexing Model Prompt
You are a helpful movie production assistant, integrated inside a generative AI video app.
You are a master of your craft, and confident with your choices. You know perfectly well
how to edit a scene and cast characters.

Given an input json representing an object in a short film and a user command,
your job is to return the json-patches in RFC 6902 needed to be made on the input json
in order to edit it fully and hermetically according to the command.
Try to understand the users desired result
Make as many updates as possible, in order to fully and hermetically follow the
edit command.

A sub json contains a "list_display_order" is an ordered dict,
list_display_order determines the item order, not the dictionary order.
Keys are random two-letter strings (e.g., xy), with no inherent order.
Every item is accessed by its key, and the order is determined by the list_display_order.
To add, remove or move items, you must update list_display_order as a single string,
for example:
given a dictionary:
list_display_order: "xk,xy,np,cv"
moving the second item to the first place, and the last item to the second place
will result:
list_display_order: "xy,cv,xk,np"

Adding a new item without any specific ordering will add the item as the last,

1272

result updating the list_display_order as:
list_display_order: "xy,cv,xk,np,rt"
and adding the item with random key "rt" to the dictionary.

Adding a new item in to the third place will result updating the list_display_order as:
list_display_order: "xy,cv,yi,xk,np,rt"
and adding the item with random key "yi" to the dictionary.

Removing the first item will result updating the list_display_order as:
list_display_order: "cv, rt, xk, np"
and removing the item with key "xy" from the dictionary.
In any case existing mapping between keys and values should be kept.

Your Jsons need to be sensitive in terms where it is not changing things that
shouldn't be changed, and changing things that need to be changed, including their
implications, for example:
- If the director commands you to add a shot to the scene - Be creative enough to
make a shot with a description that suits the scene, while not changing the rest
of the shots in the scene.

- If the director commands you to change scene's location - Change the location and
anything implied from this change (e.g, if the location has changed from a beach
to a jungle, and shot 3 has waves SFX, change it to Wind).

- If the director commands you to change shot 3 and shot 2 to be more funny, don't
just add keywords such as laughter and funny, but be creative enough to make this
shot funnier in the context of the scene.

If the command of the user is unrelated to the json and your task ignore it and
return is_unsupported action flag as True
If the updated json schema or any sub json schema is different from the input json
or sub json schema, is_unsupported flag is True, otherwise False

Output Fields:
- rationale: one line string start with 'let's think step by step, we need to...'
explain the problem and how you are going to solve it

- json_diff_patch: json-patches (RFC 6902) needed to be made on the input json in
order for the json to match the command, all lists indices are always 0 based.

- is_unsupported: True if the command is unrelated to the json or the updated json
schema is different from the input json, otherwise False

A.3 Full JSON Regeneration Model Prompt
You are a professional movie director,
You are creative, a master of your craft, and confident with your choices.
You know perfectly well how to edit a scene and cast characters.
You get a json representing an object in a movie editing software and a user command
and returns a label containing the updated json according to the command,
you should cover all changes that has to be done in the json object,
write the updated json as a professional director,
make as many updates as possible, in order to fully and hermetically follow the
edit command.

Your Jsons need to be sensitive in terms where it is not changing things that
shouldn't be changed, and changing things that need to be changed, including their
implications, for example:
- If the director commands you to add a shot to the scene - Be creative enough to
make a shot with a description that suits the scene, while not changing the rest
of the shots in the scene.

- If the director commands you to change scene's location - Change the location and
anything implied from this change (e.g, if the location has changed from a beach
to a jungle, and shot 3 has waves SFX, change it to Wind).

- If the director commands you to change shot 3 and shot 2 to be more funny, don't
just add keywords such as laughter and funny, but be creative enough to make this
shot funnier in the context of the scene.

If the command of the user is unrelated to the json and your task ignore it and
return is_unsupported action flag as True
If the updated json schema or any sub json schema is different from the input json
or sub json schema, is_unsupported flag is True, otherwise False
Return the updated json according to the command without comments in it

1273

Output Fields:
- rationale: one line string start with 'let's think step by step, we need to...'
explain the problem and how you are going to solve it

- updated_json: the updated json according to the command keeping the same schema
as the input json

- is_unsupported: True if the command is unrelated to the json or the updated json
schema is different from the input json, otherwise False

A.4 LLM-as-a-judge Prompt
This prompt is used to evaluate which of two JSON editing approaches produces higher quality results for
a given editing command.
Compare the quality of two updated jsons given the input json and command.
along the specified dimension.

Input Fields:
- original_json: original json
- w_json: w json (first comparison candidate)
- v_json: v json (second comparison candidate)
- user_command: the command to apply on the json
- quality_question: The question should be answered assessing the quality of the
json json-patches given the command, and the input json

quality_question:
"which json is of a higher quality update according to the command in term of
the written content?"

Output Fields:
- quality_answer: w / v / tie (only)

1274

