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Abstract

Automated evaluation using LLM-as-Judge of-
fers significant practical benefits for indus-
trial applications. However, the commonly
recognized misalignment of judgment biases
between humans and LLM-as-Judge hinders
its usage in real-world businesses. Although
preference-finetuning could be a potential so-
lution, it is often impractical for industrial use-
cases due to the scarcity of business-specific
data and the infeasibility of applying it to
closed models. In this paper, we propose IN-
STAJUDGE, an LL.M-as-Judge library that im-
proves alignments of judgment biases through
automatic prompt optimization (APO). Our li-
brary not only integrates recent APO methods
within a unified framework but also introduces
a novel APO approach called distribution-
preserving few-shot sampling (DPFS). Exper-
imental results verify demonstrate DPFS sig-
nificantly outperforms existing LLM-as-Judge
libraries, like DeepEval, and APO methods by
a large margin, while being more cost efficient.

1 Introduction

In light of recent notable achievements of large
language models (LLMs), LLM-as-Judge (Zheng
et al., 2023; Li et al., 2024b; Gao et al., 2025)
has emerged as a compelling alternative to human
evaluation, offering potential benefits to the indus-
try by significantly lowering the costs associated
with assessing the quality of Al applications. To
ensure successful replacement of human evalua-
tion with LLM-as-Judge, particularly for industrial
purposes, it is an essential prerequisite to align
the judgment bias of LLM-as-Judge with that of
humans. However, numerous studies have demon-
strated that the judgment biases of LLMs are often
misaligned with those of humans (Koo et al., 2024;
Chen et al., 2024), and they possess undesirable bi-
ases, which can be detrimental to reliable decision-
making (Jang and Lukasiewicz, 2023; Wang et al.,
2024; Wataoka et al., 2024; Levy et al., 2024b).

The most widely utilized and straightforward
remedy to align judgment biases between LLMs
and humans is fine-tuning with human-preference
dataset, where many algorithms have been pro-
posed for efficient fine-tuning (Go et al., 2023;
Rafailov et al., 2023; Meng et al., 2024; Etha-
yarajh et al., 2024; Xiong et al., 2024; Kim et al.,
2025). Nonetheless, these approaches are hardly
applicable to industrial contexts. Firstly, indus-
trial use-cases require business-oriented and task-
specific judgment biases, necessitating the involve-
ment of highly skilled annotators who possess in-
depth business understanding to accurately anno-
tate the data. Ultimately, this makes the collection
of human-preference datasets significantly more
costly. Secondly, preference fine-tuning algorithms
require open models that allow access to logits
and parameters. However, in industry applications,
closed LLMs are also widely used because of the
convenience of simply calling their APIs. For these
models, preference fine-tuning is rarely feasible.

In this paper, we introduce a Python library
named INSTAJUDGE, developed to address the
alignment of judgment biases between humans and
LLM-as-Judges in industrial applications. Instead
of fine-tuning with a curated human-preference
dataset, we employ automatic prompt optimization
(APO) to learn judgment bias, in light of studies
indicating that prompt engineering can contribute
to the injection of biases into LLMs (Dwivedi et al.,
2023; Torres et al., 2024). Specifically, our library
supports the automatic discovery of the best task
instructions and few-shot demonstrations, aiming
to maximize human alignment by using a small
amount of human-annotated dataset. To achieve
this, we integrate DSPy (Khattab et al., 2024;
Opsahl-Ong et al., 2024) and AdalFlow (Yin and
Wang, 2025) into our INSTAJUDGE framework, en-
abling users to access both distinct libraries within
our unified schema by simply specifying an op-
tion. Additionally, we introduce a novel method
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called Distribution Preserving Few-shot Sampling
(DPFES), a cost efficient approach to identify suit-
able few-shot demonstrations and can be employed
alongside the task instruction optimization methods
of both DSPy and AdalFlow.

INSTAJUDGE offers significant advantages over
existing representative LLM-as-Judge libraries,
such as DeepEval (Confidential-Al, 2025) and
Opik (Comet, 2024), by providing APO to enhance
human-alignment and allowing for a customized
evaluation.! Experimental results on various real-
business datasets also reveal that the proposed
DPFS method significantly improves the human
alignment across many industrial use-cases com-
pared to DSPy and AdalFlows. It also achieves ap-
proximately a 64% improvement in alignment with
human preferences compared to zero-shot LLM-as-
Judges without utilizing APO.

2 INSTAJUDGE Library

Building upon prior research regarding APO, we
conceptualize a prompt as a combination of task
instructions and few-shot demonstrations.

2.1 Supported Functionalities

Our library supports three types of APO methods,
allowing users to run both existing approaches and
our own contribution with just a few lines of code.
Note that a certain amount of human-annotated
training data, usually between 20 to 50, is required.

DSPy (Khattab et al., 2024) can be character-
ized as an APO algorithm that operates in a grid
search manner. The algorithm initiates the process
by generating potential candidates for improved
task instructions and few-shot demonstrations us-
ing LLMs. Subsequently, it seeks to determine the
optimal combination of task instruction and few-
shot demonstrations that maximizes performance
based on predefined evaluation criteria, such as ac-
curacy on the training dataset. While grid search is
ideal for finding the optimal solution, its computa-
tional cost is prohibitively high. Therefore, DSPy
employs Bayesian optimization as a more efficient
alternative.

AdalFlow (Yin and Wang, 2025) is an algorithm
that utilizes TextGrad (Yuksekgonul et al., 2024)
for APO. As clarified in the original paper, the term
‘gradient’ in TextGrad is metaphorical rather than

'DeepEval and Opik only provide zero-shot inference and
numerical evaluation scores within a fixed range.

mathematical, referring to textual feedback gener-
ated by LLMs. The process consists of two steps:
a forward pass and a backward pass. During the
forward pass, an LLM generates a prediction based
on an initial prompt and an input instance, followed
by a feedback generation step, in which the LLM
produces evaluative feedback on the prediction con-
sidering the corresponding ground-truth label and a
predefined evaluation criterion. The backward pass
then begins with the improvement suggestion stage,
where the LLM generates suggestions to refine the
prediction based on the previously generated eval-
uative feedback. Finally, the LLM prompted to
generate an updated prompt based on the original
prediction and the improvement suggestions, with
the goal of improving subsequent predictions.

DPFS Based on the recent study that shows
the impact of accurate human-written refer-
ence (Krumdick et al., 2025), we introduce DPFS
for constructing optimal few-shot demonstrations.
Unlike DSPy and AdalFlow, which incorporates
LLM-generated examples, DPFS only employs
human-written data. It is worth mentioning that
DPES can be applied independently or integrated
with the task instruction optimization methods of
DSPy or AdalFlow.

Algorithm 1 SAMPLING process of DPFS.
Input: labeled  dataset D =
{(@1,91), ., (@mym)}, Y = (Y1, ym),
the number of few-shot examples N
Output: Extracted few-shot example set .S
1. S=[] > Initialize an empty list
2: for i =1, ..., lUniqueSet(Y)l do
3: Py_; = Dist(D) > Compute probability of
label 7 from D
4: 7 = min(int(N x Py—;), 1) © Determine
the number of samples to extract for label ¢
5: S; = RandSample(Dy—;, i) > Random
sample n examples with label ¢
S += SZ
7: end for
8: return S

Our approach consists of two processes, SAM-
PLING and SELECTION. The human label distribu-
tion reflects certain biases existing in human judg-
ment (Haliburton et al., 2024). For example, con-
sider an annotation task with label scales ranging
from 1 to 5, where the higher scores imply better
quality. Provided an annotator has strict judgment
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biases, more training examples are likely to receive
lower scores. Conversely, more lenient judgment
biases will lead to a higher frequency of high-score
labels. Therefore, the SAMPLING process is crafted
to select few-shot examples while preserving the
label distribution of the training data, aiming to bet-
ter align the evaluation criteria of LLMs with those
of human annotators. The detail of SAMPLING pro-
cess is demonstrated in Algorithm 1. It is easy to
find that the SAMPLING process is similar to the
stratified sampling of the scikit-learn Python
package, with the key difference being that the
SAMPLING process guarantees at least one sample
is selected for each label.

While the SAMPLING process preserves the
ground-truth label distribution, it only reflects su-
perficial judgment biases. Also, it can produce
multiple few-shot sets with no clear indication of
which set is optimal. The SELECTION process is
thus implemented to determine which candidate
few-shot set might be optimal. We established
the guideline that the most effective set is the one
where the LLM makes the most errors, allowing
the model to correct its judgment bias with more
accurate information. The entire process of DPFS
method is demonstrated in Algorithm 2.

Algorithm 2 The entire DPFS process.

Input: labeled dataset D =
{(xh Y1, )7 i) (xK7 Ym, )}’ Y = (ylv i) yM)’ the
number of few-shot examples NV, the number of
few-shot example set to investigate /', an LLM M
Output: Optimized few-shot example set O

C =] > Initialize an empty candidate list
S=1] > Initialize an empty score list
for j=1,..,Kdo
Oj = SAMPLING(D, N)
Algorithm 1
5: X, Y; = DividePairs(O;)
into inputs and labels
6: Xj=M(X;) v Generate predictions of
X with the LLM
7: Aj = Alignment(X, Y;) > Compute the
alignment score with human annotations
C.append(O;)
: S.append(A;)
10: end for
11: idx = argmin(.S)
12: O = CTidx]
13: return O

A

> Run

> Divide O;

DPES provides a great advantage in terms of

computational cost. Let n denotes the number of
few-shot examples, /N represents the size of the
training set, I indicates the number of iterations
for APO, and K signifies the number of few-shot
sets to be examined. As both DSPy and AdalFlow
involve generating few-shot examples and making
predictions on training examples to calculate the
evaluation criterion for each iteration, the number
of LLM calls is proportional to O(n x N x I).
In contrast, DPFS invokes LLM only O(n x K)
times. Given that I and K are relatively small and
often have similar values (e.g., 10), DPFES requires
significantly few LLM calls compared to DSPy and
AdalFlow, thereby reducing the optimization time.
In practice, the APO time of DPFS was 2.2 and 5.1
times fewer than DSPy and AdalFlow on average,
respectively.

Self-consistency decoding (Wang et al., 2023)
is a strategy that involves generating multiple rea-
soning paths (V) and their corresponding outputs,
then aggregating these outputs to arrive at the final
answer. Our library supports this decoding strategy
to ensure more robust and precise predictions.

2.2 Overview of Basic Usage

Prompt Configuration. The initial and funda-
mental step in utilizing our library involves defin-
ing the prompt configuration in JSON format,
which consists of InputFields, OutputFields,
and Instruction. The InputFields and
OutputFields demonstrate all the variables nec-
essary for conducting a task that we intent LLMs
to perform. For example, if an intended task is to
evaluate the relevance of a QA model’s response
to a user’s question, the InputFields would en-
compass variables such as ‘user_question’ and
‘model_response’, whereas the OutputFields
would include a ‘relevance_score’ variable. The
Instruction, as implied by its name, outlines a
free-text description detailing the specifics of the
objective task. The categories or scales of the eval-
uation can be demonstrated within task instruc-
tion. Figure 3 in Appendix C illustrates an example
of the prompt configuration. The created prompt
configuration will automatically converted into
the necessary prompt-related components, such as
Signature for DSPy and AdalFlowBaseData for
AdalFlow.

In INSTAJUDGE,
facilitated by the
In addition to the

INSTAJUDGE Navigator.
the entire process is
InstaJudgeNavigator.
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prompt configuration and LLM client, specifying
the APO options is needed as outlined below.

from instajudge import InstaJudgeNavigator

1

2

3 navigator = InstaJudgeNavigator(
4 client=client,

5 config=prompt_config,

6 engine="dspy",

7 instruction_opt="dspy",

8 few_shot_opt="dist_preserve”,
9 eval_type="exact_match”,

0 )

APO options require three hyperparameters:
1. engine (dspy, adal): a backbone framework that

LLM-as-Judge employs.

2. instruction_opt (None, dspy, adal): a task-
instruction APO method.
3. few_shot_opt (dspy, adal, dist_preserve): a
few-shot demonstration APO method.
4. eval_type: evaluation criterion option.
The instruction_opt and few_shot_opt must
be assigned identical values if configured to either
‘dspy’ or ‘adal’. When the few_shot_opt is set to
dist_preserve (DPFS), the instruction_opt
can be configured as either ‘dspy’ or ‘adal’. If
the intention is to perform APO without includ-
ing task instructions, the value can be assigned as
None. The eval_type serves an option to specify
the evaluation criterion. We offer support for two
basic metrics: exact-match and fuzzy-match, but
customization is also possible.

Once the InstaJudgeNavigator is created,
APO and inference can be easily conducted us-
ing the optimize and predict APIs, as shown in
Figure 4 in Appendix C. Without running APO, the
navigator will carry out zero-shot inference.

3 Experiment Design

For experiments, we applied INSTAJUDGE to two
tasks, topic modeling evaluation and retrieval-
augmented generation (RAG)-based question an-
swering (QA) evaluation, across four real-world
industrial use-cases. LLM-as-Judge was employed
to evaluate the quality of model outputs.

3.1 Task and Dataset

For each use-case, 3 to 5 Anglophone annotators
participated in the data annotation process, with
the exact number varying depending on the individ-
ual use-case. Annotators received training based
on detailed guidelines that outlined the annotation
dimensions, corresponding labels, as well as ex-

amples. Each instance was annotated by a single
annotator, who also provided a justification for the
assigned label. After annotation, reviewers exam-
ined both the labels and their justifications. If a
reviewer disagreed with a label, they returned the
instance to the annotator along with the reason for
rejection, and the instance was re-labeled. The av-
erage agreement rate between reviewers and the
initial labels was 93%. Table 2 shows the basic
statistics for each dataset.

Topic modeling evaluation aims to evaluate the
quality of our in-house topic modeling tool on two
industrial use-case dataset. The Customer Chatbot
Conversation (CCC) dataset consists of conversa-
tion logs from a customer banking chatbot appli-
cation. The Customer Issue dataset provides brief
summaries of issues raised by customers during
their daily banking activities. Our in-house topic
modeling tool assigns a topic for each text, which
is then evaluated by human evaluators to create
ground-truth scores according to the evaluation di-
mensions described in Table 1. These are excellent
industrial use-cases that demonstrate how even sim-
ilar tasks can exhibit distinctive human judgment
biases depending on the annotation guidelines and
business needs.

RAG QA evaluation focuses to assess the qual-
ity of responses of our in-house RAG-based
QA models considering user questions. The
Generative-Al (GenAl) provides users’ questions
along with their corresponding HTML-formatted
response. The SearchQA dataset includes users’
questions, their respective responses, and the cita-
tions retrieved to answer those questions. Analo-
gous to the topic modeling evaluation task, human
evaluators annotated the ground-truth labels for
each evaluation dimensions outlined in Table 1.

3.2 Experiment Framework and Settings

For each evaluation dimension, LL.M-as-Judge
takes inputs and outputs of the model, and predicts
the assessment results. These predicted results are
then compared with human-annotated ground-truth
to calculate the human alignment. In accordance
with previous studies, we used the F1-score (F,)
for categorical dimensions and Pearson correlation
(P, for numerical dimensions as measures of hu-
man alignment (Bai et al., 2023; Liu et al., 2024;
Thakur et al., 2024). Regarding initial prompt de-
signs, task instructions outlined in Appendix B are
used without any few-shot examples. This prompt
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Dataset Dimension Description
Level of detail (LD) categorical; e.:valuate Whether the topic offers enough detail for t.he text under
four categories: Not applicable, Optimal, Too broad, Too detailed.
CCC & CI Topic completeness (TC) npmerlcal; evahllat'e whether the.re are any a}ddltlonal topics present in the
given text but missing, using an integer scoring from 1 to 4.
. numerical; evaluate how accurate the topic is and well represented in the
Topic accuracy (TA) . . . .
given text, using an integer scoring from 1 to 4.
numerical; evaluate the relevance of the response to the user’s question, using
Relevance (R) .
an integer scale from O to 4
GenAl Helpfulness (H) pumerlcal; evaluate how helpful the response is the user’s question, using an
integer scale from O to 4.
. numerical; evaluate the response for adherence to HTML format, using an
Formatting (F) .
integer scale from O to 4.
numerical; evaluate the overall usefulness of the response considering the
Usefulness (U) user’s question, using an integer scale from 1 to 3
SearchQA 4 : & S

Retrieval quality (RQ)

numerical; evaluate the quality of the retrieved citations, ensuring they are
sufficient to answer the question, using an integer scale from 1 to 4.

Table 1: Business-defined demonstrations of the evaluation dimensions for each industrial use-cases.

Dataset CCC CI GenAl SearchQA
# of data 1250 120 111 100
Avg # of tokens 120 21 220 6.1K (1.5K)

Table 2: The basic statistics of industry datasets. The
parenthesis in SearchQA implies the average number of
tokens without retrieved documents.

design is either updated following APO or used
as-is for zero-shot inference. Throughout the ex-
periments, gpt-40-2024-05-13 was used as the
backbone LLM. Performance was measured using
5-fold cross-validation, with the average score of
the five folds is reported.

We evaluated the performance of four different
APO methods for both DSPy and AdalFlow engine:
* Inst_only: focuses solely on optimizing the the

task instruction.

* Inst_demos: optimizes both the task instruction
and few-shot demonstrations.

* DPFS: exclusively utilizes the proposed DPFS
approach.

* Inst_DPFS: combines DPFS with task instruc-
tion optimization using the selected engine.

All methods are applied using equivalent hyper-
parameter settings, with detailed information avail-
able in Appendix A.1. For baseline approaches, we
selected zero-shot LLM-as-Judge without APO for
each of DSPy and AdalFlow engines, and included
DeepEval as an existing library baseline. Opik
was omitted because both DeepEval and Opik em-
ploy G-Eval method (Liu et al., 2023). DeepEval’s
performance is only measured solely on numeri-
cal dimensions, as it is designed to generate only
numerical outputs.

4 Experimental Results

The experimental results are presented in Table 3.

Comparison with DeepEval The experimental
results confirm the advantage of INSTAJUDGE
APO over DeepEval, showing an immeasurable
improvement in the CCC dataset and an average
performance gain of 110% in other use-cases. The
performance gap is statistically significant across
all dimensions (p-value < 0.05, t-test), except for
the RQ dimension in the SearchQA use-case. Even
without APO, zero-shot INSTAJUDGE for both en-
gines generally outperforms DeepEval, which high-
lights the importance of aligning the scale of the
evaluation dimension. Moreover, INSTAJUDGE en-
ables customization of the evaluation dimension
schema, offering a practical benefit for applying it
to categorical evaluation dimensions-a feature that
DeepEval does not offer.

Performance gain through APO The results
show that all the APO methods are effective in
enhancing human alignments across all our indus-
trial use-cases. The greatest of performance is
achieved by Inst_DPFS, with an average increase
of 64% compared to zero-shot Judge, followed by
DPFS, which exhibits an average improvement of
56%. The average improvement of Inst_demos
and Inst_only is 36% and 27%, respectively. Ta-
ble 3 also reveals that, in most cases, Inst_DPFS
consistently ranks as the top performer for each en-
gine, closely followed by DPFS with only marginal
differences. It is worth emphasizing that using
only DPFS not only outperforms Inst_demos and
Inst_only, but also requires three times less run-
ning time for APO. The simplicity and cost ef-
ficiency of our proposed approach offer practical
advantages over the existing APO algorithms. How-
ever, no significant improvements was observed in
the RQ dimension of the SearchQA use-case. We
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CccC CI GenAl SearchQA
Engine Method LD TC TA LD TC TA R H F U RQ
Fu Pr Pr Fuw Pr Pr Pr Pr Pr Pr Pr
DeepEval | zero-shot - .001 .025 - .588 629 | 167  .064 263 158 349
zero-shot 408 244 393 .536 .530 7221 259 184 394 213 395
Inst-only .648 248 409 547 .545 725 | 245 184 394 252 356
DSPy Inst-demos | .589 .186 438 .564 .629 37 | 347 176 .529 256 341
DPFS 634 352% . 570% | 576  .716*  .775% | 272 .235%  .637* | 311* 349
Inst-DPES | .667* .379* .565% | .575% .715% .778* | 349 .273* .646* | .335* .385
zero-shot 455 .045 387 440 499 .661 | 182 .090 464 .093 296
Inst-only .673 154 409 .533 .526 700 | 212 U101 532 236 293
Adal Inst-demos | .705 131 397 574 .633 51 | 274 102 .627 317 303
DPFS 664 272%  424% | 557 .631  .763* | 235 .099 .670* | 284 278
Inst-DPFS | .721* .261* .440* | 572  .691* .763* | 236 .112  .673* | .328 .300

Table 3: The results from the experiments conducted on industrial use-cases. F,, and P, denote weighted F1-score
and Pearson correlation, respectively. The best performance for each evaluation dimension is highlighted in bold,
while the top performance for each engine (DSPy, AdalFlow) is underlined. The performance of DPFS or Inst-DPFS
show a statistically significant difference compared to that of the best-performing baseline APO method with p-value

< 0.05 (*) using the t-test.
will discuss this further in the following section.

Self-consistency decoding We applied self-
consistency decoding to the top-performing mod-
els for each evaluation dimension to ascertain if it
could further enhance the human alignment scores.
The results are illustrated in Figure 1. With N set
to 5, the results show an average performance im-
provement of 6%, indicating the positive impact
of the decoding strategy. However, the SearchQA-
RQ dimension showed no improvement, consistent
with the pattern observed in the APO experiments.
We hypothesized that a primary reason of this phe-
nomenon is the lengthy inputs of the task.” It is
widely accepted that lengthy inputs elevate the level
of task difficulty, which rapidly degrades LLMs’
reasoning ability (Bai et al., 2024; Li et al., 2024a),
even on input length of 3K tokens (Levy et al.,
2024a). To assess the task difficulty, we calculated
the entropy of N outputs from self-consistency de-
coding, since the answers should be diverse for
ambiguous and challenging tasks. Interestingly,
the entropy of SearchQA-RQ was the highest at
0.86, while the others averaged 0.36 + 0.19. This
supports our claim that SearchQA-RQ is far more
challenging than others due to its lengthy inputs.
To investigate further, we examined whether
increasing N, the number of distinct reasoning
paths in self-consistency decoding, would improve
performance. The experiment was focused on
SearchQA-RQ dimension, as it was the only dimen-
sion where APO showed a negative performance
gain. The results are presented in Figure 2. The
results indicate that the human alignment score in-

2An average of 6.1K tokens and a maximum 13K tokens.

creases directly proportional to V. Additionally, as
N increases, the entropy of the multiple responses
decreases, suggesting that the decision-making pro-
cess becomes less ambiguous.

DSPy vs. AdalFlow The results in Table 3 show
that DSPy and AdalFlow exhibit significant per-
formance differences, even in the zeroshot set-
ting, that is, when given identical task instruc-
tions. This can be attributed to differences in
their underlying prompt structures. For exam-
ple, AdalFlow enforces strict output formats (e.g.,
JSON or YAML), whereas DSPy generates natural
language responses. In general, DSPy outperforms
AdalFlow in most evaluation dimensions, consis-
tent with previous research (Tam et al., 2024) that
ascertains the negative impact of format restrictions
on LLM performance. However, AdalFlow outper-
forms DSPy in the GenAl-Format and CCC-LD
dimensions, and demonstrates comparable perfor-
mance in the CI-LD dimensions. We believe that
these results are largely influenced by the difficulty
of the tasks. Consider a simple optimization task in
which the loss function is defined over a perfectly
convex space. In such a scenario, the SGD opti-
mizer can easily converge to the optimal solution.
However, in more complex landscapes character-
ized by numerous saddle points, SGD becomes
less effective, whereas grid search may more reli-
ably identify the optimal solution. Similarly, for
straightforward tasks where TextGrad can provide
constructive feedback to guide prompt updates,
AdalFlow demonstrates advantages. Conversely,
DSPy, which utilizes Bayesian optimization, is bet-
ter suited for challenging tasks where obtaining
reliable feedback for prompt updates is difficult.
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Figure 1: Self-consistency decoding (/N = 5) performance on the best model for each evaluation dimension.

Knowledge Acc.

Reasoning Acc.

Math Acc. Coding Acc.

Method ‘ ITrl=30 / ITesti=124  ITrl=10/ ITesti=41  [Trl=6 / ITesti=28 _ ITri=6 / ITesti=25  OVerall
zero-shot 361 600 400 500 65
Inst-only 361 .600 400 500 465
Inst-demos 467 .600 .333 444 461
DPFS 565 636 333 500 509
Inst-DPFS 565 636 333 500 509

Table 4: Experimental results on JudgeBench dataset. ITrl and [Testl represents the size of training and testing set,
respectively. The best performances are highlighted in bold. The number of few-shot examples was set to 4.
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Figure 2: Self-consistency decoding performance with
different NV on SearchQA-RQ dimension. The value in
parentheses indicates the entropy of IV answers.

We validated our assumption by measuring the en-
tropy of self-consistency decoding outputs. Tasks
where AdalFlow performed better or comparably
had an average entropy of 0.152, versus 0.5 for oth-
ers, indicating its suitability for less-challenging
tasks.

5 JudgeBench Evaluation

As our industrial experiments focused on our
in-house dataset, we additionally conducted an
experiment on publicly available JudgeBench
dataset (Tan et al., 2025). In brief, the task in-
volves selecting the better response from two LLM-
generated candidates when presented with a ques-
tion. There are two types of datasets the responses
are generated by claude-3-5-sonnet-20240620
and gpt-40-2024-05-13. We used the former
to avoid egocentric bias (Koo et al., 2024), as
gpt-40-2024-05-13 was the backbone LLM for
our experiments. Basically, we followed the iden-
tical experiment settings as outlined in the paper,
with the only difference being that we used 20% of

data as a training set to run APO.

The results are presented in Table 4. As in the
industrial experiments, our proposed approaches
achieved the best overall performance. However,
when looking at each individual domain, an in-
teresting trend emerges: the performance gain is
directly proportional to the size of the training
set, with a substantial improvement observed in
Knowledge domain, but no improvement in Math
and Coding. This trend was not observed in the
aforementioned industrial experiments discussed,
where at least 20 examples were used for the train-
ing set. The results indicate that it is essential to
collect sufficient training set for running APO ef-
fectively.

6 Conclusion

In industrial applications, the judgment biases of
LLM-as-Judge and humans are more likely to di-
verge due to domain specificity, necessitating align-
ment to ensure fair evaluations and facilitate prac-
tical deployments. In this paper, we propose IN-
STAJUDGE, an LLM-as-Judge library that supports
APO by integrating DSPy and AdalFlow within
a unified framework. It also offers DPFS, which
outperforms existing APO methods despite its cost-
efficiency, and self-consistency decoding to enable
more robust evaluations. Our library offers practi-
cal benefits over existing LLM-as-Judge libraries,
like DeepEval, by improving human alignment per-
formance APO and enabling flexible evaluation
schema customization.
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Limitations

While the proposed DPFS and existing APO meth-
ods exhibited promising improvements in human
alignment scores across various industrial use-
cases and evaluation dimensions, they made only
modest enhancements in challenging tasks involv-
ing lengthy text inputs. Future work should focus
on developing more advanced approaches to ad-
dress this issue. Regarding self-consistency decod-
ing, we ascertained that it contributes to generating
more robust and precise evaluation results, where
the improvements are more promising with large V.
However, this also leads to an increase in the num-
ber of LLM calls, which can be resource-intensive.
Utilizing more resource-efficient decoding strate-
gies, such as adaptive self-consistency (Aggarwal
et al., 2023) can enhance the practical efficiency of
our library. Additionally, our proposed DPES ap-
proach has a limitation related to randomness, par-
ticularly when the initial prompt performs poorly.
A major factor contributing to this phenomenon
is the algorithm’s approach of selecting instances
where LLMs make incorrect predictions as few-
shot examples. As a result, if LLMs perform poorly
with the initial prompt design, a large number of
candidate sets for few-shot examples can be gen-
erated, increasing the randomness. Future work
should aim to minimize this randomness issue in
order to achieve more consistent performance. Fi-
nally, the experimental results on the JudgeBench
dataset suggest the importance of having a suffi-
cient amount of training data.
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A Appendix
A.1 Hyperparameters for APO

DSPy and AdalFlow The two approaches share
identical hyperparameters for few-shot demonstra-
tion optimization, which are configured as follows:

* n_raw_shots: the number of demonstrations

to be drawn from training data.
¢ n_bootstrap_shots: the number of demon-
strations to be generated by LLMs.

Both hyperparameters were set to a value of 4.
AdalFlow requires two additional hyperparame-
ters, train_batch_size and n_steps, which are
akin to the concept of batch-size and epochs in
gradient descent. The values were set to 8 and
10, respectively. Similarly, DSPy also requires
n_steps, which represents the number of itera-
tions for running Bayesian optimization. Addi-
tionally, n_candidates must be specified for task
instruction optimization, indicating the number of
potential candidates to be generated by the LLM
for Bayesian optimization. We set both n_steps
and n_candidates for DSPy to 10.

Hyperparameters for DPFS Two hyperparame-
ters need to be specified to run DPFS. The first one
is n_shots. As DPFS only employs the raw train-
ing examples and does not utilize LLM-generated
demonstrations, the value is set to 8, which is the
sum of n_raw_shots and n_bootstrap_shots of
DSPy and AdalFlow. The second hyperparameter
is K, the number of candidate few-shot sets for the
selection process. We set the value to 10.

A.2 Binned-JSD Metric Results

Relying on a single aggregate correlation metric
can dilute significant differences between human
labels and those generated by automatic evalua-
tion (Elangovan et al., 2025). Therefore, it is impor-
tant to compare not just a single aggregate correla-
tion scores, but also the overall correlation between
human labels and machine-generated labels. In
this regard, we additionally measured Binned-JSD
score (Elangovan et al., 2025), where the lower
scores are the better.

The results are presented in Table 5. Overall,
we observed a similar trend to the results in Ta-
ble 3. Apart from the SearchQA-RQ dimension,
DPEFS and Inst-DPFES achieve the best performance,
showing significant improvements over zero-shot
method in most of dimensions across the use-cases.
However, a different pattern emerges, with the

best performance mostly achieved by the Adal en-
gine, in contrast to Table 3, where DSPy outper-
formed the Adal engine. The results provide fur-
ther supports to the claim made by Elangovan et al.
(2025), highlighting the importance of measuring
both single-aggregate and overall correlation met-
rics.

B Prompt Designs

This section presents the task instructions utilized
to create the initial prompt designs. The instruc-
tions were proposed by our business teams. For the
DeepEval experiments, we modified the section re-
garding evaluation scores to align with DeepEval’s
scale (0 - 1).

B.1 CCC and CI Datasets Task Instructions

The CCC and CI datasets share the same evaluation
dimensions. Therefore, we employed the same task
instructions.

B.1.1 Level of Detail

We will show you a topic assigned to the
given text. Your task is to evaluate
whether the topic covers the appropriate
amount of detail of the text

You should evaluate the level of detail
in four levels: Not applicable, Optimal
level of detail, Too broad, and Too
detailed. The definitions of each level
are as follows:

- Not applicable: The topic assigned to
the text is completely incorrect.

- Optimal level of detail: The amount of
detail present in the topic matches the
level of detail that is desired by the
business OR The topic category is broader
than the desired level of detail, but it
maximally leverages the amount of detail
present in the text.

- Too broad: The amount of detail present
in the topic is lacking, and there exists
more detail that could have been leveraged
in the text.

- Too detailed: The amount of detail
present in the topic exceeds the amount of
detail that is desired by the business.

B.1.2 Topic Completeness

We will show you a topic assigned to the
given text. Your task is to evaluate the
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CccC CI GenAl SearchQA

Engine Method LD TC TA LD TC TA R H F U RQ
zero-shot 582 564 511 | 509 505 439 | 476 533 361 | .194  .536

Inst-only 389 539 461 | 509 502 445 | 485 536 351 | .188  .552

DSPy | Inst-demos | .448 .610 .397 | 506 .477 468 | 454 532 338 | .193 .567
DPFS 396 524 362 | 414 451 403 | 466 517 320 | .182  .557

Inst-DPFS | .386 .491 .362 | 416 435 406 | .448 519 227 | .180 .536

zero-shot 486  .628 506 | 516 456 438 | 464 502 458 | 596 557

Inst-only 326 533 501 | 443 444 428 | 440 504 425 | 538 553

Adal Inst-demos | .336 .573 422 | 408 422 385 | 451 .501 .222 | 491 554
DPFS 351 473 404 | 422 425 380 | 430 411 .192 | 491 551

Inst-DPES | .266 .500 355 | 417 411 .380 | 417 .500 .91 | .462 .550

Table 5: The Binned-JSD metric scores generated from the experiments conducted on industrial use-cases. The best
performance for each evaluation dimension is highlighted in bold, while the top performance for each engine (DSPy,

AdalFlow) is underlined.

completeness of the topic, indicating the
extent to which all necessary and relevant
information is included. The complete
topic means:

1) The topic covers all the necessary
information presented in the text,
suggesting that there are no missing
topics.

2) The topic delivers an optimal level
of information, meaning that the scope
it covers does not contain wunrelated
information in relation to the text.

You should evaluate the topic
completeness using four level of scores:
1 (Not covered), 2 (Minorly covered), 3
(Mostly covered), and 4 (Complete).

B.1.3 Topic Accuracy

We will show you a topic assigned to the
given text. Your task is to evaluate
the accuracy of the topic over the given
text; how accurate the topic is and well
represented in the given text.

You can ignore the level of granularity /
detail. Please just assess if the topic
is accurate given the text in any level
of detail.

You should evaluate the topic accuracy in
four level of scores: 1 (Incorrect), 2
(Partially Correct), 3 (Mostly Correct),
and 4 (Completely Correct). The
definitions of each level are as follows:

- 1 (Incorrect): The details in the topic
is not represented in the text in any way.
The topic label is completely wrong or
directly contradicting the text.

- 2 (Partially correct): The details of
the topic is partially represented in the
text. There is some relevance of the topic
label to the contents in the text.

- 3 (Mostly correct): The details of the
topic is mostly represented in the text.
- 4 (Completely correct): All the details
of the topic are represented in the text.

B.2 GenAl Task Instruction
B.2.1 Relevance

We will give you a question from a
user and a corresponding response, which
is written in HTML format. Evaluate
the relevance of a given HTML-formatted
response to a user’s question on a scale
from @ to 4.

# Steps

1. Read the user’s question.

2. Read the HTML-formatted response.

3. Assign a score from @ to 4 based on
the relevance of the response.

# Notes

- A score of @ means the response is not
relevant to the question.

- A score of 4 means the response is very
relevant to the question.

B.2.2 Helpfulness

We will give you a question from a user
and a corresponding response, which is
written in HTML format. Evaluate the
helpfulness of a given HTML-formatted
response to a user’s question on a scale
from @ to 4.

# Steps
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1. Read the user’s question.
2. Read the HTML-formatted response.

3. Assign a score from @ to 4 based on
the helpfulness of the response.

# Notes

- A score of @ means the response is not
helpful at all.

- A score of 4 means the response is very
helpful.

- Consider the accuracy, completeness, and
clarity of the response when assigning a
score.

B.2.3 Formatting

We will give you a response for a question,
which is written in HTML format. Evaluate
the given response for adherence to HTML
format on a scale from @ to 4.

Consider the when

evaluating:

following «criteria

- Proper use of HTML tags.
- Correct nesting of tags

- Proper closing of tags.

Valid attribute usage.

Overall structure and syntax.

# Steps

1. Analyze the HTML response for proper
use of HTML tags.

2. Check for correct nesting of tags.
3. Ensure all tags are properly closed.

4. Verify the validity of attribute
usage.

5. Assess the overall structure and
syntax of the HTML.
# Notes

- A score of @ indicates very poor
adherence to HTML format, while a score
of 4 indicates perfect adherence.

- Consider edge cases such as self-closing
tags and special characters.

B.3 SearchQA Task Instruction
B.3.1 Overall Usefulness

We will show you a question and
corresponding HTML-formatted
Your task is to evaluate whether the

its

response.

response is useful enough to share with an
external client considering the question.

You should evaluate the overall
usefulness in three 1levels of scores:
1 (LESS_USEFUL), 2 (AS_USEFUL), and 3
(MORE_USEFUL) .

The definitions of each 1level are as
follows:

- 1 (LESS_USEFUL): The response was
lacking critical details, had outdated
information, or contained severe

hallucination issues.

- 2 (AS_USEFUL): The response may need
some modifications to improve quality.

- 3 (MORE_USEFUL): The response is fully
useful and can be shared with external
clients without modification.

B.3.2 Retrieval Quality

We will show you a question, its
corresponding response, and a list of
retrieved citations, which were used for
generating the response.

Your task is to evaluate the quality of
the retrieved citations, implying that
the citations are sufficient enough to
answer the question.

You should evaluate the retrieval
quality in four 1levels of scores:
1 (ALL_CITATIONS_IRRELEVANT_USELESS),
2 (ALL_CITATIONS_INSUFFICIENT),
3 (CITATIONS_CAN_ANSWER), 4

(SOME_CITATIONS_PARTIALLY_ANSWER) .

The definitions of each 1level are as
follows:

- 1 (ALL_CITATIONS_IRRELEVANT_USELESS):
All documents are irrelevant and useless.

- 2 (ALL_CITATIONS_INSUFFICIENT): All
documents are insufficient to answer the
question.

- 3 (SOME_CITATIONS_PARTIALLY_ANSWER):
Some documents contain details that can
partly answer the question.

- 4 (CITATIONS_CAN_ANSWER): Documents can
answer the question completely.
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C Examples

prompt_config = {

"InputFields"”: {

"question": {
"prefix"”: "Question:",
"description”: "A question given by a user.”
3,
"response”: {
"prefix": "Response:"
"description”: "A response generated by a model.”
b
s
"OQutputFields"”: {
"score": {
"prefix": "Score:",
b
¥ s
"Instruction”: "Evaluate the relevance of the provided response

to the user's question using a scale ranging from 0 to 5."

O ® NN AW N —

Figure 3: An example of INSTAJUDGE prompt configuration for a response evaluation of a QA model.

# Run APO
train_data = [
{"input_1”: ", "input_2": "", ..., "output_1": ""},
("input_1": "", "input_2": "", ..., "output_1": ""},
]

navigator.optimize(
train_dataset=train_data,
*xtrain_kwargs

)

# Run Inference
pred_instance = {"input_1": "", "input_2": "", ...}
prediction = navigator.predict(input_dict=pred_instance)

# Self-consistency Decoding
prediction = navigator.predict(input_dict=pred_instance, n_completions=10)

Figure 4: An example of running optimize and predict APIs of InstaJudge.
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prompt_config = {
"InputFields": {

"question": {
"prefix": "Question:",
"description”: "A question given by a user."”
5
"response”: {
"prefix": "Response:"”
"description”: "A response generated by a model.”
3
e
"OQutputFields": {
"relevance”: {
"prefix": "Relevance:",
e
"accuracy": {
"prefix": "Accuracy:",
}
3,
"Instruction”: "Your task is to assess the relevance and accuracy

of the provided response to the user's question. Relevance
measures how well the response aligns with the given question,
while accuracy evaluates whether the response contains
factually correct information. Use a scale from @ to 5 to
evaluate each dimension.”

b

Figure 5: An example of INSTAJUDGE prompt configuration for multi-dimension evaluation of a response evaluation
of a QA model.
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