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Abstract

ETL (Extract, Transform, Load) tools such as
IBM DataStage allow users to visually assem-
ble complex data workflows, but configuring
stages and their properties remains time con-
suming and requires deep tool knowledge. We
propose a system that translates natural lan-
guage descriptions into executable workflows,
automatically predicting both the structure and
detailed configuration of the flow. At its core
lies a Classifier-Augmented Generation (CAG)
approach that combines utterance decomposi-
tion with a classifier and stage-specific few-shot
prompting to produce accurate stage predictions.
These stages are then connected into non-linear
workflows using edge prediction, and stage prop-
erties are inferred from sub-utterance context.
We compare CAG against strong single-prompt
and agentic baselines, showing improved accu-
racy and efficiency, while substantially reducing
token usage. Our architecture is modular, inter-
pretable, and capable of end-to-end workflow
generation, including robust validation steps.
To our knowledge, this is the first system with
a detailed evaluation across stage prediction,
edge layout, and property generation for natural-
language-driven ETL authoring.

1 Introduction

ETL and ELT (Extract, Transform, Load) workflows
are foundational for data integration and analytics
pipelines in modern enterprises (Rahm and Do,
2000; Vassiliadis, 2009). These workflows com-
bine data from disparate sources and apply struc-
tured transformations, typically authored through
dedicated tools such as IBM DataStage. While
such tools offer graphical interfaces for assembling
workflows from predefined components, users must
still manually configure transformation stages and
specify dozens of low-level properties per stage
making authoring tedious and error-prone even for
experts.

Early work addressed these challenges through
custom scripting or GUI-based simplification (Vas-
siliadis et al., 2001; Reddy V and Jena, 2010), and
others explored semantic and ontology-driven ETL
generation (Jiang et al., 2010). However, recent
advances in large language models (LLMs) offer
new opportunities to automatically synthesize such
workflows directly from natural language, reducing
configuration overhead and improving accessibility.

The main contribution of this paper is an end-
to-end system that translates natural language ut-
terances into executable ETL workflows. The sys-
tem is built on a Classifier-Augmented Generation
(CAG) approach, which combines utterance decom-
position, classification-based stage retrieval, and
few-shot prompting to predict the sequence of re-
quired workflow stages. These predicted stages
are then assembled into a directed flow via edge
prediction and configured via property prediction
based on stage-local sub-utterances.

Our architecture is modular, interpretable, and
supports robust validation. We compare CAG
against strong single-prompt and agentic baselines,
demonstrating improvements in both accuracy and
efficiency (e.g., over 60% token reduction while at
the same time using a smaller model). Our system
is already integrated into a production ETL tool
(IBM DataStage), where it supports real-world user
workflows, serving both novice users, who benefit
from reduced interaction complexity, and expert
users, who gain from auto-filled configurations
requiring only a lightweight review.

We report detailed evaluation results for each gen-
eration step (stage, edge, and property prediction)
and discuss how system design decisions impact per-
formance and interpretability. Our findings provide
practical guidance for building LLM-assisted au-
thoring tools for structured, real-world automation
tasks.
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2 Background

We selected IBM DataStage due to its scale, mature
ecosystem, and publicly documented stages and
configuration interfaces (IBM, 2025), making it a
representative platform for evaluating structured
workflow generation. DataStage enables users to
design and run ETL (Extract, Transform, Load) and
ELT workflows across diverse data sources using
a visual interface, where predefined components
(e.g., connectors, transformers, and aggregators)
are assembled into workflows.

As a one-time setup, we extracted 142 DataStage
stages (90 of them datasource connectors) along
with their descriptions and properties from the
official documentation. Stages, also referred to
as datasources, operators, or tasks, form the basic
building blocks of a workflow. Each stage has
between 1 and 111 properties, with an average
of 27.6. For every property, we store its description,
type, default value, and availability conditions in
a structured format suitable for prompt generation
and output validation.

3 Workflow Generation

This section introduces and evaluates our modular
pipeline for generating ETL workflows from nat-
ural language. We begin by comparing different
approaches for predicting the set of workflow stages
(Sections 3.1-3.3), then use the best-performing
approach to predict edges between these stages
(Section 3.4), and finally generate stage properties
(Section 3.5). For this evaluation, we sampled
1010 natural language flow descriptions for stage
prediction.! From this set, we annotated 308 flows
with 1410 properties, and additionally sampled 54
complex non-linear flows (with up to 14 stages) for
edge prediction.

3.1 Single Prompt Stage Prediction

The first approach uses a single prompt that presents
all 142 stages and asks the LLM to identify those
needed for the workflow. The prompt includes
task instructions, stage names with one-line de-
scriptions, 142 few-shot examples, and the user’s
utterance. Few-shot examples help compensate
for the LLM’s lack of pretrained knowledge about
individual stages (Kojima et al., 2022), showing

I'These utterances are paraphrased and anonymized from in-
ternal real-world DataStage flows, including customer-inspired
examples. No IBM documentation was used to construct these
flows.

Accuracy [%]

Model total 1-op n-op
Ilama-3.2-3b-instruct 71.1 923 232
granite-3.1-8b-instruct 88.0 926 777
Ilama-3.3-70b-instruct 964 98.1 926
llama-4-mvk-17b-128e-...2 | 958 97.7 916

Table 1: Single-prompt accuracy on 1010 flows; "1-op"
refers to predictions involving a single stage; "n-op"
refers to predictions involving two or more stages

how stages are combined in real tasks. On average,
each stage appears in about two examples.

As shown in Table 1, the LLMs perform well,
especially the bigger ones, in predicting the work-
flows at hand. In certain cases, the models appear
to overlook relevant stages or parts of the utterance,
likely due to the sheer number of stages presented
in the prompt. For instance, given the utterance
“Combine the employee_info master dataset with
the employee_updates and department_changes
datasets on employee_id. Once done, update the
employee_records and employee_department infor-
mation accordingly.” most models only returned
the join_merge instead of the correct join_merge
and modify stages. The LLaMA3.2 model only
returns combine_records, which in combination
with its poor accuracy shows that this task exceeds
the model’s capabilities. As explained in (Brown
et al., 2020), larger LLaMA models outperform
smaller models.

Because this approach includes all the DataStage
stages and many few-shot examples in the prompt, it
sends almost 14’000 tokens per request to the LLM.
The variation in tokens used for the different re-
quests is relatively small (+/-100) since the prompt,
except for the user’s utterance, remains the same for
every request. Despite the large prompt size, mod-
ern LLMs with 128k context windows (Grattafiori
et al., 2024; Stallone et al., 2024) can process such
inputs comfortably.

3.2 Agentic Stage Prediction

To reduce the prompt size and improve modular-
ity, we adopt an agentic approach in which the
LLM operates as a ReAct-style agent (Yao et al.,
2023). Rather than receiving all stage definitions
up front, the LLM itself may decide to decompose
the user utterance into sub-utterances and invokes
a callable stage classification tool to identify ap-
propriate components. This setup is inspired by
recent work on integrating external tools into LLM

2]lama-4-maverick-17b-1 28e-instruct-fp8
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workflows (Schick et al., 2023; Qin et al., 2024; Qu
et al., 2025).

The classification tool uses a fast and small clas-
sification model trained on a set of 2’697 (utterance,
operator) single-label pairs covering 138 semantic
labels (derived by merging close variants among
the 142 total stages).> Since our training data con-
sisted only of single-label pairs, we could not train
a multi-label classification model. As base models,
we used once Meta AI’'s RoBERTa-large model (Liu
et al., 2020) and once IBM'’s slate-125m-english-
rtrvr model (IBM, 2024), both are small enough and
run extremely fast even on a standard CPU. After
training, both models had an accuracy of about 98%
with RoBERTa-large performing marginally better
but also a bit slower. Since speed is of importance
to use, we use slate as our base model.

Since the classification model operates on single-
label inputs, we expose it to the LLM as a callable
tool. The prompt itself contains instructions ex-
plaining the LLM’s task, the available classification
tool, and the user’s utterance. The LLM correctly
splits the utterance into smaller sub-utterances that
each describe a stage to be executed and passes
each of those sub-utterances to the classification
tool. Based on the results of the classification tool,
the LLM combines the results and generates the
final answer for the flow.

When examining the results in Table 2, we ob-
serve that LLaMA4 underperforms compared to
LLaMA3.3, despite dedicated prompt tuning. Sim-
ilar weaknesses of LLaMA4 on specific tasks have
also been reported by others(Nuenki, 2025; Forsook-
Comparison, 2025). Overall, the agentic approach
performs worse than the single-prompt method
across all models. We identify three main rea-
sons: (1) the granularity mismatch between gen-
erated sub-utterances and the functional scope of
DataStage stages (some sub-utterances are too fine-
grained, others too coarse); (2) semantic similarity
between certain stages, such as split_subrecord
and split_vector, which the limited-capacity
classifier struggles to disambiguate; and (3) oc-
casional classification failures, even for simple
cases, which, though infrequent, can reduce user
trust in the system.

The challenge of this approach is that without any
additional information, it is very hard for the LLM

3The dataset is split into 2° 133 training examples and 564
test samples. Evaluation yields macro-Precision of 98.6%,
macro-Recall of 97.8%, and macro-F1 of 98.1%, based on
sigmoid-thresholded outputs across classes.

Accuracy [%]

Model total 1-op n-op
llama-3-2-3b-instruct 334 400 184
granite-3-1-8b-instruct 456 37.0 652
llama-3-3-70b-instruct 69.3 904 21.6
llama-4-mvk-17b-128e-... | 40.0 279 674

Table 2: Agentic accuracy (1010 flows)

to split the user’s utterance into sub-utterances of
the right granularity. For instance, the best perform-
ing LLaMA 70b model, for the utterance “I want to
use teradata where my connection name is teradata-
00, schema name is TM_DS_DB_1 and table name
is EMPLOYEE2. then sort on the age column. then
filter out pizza column. then postgres where my con-
nection name is tristan_postconn , schema name is
public and table name is demoautotest, Also do the
following, Decimal rounding mode is ceiling, Gen-
erate Unicode Columns, Row limit should be 50.”,
formed the sub-utterance (“‘sort on the age column,
filter out pizza column, Decimal rounding mode
is ceiling, Generate Unicode Columns, Row limit
should be 50”) containing multiple stages which
the classification tool classifies as sort. The model
realizes that this cannot be complete and in subse-
quently asks the classification tool to classify “filter
out pizza column” (filter), “Decimal rounding mode
is ceiling” (decode), “Generate Unicode Columns’
(column_generator), and ‘“Row limit should be 50”
(no match). Unfortunately, while trying to figure
all this out, the model omits the seemingly trivial
upstream and downstream database stages (fera-
data and the postgresql) likely due to context loss
or attention limits.

’

We tried to mitigate this by providing a set of
examples of how to split an utterance into sub-
utterances to use for the classification tool. This
confused the LLMs and they interpreted these ex-
amples as input-output examples with the effect
that the output of the LLM became mostly unus-
able. Considering that the LLMs were able to do
some consolidation of the final results and did not
simply return the concatenations of the classifi-
cation results, we tried to return a description of
the stage predicted by the classification function
clearly marked as stage description but that too got
misinterpreted by the LLMs and again the accuracy
dropped considerably. Finally, we tried to provide
the LLM with a function that instead of giving a
single recommendation, suggests candidates and
documented this as part of the tool description
but again the LLM misinterpreted the output and
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thought that all of these tasks should be included in
the final flow.

3.3 Classifier Augmented Stage Prediction

Agentic approaches enable language models to au-
tonomously reason and act, but in our experiments
they struggled with utterance decomposition, tool
invocation, and prompt interpretation. As in the
agentic approach, we ask the LLM to split up the
user’s utterance into single-stage sub-utterances
which we then classify with our classifier tool. The
stages identified through these tool calls form a
set of candidate stages. These are then passed
to the LLM along with one-line descriptions and
few-shot examples that specifically support them,
hence the name Classifier Augmented Generation
(CAG). CAG addresses practical shortcomings of
the agentic setup while retaining compatibility with
agent-based workflows.

This approach has several other key benefits.
The generation of the sub-utterances is a separate
step in which we can provide few-shot examples
demonstrating utterances and the corresponding
sub-utterances. While these examples may not
provide a complete overview of the granularity of
every stage, they do give the model already a rough
idea of the expected granularity. Additionally, after
the classification model has identified the candidate
stages, we scan the user’s utterance for stage names
(e.g., filter) and their synonyms (e.g., extract) and
if they match add the corresponding stages to the
set of candidate stages. This keyword search signif-
icantly reduces mispredictions for seemingly trivial
utterances.

Once the set of candidate stages has been com-
puted, we use the prompt from Section 3.1 limited
to the stages identified as candidates and about 40
few-shot examples that mention at least one of the
stages in the candidate set. This way, we use both
the classifier and keyword search to narrow the
candidate stage space, while the LLM performs
the final multi-label prediction. Additionally, this
approach allows us to present a larger number of
few-shot examples relevant for candidate stages,
enabling the LLM to better distinguish between
similar stages.

Using this approach, we arrive at the accuracy
numbers shown in Table 3, consistently perform-
ing better than the already excellent single prompt
approach. Moreover, this improved performance
comes at a lower cost: the approach uses only
4,000—4,700 tokens per request on average, de-

Accuracy [%]

Model total 1-op n-op
llama-3.2-3b-instruct 90.1 97.6 732
granite-3.1-8b-instruct 940 979 852
llama-3.3-70b-instruct 972 98.6 942
llama-4-mvk-17b-128e-... | 97.7 99.0 94.8

Table 3: CAG accuracy (1010 flows)

pending on the model, reducing the number of
tokens per request by approximately 66%. In addi-
tion, it achieves comparable accuracy while using
a smaller model that is significantly cheaper per
token, resulting in further overall cost savings. As
in other settings, we observe accuracy increasing
with model size. One illustrative failure case is
the utterance: “Split the full_name field of the
employee_data dataset into separate columns for
first_name and last_name, then capitalize the first
letter of each name for consistency.” Most mod-
els return only the split_subrecord stage and omit
the expected modify stage. Although the models
correctly identify “Capitalize the first letter of each
name for consistency” as a distinct sub-utterance,
our classifier incorrectly maps it to head stage. Be-
cause the keyword search also fails to surface the
modify stage, it is excluded from the prompt and
thus not predicted. The model correctly rejects
head based on the few-shot examples, but with no
other relevant candidate, it defaults to predicting
only split_subrecord.

3.4 Edge Predictions

So far, the stage and property prediction compo-
nents operate under the assumption of linear flows,
where the execution order is implicitly defined by
the sequence of stages. However, many real-world
ETL workflows are non-linear: they include branch-
ing, parallel processing, joins, and multiple input or
output sinks. In these cases, the data flow structure
cannot be inferred from the stage order alone, and
edges must be explicitly predicted.

We define non-linear flows as workflows involv-
ing branching, joining, or parallel transformations
that cannot be expressed as a single linear pipeline.
We generate the flow structure based on the stages
predicted by the CAG approach (95% accuracy).

First, to distinguish repeated stages, we assign
unique names (e.g., by adding a ‘_n’ suffix) while
preserving their semantic identity. Second, to an-
chor these names to a specific part of the user’s
utterance, we ask the LLM to split the utterance ac-
cording to the stages that we have obtained through
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Model | similarity  exact
Ilama-3-2-3b-instruct 31% 0%
granite-3.3-8b-instruct 41% 4%
llama-3.3-70b-instruct 73%  37%
llama-4-mvk-17b-128e-. . . 42%  15%

Table 4: Edge prediction (54 non-linear flows)

the classification approach. Since the LLM now
has access to the task list and stage descriptions, it
can segment the user’s utterance into sub-utterances
with over 99% accuracy. The result is a node list,
where each node includes a unique name, a local-
ized task description, and cardinality constraints
derived from DataStage specifications. Given this
input and the original utterance, the LLM predicts
the flow structure.

Sometimes, the predicted edges violate the prede-
fined input/output cardinality constraints of certain
stages, particularly when the CAG step fails to iden-
tify all necessary stages. This can lead to constraint
violations. To address this, we validate whether
each node’s edge count matches its allowed cardi-
nality. If violations are found, we attempt to split
overloaded nodes (e.g., a node with no inputs and
multiple outputs), if such a split is unambiguous.
If splitting is not possible, we remove excess edges
until all constraints are satisfied.

Table 4 shows the results for complex non-linear
flows with 6-14 stages (avg 8.1) per flow (again,
LLaMAA4 struggles with some tasks), it is the most
challenging step, even the best model achieves only
37% exact match and 73% structural similarity.
These results are still valuable as flows with 70-80%
similarity often require only minor corrections. For
this aspect we have not yet managed to optimize the
prompts, so there may be room for improvements.

3.5 Property Prediction

To predict stage properties, we use the sub-
utterances generated for each individual stage by the
edge prediction. Using the full utterance can lead
to ambiguity, as LLMs may struggle to determine
which property belongs to which stage—especially
when a stage appears multiple times (e.g., multiple
sort stages sorting different data artifacts). Hence,
properties are predicted individually for each stage.
Each prompt contains task-specific instructions, the
sub-utterance, the corresponding stage name, a list
of all supported properties (each with a one-line
description), and a one-shot example.

To mitigate errors in generated properties, we
apply a multi-dimensional validation strategy that

Model | prec. recall F1
llama-3-2-3b-instruct 88%  72% 0.79
granite-3.3-8b-instruct 93%  71% 0.81
llama-3.3-70b-instruct 92% 81% 0.86
llama-4-mvk-17b-128e-... | 94%  67% 0.78

Table 5: Property prediction (308 flows with 1410
properties)

validates the properties associated with the current
stage. First, we remove any generated properties
whose names do not match a valid property defined
for that stage. Second, we check whether the value
of each property can be coerced to the property’s
declared type. If type coercion fails, the property is
discarded. Third, we evaluate inter-property depen-
dencies: some properties are only valid if others are
present with specific values. This logic is encoded
as metadata expressions evaluated at runtime, with
access to the full set of properties predicted for
the stage. For instance, in the Column Generator
stage, the property Options/Column to Generate
is only valid when Options/Column Method is set
to Explicit. Finally, we perform stage-specific or
external consistency checks. For example, certain
properties must match real-world artifacts—such as
actual database connection names mentioned by the
user. If such constraints are violated, the property
is removed.

The results in Table 5 show strong performance
across all models, including the smallest LLaMA
model. This is partly due to our preprocessing of the
utterance into focused sub-utterances, each matched
to a corresponding list of possible properties. This
reduces the model’s job to a pattern-matching setup
that even smaller models can achieve with high
precision and competitive F1 scores.

3.6 Pipeline Summary

Our overall pipeline is shown in Figure 1. The
process begins with a natural language utterance,
which is split into sub-utterances and passed through
a classification model to identify candidate stages.
In parallel, a keyword matcher recovers additional
stage candidates. Together, these form the retrieval
step in our Classifier-Augmented Generation (CAG)
approach. Based on the selected stages, we generate
targeted descriptions and few-shot examples, which
are then used by the LLM to predict the final list of
stages. This stage prediction step is followed by a
verification pass to ensure stage-level consistency.

Once the stages are known, the pipeline branches
into two parallel steps: generating the nonlinear
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Figure 1: Interaction between CAG, edge prediction, and property prediction to generate workflows.

structure of the workflow (i.e., edge prediction), and
inferring per-stage parameters (i.e., property predic-
tion). For both tasks, the model uses the previously
derived sub-utterances and stage descriptions. A
final validation layer enforces edge cardinality con-
straints and property-level correctness. The result
is a complete DataStage workflow generated from
natural language input.

4 Related Work

Apart from our approach, we found Zap builder (Za-
pier, 2024) and Power Automate (Microsoft) that
both offer an Al-powered flow generation but no
technical details or results about these tools seem
to be available in the literature. (Datacamp Team,
2024) maintains a list of popular ETL tools but after
closer inspection, none of them seem to support
providing flows by a natural language description.

In the research literature, we found GOFA (Brach-
man et al., 2022) that creates application integration
workflows through natural language. It utilizes an
Integration Knowledge Graph, eliminating the need
for an annotator. However, it serves mostly as gen-
erating a skeleton for a linear flow since it does
not help with the configuration of the nodes’ prop-
erties whereas our approach generates complete
workflows. FlowMind (Zeng et al., 2023) and Aut-
oFlow (Li et al., 2024) are tools for executing a
workflow based on a user’s query. However, these
“workflows” are executed ad hoc whereas our tool
generates the implementation of a generic workflow
that, once created, can be used repeatedly even
without an LLM. Analyza (Dhamdhere et al., 2017)
is a tool that generates SQL queries from natural
language input, utilizing a parser, annotator, and
table identifier to handle user queries. The tool
addresses the challenge of ambiguity in complex
SQL queries by initially limiting itself to simpler
ones. Subsequent steps involve refining the original
query using simple statements, akin to part of our

approach of supporting the selection of a single ETL
stage at a time. However, this work only describes
the system and does not provide any evaluation and
benchmarking.

5 Limitations

While our classifier achieves high accuracy, it was
trained solely on single-label (utterance, stage) pairs
due to the lack of sufficiently large multi-label train-
ing data. This constraint is mitigated by a final
LLM-based multi-label generation step, but clas-
sification errors may still propagate when relevant
candidate stages are excluded entirely.

Stage and property prediction remain robust
across a range of workflows. However, edge predic-
tion remains a key limitation. Although we achieve
73% structural similarity to gold-standard layouts,
exact edge match is only 37%. As a result, the sys-
tem often produces structurally valid drafts that still
require user revision. In future work, we aim to ex-
plore hybrid architectures that combine LLM-based
semantic reasoning with geometric deep learning
methods such as graph neural networks (GNNs) to
improve edge layout accuracy and flow topology
prediction.

Our current validation logic assumes that table
and column names are either correct or ignorable.
While unmatched names are filtered during post-
processing, the system does not currently attempt
fuzzy matching or correction. This limits robust-
ness in realistic settings where users may reference
unavailable or misspelled schema elements.

Prompt formats and examples are tuned per
model family, which may reduce portability across
model architectures or providers. Generalization
to other ETL platforms depends on the availability
of operator-level metadata (e.g., transformation de-
scriptions and property schemas), which is common
but not universal.
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Finally, while the system performs well on multi-
step utterances, the style and structure of the inputs
reflect internally sourced usage data. We expect
further refinement to be needed when adapting to
workflows from other domains or user populations.

6 Conclusions

We introduced a modular system for translating nat-
ural language into executable ETL workflows, com-
bining classification and generation in a Classifier-
Augmented Generation (CAG) architecture. The
system decomposes user utterances into manage-
able sub-tasks—stage selection, edge prediction,
and property configuration—paired with targeted
prompting and validation. CAG predicts correct
workflow stages in over 97% of cases, outperforms
strong single-prompt and agentic baselines, and
reduces token usage by more than 60%. When
deployed with a smaller model, it achieves com-
parable accuracy to the single-prompt baseline at
roughly 90% lower overall cost. Property prediction
achieves 90% accuracy, and full-flow generation
reaches over 70% structural similarity—often re-
quiring only minor corrections. Beyond strong
results, our architecture enables modular validation
and constraint-based correction, and lends itself
to transparent reasoning about intermediate predic-
tions. Edge prediction though remains a challenge
but offers clear opportunities for optimization. We
believe our approach offers a promising foundation
for LLM-assisted authoring of structured automa-
tion tasks in ETL and related domains. Its suc-
cessful integration into a production ETL platform
further validates the practicality and scalability of
the proposed architecture.
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A Example Utterances and Flows

This appendix lists two examples prompts that are
similar to the fewshot examples we used as well as
examples for the evaluation. Originally, this work
started by predicting the stages used in linear flows
and in a latest prototype was extended to cover
non-linear flows as well.

A.1 Linear Flow

Linear flows do not employ any kind of branching
and simply describes a sequence of actions the
properties to be used for each action. One such
flow is the following:

I want to use teradata where my connec-
tion name is teradata-00, schema name
is TM DS DB 1 and table name is EM-
PLOYEE2. then sort on the age col-
umn. then filter out pizza column. then
postgres where my connection name is
tristan postconn , schema name is public
and table name is demoautotest, Also do
the following, Decimal rounding mode
is ceiling, Generate Unicode Columns,
Row limit should be 50.

For this natural language descriptionm, the fol-
lowing flow should be generated:

teradata — filter — decode — col-
umn_generator — postgresql

A.2 Non-Linear Flows

To evaluate the edge prediction to evaluate non-
linear flows as well we used samples similar to the
following which is shown grapically in Figure 2:
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Extract data from MySQL and sample it
using percent mode to send some data to
a switch operator and the other data to
a join operator. The switch stage writes
some data to a fileset and outputs the rest
to a sort stage that finally writes data into
another fileset. The join operator merges
the sampled MySQL data with data from
a SQL Server source. Finally, the first few
rows are selected using a head operator.

B Prompt Templates

Different model families may require tailored
prompt formats for optimal prediction. In this work,
we focused on the Granite and LLaMA model fami-
lies and optimized their respective prompts for stage
prediction. The following examples show the exact
prompts used in the CAG setup for both Granite and
LLaMA. By instead listing all stages and adjusting
the few-shot examples accordingly, we obtain the
prompt used in the single-prompt baseline.

B.1 Granite Prompt Template

Granite models require explicit role tokens to de-
limit system instructions, user input, and assistant
responses. The prompt includes multiple few-shot
examples and a final assistant cue that signals the
model to complete the task. Its structure follows
the public Granite documentation (IBM Research,
2024).

The same base prompt structure is used for both
the single-prompt and CAG setups: the only differ-
ence is that the single-prompt baseline enumerates
all DataStage stages, whereas the CAG variant
restricts this list to candidates identified by the clas-
sifier and keyword search (see Sections 3.1 and 3.3).

In this example, the operator description for
column_generator could not be automatically ex-
tracted by our tooling and was therefore omitted.
Nevertheless, the LLM correctly inferred its seman-
tics from the few-shot examples.

Listing 1: Granite prompt

<|start_of_role|>system<|end_of_role|>Knowledge Cutoff Date:
< April 2024.

Today's Date: December 17, 2024.

You are Granite, developed by IBM. You are a helpful AI
< assistant.<|end_of_text|><|start_of_role|>user<|
< end_of_role|>Given the Context in the form of Operator and
< 1its descriptions, assign the correct Operator to the
< Utterance. Operators may occur multiple times. Only pick
< Operators given in the Context.

Your response should only include the answer. Do not provide
< any further explanation.

Context:

"column_generator”: CREATE DESCRIPTION

"column_import”: Column Import is a stage that imports data

< from a single column and outputs it to one or more columns
"dataset”: A file datasource stage that reads and writes data
< from a DataSet/Data Set.

"dv": A stage that integrates data sources across multiple

< types and locations and turns all this data into one

< logical data view.

"head"”: The Head Stage selects the first N rows from each

< partition of an input data set and copies the selected

< rows to an output data set. You can sample data using this
< stage

"split_subrecord”: The Split Subrecord stage separates an

< input subrecord field into a set of top-level vector

< columns.

"split_vector”: The Split Vector operator stage modifies an

< input vector column by splitting it into columns

"tail"”: The tail operator copies the last N records from each
< partition of its input data set to its output data set. By
< default, N is 10 records

Here are some examples, complete the last one:

Utterance: Use Data Set. Please take action to Ignore missing
< columns.

Operators: "dataset”

Utterance: Use split vector to split input vector 'Category'
Operators: "split_vector”

Utterance: Starting from row 4, get 100 rows from my dataset
Operators: "head”

Utterance: Retrieve data from Dropbox and process it using
< Data Virtualization. Then, utilize Data Virtualization
< Manager to provide read and write access to IBM Z data in
< place.

Operators: "dropbox, dv, dvm”

Utterance: I want to use column generator to make the column '
< ID'. Please don't combine underlying operators into a
< single process

Operators: "column_generator”

Utterance: Read data from Azure File Storage and process the
< tail of the data, which includes the last N records from
< each partition. Finally, store the processed data in Azure
< Blob Storage.

Operators: "azure_file_storage, tail, azure_blob_storage"”

Utterance: I want to use column import to import a column to
< the output column 'Region'. Don't keep the input column
< and don't combine operators.

Operators: "column_import”

Utterance: Separate subrecord field column_1 into a set of top-
< level vector columns.
Operators: "split_subrecord”

Utterance: Extract data from dataset temp.ds and ignore if
< there are any missing columns
Operators: "dataset”

Utterance: head
Operators: "head”

Utterance: Use the stage called dv. Use the connection with

< the GUID 'connectionGUID', set the Java heap size to 256
MegaBytes, and round to the nearest even number. Set the
default maximum length for column names to 20000
characters, use the general mode to read records from the
table, and return a maximum of 10 rows. I want to read
from the schema named 'GOSALESHR_1021 and read data from
the table named 'EMPLOYEE_EXPENSE_DETAIL'.
Operators: "dv”

rreere

)

Utterance: I want to split the vector column 'Data'. Also, don
< 't use underlying operators.
Operators: "split_vector”

Utterance: Apply encoded change operations to a before data
< set based on a changed data set. Then, generate new
< columns for the dataset. Finally, store the modified
< dataset in IBM Cloud Object Storage.

Operators: "change_apply, column_generator,
< cloud_object_storage”

Utterance: Import a column to the columns 'Name', 'Age',
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Figure 2: Non-Linear Flow Example
< Region', 'Gender', 'Department', 'ID', 'Salary'. Auto

< combine operators
Operators: "column_import”

Utterance: tail
Operators: "tail”

Utterance: Extract records where sales exceed $1000, split the
< address field into street, city, and country, and then
< integrate this data with customer information using
< department_id.

Operators: "filter, split_subrecord, join”

Utterance: Select the first and last two records of the

< dataset and then print their details for quality check
< purposes.

Operators: "head, tail, peek”

Utterance: Remove all but the first 10 rows of data from my
< dataset
Operators: "head”

Utterance: Write to a dataset

Operators: "dataset”

Utterance: I want to read from ibm data virtualization
Operators: "dv"

Utterance: Use column generator to create the column region
Operators: "column_generator”

Utterance: Split the vector column 'Name'

Operators: "split_vector”

Utterance: Use column import

Operators: "column_import”

Utterance: Use Tail

Operators: "tail”

Utterance: Split subrecord parent to a set of similarly named

< and typed top-level columns.
Operators: "split_subrecord”

Utterance: Split the input subrecord field into a set of top-
< level vector columns using the Split Subrecord stage. Then
< , modify the input vector column by splitting it into
< columns using the Split Vector stage.

Operators: "split_subrecord, split_vector”

Utterance: Read data from the Data Set file 'test.ds' and if
< there are any missing columns, set them to the null value.
Operators: "dataset”

Utterance: Retrieve data from Dropbox and integrate it using
< Data Virtualization to create a unified data view.
Operators: "dropbox, dv”

Utterance: Return rows of data with a period of 5.

Operators: "head”

Utterance: split vector

Operators: "split_vector”

Utterance: CREATE DESCRIPTION

Operators: "column_generator”

Utterance: Using tail operator as an intermediate stage, copy

< the last 5 records, from partitions 1,2 and 3 of input
< dataset to output data set
Operators: "tail”

Utterance: Combine data from multiple input datasets such as
< sales_data, customer_info, and product_catalog into a
< single output dataset for comprehensive analysis; Sorted
< on ID in ascending order. then divide the address field
< into separate columns for street, city, and pincode.

Operators: "funnel, split_subrecord”

Utterance: Import the column 'Info' to output column 'ID'. If
< there are failing rows, fail the stage, and don't combine
< operators. I don't want to keep the import column.

Operators: "column_import”

Utterance: Overwrite rows from data set 'test.ds'

Operators: "dataset”

Utterance: Read from IBM data virtualization

Operators: "dv"

Utterance: Use the stage called Head. Please combine operators
< into a single process and set the period to 5 for row

< selection.
Operators: "head”

Utterance: Generator columns with schema file 'employee.json'.
< I want to combine underlying operators into a single

< process

Operators: "column_generator”

Utterance: Split the vector column 'Quantity' and combine
< underlying operators
Operators: "split_vector”

Utterance: I want to separate an input subrecord field parent
< into a set of top-level vector columns.
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Operators: "split_subrecord”

Utterance: Import columns with schema file 'sales.xml'. Log
< failing rows and combine underlying operators.
Operators: "column_import”

Utterance: Select the first and last five records of the
< Employee dataset and select the first ten records from
< Student dataset.

Operators: "head, tail, head”

Utterance: Using dataset, overwrite rows from the data set
< named test.ds
Operators: "dataset”

Utterance: Get all rows except the first 10 rows from all
< partitions.
Operators: "head”

Utterance: I want to read table EconomicOutput from IBM Data
< Virtualization, use general read method, apply schema
< WorldEconomicForum, use GDP as the key column, round
< decimals to the ceiling, generate unicode for columns.

Operators: "dv"

Utterance: Use the file 'employee.json' to generate a column.
< Please combine underlying operators
Operators: "column_generator”

Utterance: Process complex flat files, split vector columns,
< and load the data into a SingleStore Database.
Operators: "complex_flat_file, split_vector, singlestore”

Utterance: Give me the last 3 rows of my input dataset
Operators: "tail”

Utterance: The Split Subrecord stage separates an input
< subrecord field into a set of top-level vector columns.
Operators: "split_subrecord”

Utterance: Import from column 'Sales' using file 'sales_schema.
< xml'. Keep the import column
Operators: "column_import”

Utterance:
Split the full_name field of the employee_data dataset into
< separate columns for first_name and last_name, then
< capitalize the first letter of each name for consistency.
Operators:<|end_of_text|><|start_of_role|>assistant<|
< end_of_role|>

B.2 Llama Prompt Template

The LLaMA prompt follows a similar structure but
uses instruction-tuned phrasing and omits explicit
role tokens. Unlike Granite, LLaMA models do not
require these delimiters to correctly complete the
final example. However, it is important to pre-seed
the output with the opening quote character (") to
guide the model toward the correct output format;
without this cue, the LLaMA models occasionally
deviate from the expected format. Interestingly,
for the Granite models this pre-seeding had the
opposite effect and reduced the output consistency.

Listing 2: Llama prompt

Given the Context in the form of Operator and its descriptions,
< assign the correct Operator to the Utterance. Operators
< may occur multiple times. Only pick Operators given in the
< Context.

Your response should only include the answer. Do not provide
< any further explanation.

Context:
"column_generator”: CREATE DESCRIPTION
"column_import”: Column Import is a stage that imports data
< from a single column and outputs it to one or more columns

"dataset”: A file datasource stage that reads and writes data
< from a DataSet/Data Set.

"dv": A stage that integrates data sources across multiple

< types and locations and turns all this data into one

< logical data view.

"head”: The Head Stage selects the first N rows from each

< partition of an input data set and copies the selected

< rows to an output data set. You can sample data using this
< stage

"split_subrecord”: The Split Subrecord stage separates an

< input subrecord field into a set of top-level vector

< columns.

"split_vector”: The Split Vector operator stage modifies an

< input vector column by splitting it into columns

"tail”: The tail operator copies the last N records from each
< partition of its input data set to its output data set. By
< default, N is 10 records

Here are some examples, complete the last one:

Utterance: Use Data Set. Please take action to Ignore missing
< columns.

Operators: "dataset”

Utterance: Use split vector to split input vector 'Category'
Operators: "split_vector”

Utterance: Starting from row 4, get 100 rows from my dataset
Operators: "head”

Utterance: Retrieve data from Dropbox and process it using
< Data Virtualization. Then, utilize Data Virtualization
< Manager to provide read and write access to IBM Z data in
< place.

Operators: "dropbox, dv, dvm”

Utterance: I want to use column generator to make the column
< ID'. Please don't combine underlying operators into a
< single process

Operators: "column_generator”

Utterance: Read data from Azure File Storage and process the
< tail of the data, which includes the last N records from
< each partition. Finally, store the processed data in Azure
< Blob Storage.

Operators: "azure_file_storage, tail, azure_blob_storage”

Utterance: I want to use column import to import a column to
< the output column 'Region'. Don't keep the input column
< and don't combine operators.

Operators: "column_import”

Utterance: Separate subrecord field column_1 into a set of top-
< level vector columns.
Operators: "split_subrecord”

Utterance: Extract data from dataset temp.ds and ignore if
< there are any missing columns
Operators: "dataset”

Utterance: head
Operators: "head”

Utterance: Use the stage called dv. Use the connection with
< the GUID 'connectionGUID', set the Java heap size to 256
< MegaBytes, and round to the nearest even number. Set the
< default maximum length for column names to 20000
< characters, use the general mode to read records from the
< table, and return a maximum of 10 rows. I want to read
< from the schema named 'GOSALESHR_1021 and read data from
< the table named 'EMPLOYEE_EXPENSE_DETAIL'.

Operators: "dv"

Utterance: I want to split the vector column 'Data'. Also, don
< 't use underlying operators.
Operators: "split_vector”

Utterance: Apply encoded change operations to a before data
< set based on a changed data set. Then, generate new
< columns for the dataset. Finally, store the modified
< dataset in IBM Cloud Object Storage.

Operators: "change_apply, column_generator,
< cloud_object_storage”

Utterance: Import a column to the columns 'Name', 'Age', '
< Region', 'Gender', 'Department', 'ID', 'Salary'. Auto
< combine operators

Operators: "column_import”
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Utterance: tail
Operators: "tail”

Utterance: Extract records where sales exceed $1000, split the
< address field into street, city, and country, and then
< integrate this data with customer information using
< department_id.

Operators: "filter, split_subrecord, join"

Utterance: Select the first and last two records of the

< dataset and then print their details for quality check
< purposes.

Operators: "head, tail, peek”

Utterance: Remove all but the first 10 rows of data from my
< dataset
Operators: "head”

Utterance: Write to a dataset
Operators: "dataset”

Utterance: I want to read from ibm data virtualization
Operators: "dv"

Utterance: Use column generator to create the column region
Operators: "column_generator”

Utterance: Split the vector column 'Name'
Operators: "split_vector”

Utterance: Use column import
Operators: "column_import”

Utterance: Use Tail
Operators: "tail”

Utterance: Split subrecord parent to a set of similarly named
< and typed top-level columns.
Operators: "split_subrecord”

Utterance: Split the input subrecord field into a set of top-
< level vector columns using the Split Subrecord stage. Then
< , modify the input vector column by splitting it into
< columns using the Split Vector stage.

Operators: "split_subrecord, split_vector”

Utterance: Read data from the Data Set file 'test.ds' and if
< there are any missing columns, set them to the null value.
Operators: "dataset”

Utterance: Retrieve data from Dropbox and integrate it using
< Data Virtualization to create a unified data view.
Operators: "dropbox, dv”

Utterance: Return rows of data with a period of 5.
Operators: "head”

Utterance: split vector
Operators: "split_vector”

Utterance: CREATE DESCRIPTION
Operators: "column_generator”

Utterance: Using tail operator as an intermediate stage, copy
< the last 5 records, from partitions 1,2 and 3 of input
< dataset to output data set

Operators: "tail”

Utterance: Combine data from multiple input datasets such as
< sales_data, customer_info, and product_catalog into a
< single output dataset for comprehensive analysis; Sorted
< on ID in ascending order. then divide the address field
< into separate columns for street, city, and pincode.

Operators: "funnel, split_subrecord”

Utterance: Import the column 'Info' to output column 'ID'. If
< there are failing rows, fail the stage, and don't combine
< operators. I don't want to keep the import column.

Operators: "column_import”

Utterance: Overwrite rows from data set 'test.ds'
Operators: "dataset”

Utterance: Read from IBM data virtualization
Operators: "dv"

Utterance: Use the stage called Head. Please combine operators
< into a single process and set the period to 5 for row
< selection.

Operators: "head”

Utterance: Generator columns with schema file 'employee.json'.
<> I want to combine underlying operators into a single
< process

Operators: "column_generator”

Utterance: Split the vector column 'Quantity' and combine
< underlying operators
Operators: "split_vector”

Utterance: I want to separate an input subrecord field parent
< into a set of top-level vector columns.
Operators: "split_subrecord”

Utterance: Import columns with schema file 'sales.xml'. Log
< failing rows and combine underlying operators.
Operators: "column_import”

Utterance: Select the first and last five records of the
< Employee dataset and select the first ten records from
< Student dataset.

Operators: "head, tail, head”

Utterance: Using dataset, overwrite rows from the data set
< named test.ds
Operators: "dataset”

Utterance: Get all rows except the first 10 rows from all
< partitions.
Operators: "head”

Utterance: I want to read table EconomicOutput from IBM Data
< Virtualization, use general read method, apply schema
< WorldEconomicForum, use GDP as the key column, round
< decimals to the ceiling, generate unicode for columns.

Operators: "dv”

Utterance: Use the file 'employee.json' to generate a column.
< Please combine underlying operators
Operators: "column_generator”

Utterance: Process complex flat files, split vector columns,
< and load the data into a SingleStore Database.
Operators: "complex_flat_file, split_vector, singlestore”

Utterance: Give me the last 3 rows of my input dataset
Operators: "tail”

Utterance: The Split Subrecord stage separates an input
< subrecord field into a set of top-level vector columns.
Operators: "split_subrecord”

Utterance: Import from column 'Sales' using file 'sales_schema.
< xml'. Keep the import column
Operators: "column_import”

Utterance: Split the full_name field of the employee_data
< dataset into separate columns for first_name and last_name
< , then capitalize the first letter of each name for
< consistency.

Operators: "
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