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Abstract

Group Relative Policy Optimization (GRPO) is
a promising approach to complex, real-world
tasks, such as those involving multiple rewards
or strict constraints. However, when training
GRPO with multiple rewards, the weights of
each reward must be decided in advance. Fail-
ing to balance the objectives adequately can
lead to overfitting or insufficient learning of
each reward function. To address this problem,
we propose Auto-Weighted Group Relative Pol-
icy Optimization (AW-GRPO), which adjusts
reward weights during training according to
the progress of the learning of each objective
so far. We evaluate AW-GRPO on advertising
text generation, a real-world problem where
the generated text must satisfy multiple objec-
tives, such as quality and diversity, while adher-
ing to the constraints of the media (e.g., maxi-
mum number of characters). Our results show
that AW-GRPO successfully balances multiple
objectives, improving the overall scores while
reducing the constraint violation rate. We ad-
ditionally evaluate AW-GRPO using publicly
available benchmark problems for reproducibil-
ity, in which we observe the same qualitative
result that the proposed method outperforms
GRPO.

1 Introduction

Recent advances in large language models (LLMs)
through Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022; Bai et al.,
2022; Touvron et al., 2023; Casper et al., 2023) and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) have demonstrated significant perfor-
mance improvements. In a related area, Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) has recently been introduced as a promis-
ing approach, which uses a reward model for op-
timization. One of the challenges for applying
GRPO on real-world tasks is how to balance mul-
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Figure 1: The training process of GRPO on the WMT
En-Ja dataset uses BLEURT and jReadability as the
reward functions. As the results show, GRPO overfits
jReadability at the expense of BLEURT performance.
In some cases, GRPO also overfits Table 1. Reward
hacking occurs.

tiple objectives and constraints. Using fixed, man-
ually tuned weights has a limitation in that it is
ineffective in problem settings where the optimal
trade-off between objectives is either unknown be-
forehand or changes dynamically as the model
learns. To address this issue, we propose Auto-
Weighted Group Relative Policy Optimization
(AW-GRPO). Our method overcomes the short-
comings of fixed weights by automatically ad-
justing the weights of each objective based on
the model’s learning progress. This enables AW-
GRPO to discover effective policies in real-world
problems where the desired balance between the
objectives is unknown beforehand of the training.

Contributions. We propose AW-GRPO, which
is an extension of GRPO that eliminates the need
for manual weight tuning during training, and eval-
uate the performance of AW-GRPO on two tasks.
First, we run experiments on public machine trans-
lation datasets (WMT En-Ja). Then, we run an ex-
periment on real-world advertising text generation
problems. Advertisement text generation requires
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Method Output jReadability ↑ BLEURT ↑
Input Adapt the old, accommodate the new to solve issue – –

Reference 古いものを適応させ新しいものを取り入れて問題解決を (English transla-
tion: Adapt the old and incorporate the new to solve problems.)

– –

GRPO 「古い考えを新しく変えて、問題を解決しよう。」\n\n(Koroi kangae o
nyuushaku shite, mondai o kyōsō shiyō.) (English translation: Let’s take old
ideas and transform them into new ones to solve problems.)

1.0 0.72

AW-GRPO 「古い考えを新しく変えて、問題を解決しよう。」(English translation:
Let’s take old ideas and transform them into new ones to solve problems.)

0.74 0.83

Table 1: Generation examples for the WMT 2024 En-Ja task. The output results for the base model, GRPO,
and AW-GRPO are shown in the same example. GRPO exploits the problem of jReadability scores that it
significantly increases when non-Japanese characters are used, resulting in generating random non-Japanese
characters. On the other hand, AW-GRPO evenly optimizes both objectives, achieving improvement on both
objectives.
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Figure 2: The training process of AW-GRPO on the
WMT En-Ja dataset uses BLEURT and jReadability
as the reward functions. Unlike the results of GRPO’s
training process (Fig. 1), AW-GRPO prevents overfit-
ting.

various objectives to be optimized at the same time,
yet its suitable balance is unknown beforehand,
which makes the problem difficult to optimize us-
ing plain GRPO. The experimental results show
that the proposed method successfully learns mul-
tiple objectives at the same time, achieving better
overall performance than GRPO.

2 Related Works

We first review prior work on advertisement text
generation, and then describe reward hacking, the
problem that this paper addresses.

2.1 Automated Advertisement Text
Generation

Early systems for advertising text generation relied
on rule- or template-based methods, which limited
the fluency and diversity of the output (Fujita et al.,
2010; Thomaidou et al., 2013). As neural sequence-

to-sequence (seq2seq) models became mainstream
(Zhou et al., 2019; Lei et al., 2022), researchers
began treating advertising text as a summarization
or paraphrasing task, and generate ads directly from
the landing page content or product descriptions.

Dealing with Constraints. One of the most im-
portant issues when creating advertising text is en-
suring that the generated text functions properly as
advertising text. One indicator of this is whether
the text contains relevant constraints. There are
several ways to include constraints when generat-
ing text, one of which is the template-based ap-
proach (Bartz et al., 2008; Thomaidou et al., 2013).
This enables users to input any keywords they like
into the designated areas. MuCoCO (Kumar et al.,
2021) reframes decoding in pretrained language
models as a differentiable optimization with La-
grangian multipliers, enabling flexible control over
multiple text attributes at inference time and outper-
forming baselines in tasks. NeuroLogic Decoding
(Lu et al., 2021) is an inference-time algorithm
that lets neural language models generate fluent
text while exactly satisfying arbitrary predicate
logic lexical constraints, matching beam-search
efficiency and outperforming prior constrained-
generation methods. NeuroLogic Aesque (Lu
et al., 2022) is a decoding algorithm that merges
A-style look-ahead heuristics with NeuroLogic’s
logical constraint framework, allowing large lan-
guage models to plan and satisfy complex lexical
constraints while remaining a drop-in replacement
for beam search or top-k sampling.
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2.2 Reward Hacking

Reward hacking (Skalse et al., 2022) is a phe-
nomenon in artificial intelligence, particularly in
RL, where an agent learns to exploit the reward
function to achieve a high score without actually ac-
complishing the intended goal. This phenomenon
has also been reported in several studies (Amodei
et al., 2016; Ziegler et al., 2020; Stiennon et al.,
2020; Skalse et al., 2022; Gao et al., 2023).

In the context of a large language model (LLM),
reward hacking often occurs during fine-tuning
with methods such as RLHF. In this process, a
reward model is trained to predict human prefer-
ences, and the LLM is then optimized to gener-
ate outputs that maximize the score from this re-
ward model (Ziegler et al., 2020; Stiennon et al.,
2020). However, if the reward model is flawed or
its understanding of human preferences is incom-
plete, the LLM can learn to generate content that
hacks the reward model (Gao et al., 2023). This
over-optimization on a proxy reward can lead to a
decrease in the true quality and alignment of the
model’s responses (Pan et al., 2022; Gleave et al.,
2020).

3 Group Relative Policy Optimization

We define that Rk is the k-th reward function, and
pQ is the distribution over the initial questions (q ∼
pQ). The policy πθ (· | q) outputs the sentence oi
based on initial questions q from the sentence space.
Group Relative Policy Optimization (GRPO) uses
the average reward of multiple sampled outputs
produced in response to the same question. More
specifically, for each question q, GRPO samples a
group of outputs o = {o1, o2, · · · , oi, ·, oG} from
the old policy πθold and then optimizes the policy
model by maximizing the following objective:

J (πθ) = E

[
1

|oi|
1

G

G∑

i=1

[ πθ
(
oi | q

)

πθold
(
oi | q

)Âi

− βKL(πθ, πθold)

]
. (1)

The definition of Âi is the following equation:

Âi =
R(q, oi) − mean

(
R(q,o)

)

std
(
R(q,o)

) . (2)

The following equation is used to calculate each
output of reward value:

R(q, oi) =

M∑

k=1

αkRk(q, oi). (3)

where {αk}Mk=1 are coefficients which are deter-
mined before training, ε, β are hyper-parameters,
and KL is Kullback–Leibler (KL) divergence.
Since we omit symbols such as the threshold ϵ
and min operation for simplicity, we note formal
expressions in the Appendix G.

3.1 Problem of GRPO with Multiple
Objectives

The central limitation of GRPO lies in its objec-
tive function J (πθ), which implicitly steers the
model toward whichever reward component is easi-
est to improve and the size of the standard deviation
rather than promoting balanced progress across all
rewards. This often causes the model to exploit
shortcuts in the easy reward, resulting in reward
hacking behavior. Table 1 provides a specific ex-
ample. The model that was trained using GRPO
increases the jReadability score while decreasing
the BLEURT score, which demonstrates the practi-
cal consequences of this bias.

Additionally, the training process of each reward
function in GRPO indicates overfitting to jRead-
ability, as illustrated in Fig. 1 (AW-GRPO avoids
reward hacking, as shown in Fig. 2). Also, Ap-
pendix C shows how learning is biased toward re-
ward functions with large variance. To address
these issues, we propose an algorithm that pro-
motes improvement in reward functions based on
the rate of improvement (slopes) when certain re-
ward functions or learning rapidly improve.

4 Auto-Weighted Group Relative Policy
Optimization

GRPO combines M reward functions by a
weighted sum (Eq.3), where the weights αk must
be fixed before training. Setting all αk = 1 is
common, but there are risks for reward hacking:
the policy may focus on one reward and ignore
other signals. To address this issue, we introduce
automatic rescaling of the weights based on the
progress of each reward’s learning.

Weight update. Let α(t)
k be the weight for reward

Rk at training step t, and ŝ
(t)
k denotes the progress

of the reward Rk. We estimate it by the slope of
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the least-squares fitted polynomial computed over
the reward function (Rk) values from the past n
steps (Detailed in Appendix F).

w
(t+1)
k = clip

(
α
(t)
k exp

(
−η ŝ

(t)
k

)
, wmin, wmax

)
.

(4)

where η > 0 is a learning rate and clip(·) enforces
the box constraint wmin≤w

(t+1)
k ≤wmax.

The actual upgrade weights are obtained using
the following equation:

α
(t+1)
k =

w
(t+1)
k∑M

j=1w
(t+1)
j

,

M∑

k=1

α
(t+1)
k = 1. (5)

In short, α(t+1)
k is α(t)

k multiplied by the softmax
of ŝk, clipping is performed for stability. Then,
we apply αk = α

(t+1)
k to Eq (3) to each reward

function.

R(q, oi) =

M∑

k=1

α
(t+1)
k Rk(q, oi). (6)

How AW-GRPO mitigates reward hacking.
The core idea of AW-GRPO is to penalize reward
components that increase too quickly. The update
rule achieves this by using the estimated slope, sk,
of each reward component. If a component Rk

shows a rapid increase, its slope ŝk will be large
and positive. The update rule, w̃k ∝ exp(−ηsk),
computes an exponential term less than 1, causing
the corresponding weight αk to decrease. Con-
versely, if the model is performing poorly on or
ignoring a component Rk, its slope ŝk will be neg-
ative. This results in an exponential term greater
than 1, which increases the weight αk, forcing the
model to pay more attention to the neglected task.

5 Experiments

To evaluate the performance of AW-GRPO and
GRPO, we will use public WMT data and our com-
pany’s advertisement data to confirm ease of overfit-
ting, overfitting avoidance, and output consistency.

5.1 Machine Translation with Simplification
Objective

The objective is not merely to perform an English-
to-Japanese machine translation, but rather to pro-
duce clear, reader-friendly Japanese text. There-
fore, the problem is framed as a multi-objective
optimization task balancing semantic fidelity to the
source text and linguistic simplicity and readability
in the target language.

Setup. We train both GRPO and AW-GRPO
on the WMT-21, WMT-22, and WMT-23 En-Ja
datasets (Akhbardeh et al., 2021; Freitag et al.,
2022, 2023) with three random seeds and evalu-
ate on the WMT-24 En-Ja dataset (Kocmi et al.,
2024). The WMT dataset is used to evaluate differ-
ent domains: news, social/user-generated content,
speech, literature, and education. These domains
were chosen to represent a variety of content styles
and to be understandable to non-specialists, thus
eliminating the need for specialized translators or
human raters for evaluation. The base model is
Sarashina (sarashina2.2-3b-instruct-v0.1), and the
detailed parameter setting is in Appendix B.

For the reward functions, we adopt (i)
BLEURT (Sellam et al., 2020) and (ii) jReadabil-
ity (Hasebe and Lee, 2015) to measure Japanese
readability. jReadability is crucial because our goal
is not only to translate but also to simplify into
what is known as "easy Japanese." This ensures
that information is accessible to diverse audiences,
including children and non-native speakers. It is
also critical for communicating important infor-
mation during emergencies, such as natural disas-
ters. Therefore, this task addresses a significant
real-world challenge rather than an artificially con-
structed research problem.

Results. Table 2 shows that GRPO improves
readability by reducing the BLEURT score, while
AW-GRPO maintains the performance of BLEURT
almost unchanged. This can be seen from the score
of the Base Model, which maintains the perfor-
mance of BLEURT. In addition, GRPO trained
solely with BLEURT achieves a final BLEURT
score of 0.70.

In addition, Table 2 shows the win rate of AW-
GRPO over GRPO, as evaluated by gpt-4o-mini
(Appendix B), and the results suggest that AW-
GRPO produces significantly better outputs. Ta-
ble 3 shows the weights assigned to each reward
function during AW-GRPO training. As can be
seen, larger reward weights are applied to prevent
BLEURT performance degradation. Additionally,
jReadability assumes Japanese input and is not in-
tended for multilingual text. Higher scores tend to
be achieved when non-Japanese text is input, and
Table 1 shows examples of outputs from the test
dataset. From this, GRPO exploited this by gener-
ating other language outputs to inflate the jRead-
ability score, an instance of reward hacking. In con-
trast, AW-GRPO yields lower jReadability scores
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Method BLEURT ↑ jReadability ↑ GPT-4(Win Ratio) ↑

Base Model 0.66 0.70 N/A

GRPO 0.63± 0.005 0.86± 0.008 25.5± 1.81%
AW-GRPO 0.66±0 0.80± 0.01 74.5± 1.86%

Table 2: Performance on the WMT24 En-Ja. Scores
are reported for BLEURT, jReadability, and win ratio
(↑ higher is better). The values of the mean and stan-
dard deviation over three runs with different random
seeds are shown in the table. AW-GRPO matches the
BLEURT of the Base Model while preserving readabil-
ity gains, thereby avoiding the BLEURT-centric over-
optimization observed with GRPO.

Weight BLEURT jReadability

αk 0.69± 0.01 0.31± 0.01

Table 3: The average weights assigned to each reward
function during training with AW-GRPO. As you can
see, AW-GRPO increases the weight of BLEURT that
tends to decrease (Fig. 1,2) .

compared to it because it doesn’t over-optimize,
which reflects more faithful optimization of the
task objective (“easy Japanese”).

5.2 Advertising text Generation

Dataset and Task. The goal of the system is to
generate advertising texts that are of high quality,
diverse, and adhere to the constraints so that hu-
man writers can start a discussion based on the
generated drafts. We used an internal dataset of
advertising texts, which we split into 8,400 training
examples and 500 test examples, and train with the
three random seeds. The advertisement is written
by the expert copywriters in our company. The ad-
vertising data is structured for each input as shown
in Appendix D. Additionally, for each input, it in-
cludes a single reference that contains the speci-
fied keywords and largely satisfies the validator.
Each input prompt includes (i) product keywords
and (ii) a character-limit specification (detailed in
Appendix D). For each prompt, we have a refer-
ence text by a domain expert. The prompt also
requires output five outputs per prompt. We use
Qwen (Qwen3-4B) as the base model in this exper-
iment.

Setup. GRPO and AW-GRPO optimize
three rewards: BLEU (Papineni et al., 2002),
BLEURT, and a diversity metric, defined as
1 − cosine similarity, which promotes variety by

penalizing semantic similarity between generated
outputs. In addition to the reward function
that updates the weights, we also introduce the
following four sparse reward (constraint) functions.
The length constraint is that the text must be the
appropriate length. Second, the bracket constraint
is that any brackets used within the text must
be correctly matched, and only a single pair of
brackets is permitted. Additionally, the symbol
repetition constraint is that the use of certain
specified symbols is limited to a maximum specific
size per symbol type. The last one is the auxiliary
constraint, which encompasses the other con-
straints. We employ four independent validators to
programmatically enforce the above constraints.
The Length Validator, Bracket Validator, Num
Limit Validator, and Auxiliary Validator verify the
length, bracket, symbol repetition, and auxiliary
constraints, respectively. An example of the
validator function applied to rewards is described
in Appendix E. Then, outside of the learning
rewards, we check how long they are unable to
perform the five outputs (5-Sent). We compare
GRPO and AW-GRPO for training with vs. without
the validator as an additional sparse reward signal.

Validator outcomes. Including the validator
function resulted in an improvement in formatting
compliance. According to the results in Table 4,
AW-GRPO with the validators AW-GRPO reduced
length violations from 153 to 34 and eliminated
all bracket-mismatch errors. The table also shows
the validator’s effect on the GRPO, which recorded
50 length and two bracket violations. Although
this demonstrates the validator’s general utility,
the combination of the validator with AW-GRPO
yielded the best results. These findings confirm
that integrating the validator is highly effective at
enforcing structural rules, and its synergy with the
AW-GRPO framework offers the most effective so-
lution for generating well-formed advertising text.

When GRPO is used without the validator func-
tion, GRPO cannot generate five outputs and ends
without learning. When using the validator func-
tion in GRPO, five sentences were output because if
the length validator function does not output text of
the appropriate length, a penalty may be incurred.
In other words, GRPO relies too heavily on di-
versity rewards because it calculates the average
when there are fewer than five outputs and ignores
BLEURT and BLEU rewards. This suggests that
reward hacking is occurring.
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Constraint Violations ↓ Evaluation Metrics ↑
Method Variant Length Bracket Num Limit Auxiliary 5-Sent Dist-2 jReadability

GRPO
w/o Validator N/A N/A N/A N/A 500 N/A N/A
w/ Validator 50± 2 2± 1 0± 0 0± 0 0± 0 0.69± 0.02 0.81± 0.00

AW-GRPO
w/o Validator 153± 5 13± 2 0± 0 0± 0 4± 4 0.69± 0.02 0.82± 0.01

w/ Validator 34±2 0±0 0± 0 0± 0 0± 0 0.74±0.00 0.83±0.01

Table 4: Results on 2,500 advertising-text outputs (constraint violations, left block) and 500 test prompts (evaluation
metrics, right block). The values of the mean and standard deviation over three runs with different random seeds
are shown in the table. N/A indicates that the metric could not be computed because the model failed to produce
the required five-sentence output, so constraint violations, Dist-2, jReadability, and keyword rates are undefined.
Lower is better for constraint violations; higher is better for evaluation metrics.

Weight BLEURT BLEU Diversity

αk 0.36± 0.01 0.37± 0.01 0.27± 0.02

Table 5: The average weights assigned to each reward
function during training with AW-GRPO.

Quality metrics. In this paragraph, we evaluate
the outputs produced by GRPO and AW-GRPO
with and without validators. The evaluation func-
tions used are Distinct-2 score (Dist-2) (Li et al.,
2016), jReadability. Table 4 presents the evalua-
tion results on the test dataset. AW-GRPO with val-
idators improves GRPO with the validator, achiev-
ing a higher Distinct-2 score (0.74 vs. 0.69) and
improved jReadability (0.83 vs. 0.81).

In addition, we have verified that the reduction
in error rate (e.g., with validator GRPO: 50/2500
vs AW-GRPO: 34/2500) is statistically significant
under both the two-proportion z-test (p ≈ 0.0392)
and Fisher’s exact test (p ≈ 0.0491, one-sided).
This confirms that the observed improvement is
unlikely to be due to chance. For distinct-2, a
paired t-test confirmed the difference was highly
significant (t = 11.99,p < 0.0001). Similarly, on
the jReadability, a paired t-test (t = 6.99, p <
0.0001) confirmed the improvement.

Furthermore, the weight of each utility function
during training is shown in Table 5 and its plots in
Appendix H (As you can see, the weight changes
dynamically as required).

6 Ablation Studies

Evaluation on a task with strict constraints. In
addition to the validator used by our company, we
introduced a validator function that imposes a con-
straint requiring the inclusion of keywords.

Method Length↓ Bracket↓ Num
Limit↓ Auxiliary↓ 5-

Sent ↓
GRPO 75 2 0 0 0
AW-GRPO 72 2 0 0 0

Table 6: Ablation study on advertising text generation
task with an additional strict constraint. Number of val-
idator violations in 2,500 outputs in the full Advertising
text on the 500 test data with AW-GRPO and GRPO
with Validator and 5-Sent.

Method Dist
-2 ↑

jRead-
ability ↑ Keywords ↑

GRPO 0.66 0.83 96.9
AW-GRPO 0.66 0.84 96.9

Table 7: Ablation study on the advertising text-
generation task with an additional strict constraint. Re-
sults are reported on 500 test samples using Distinct-2,
jReadability, and keyword-inclusion rate.

Table 6 shows that AW-GRPO is slightly more
effective than the conventional method because it
has fewer constraint violations in terms of length.
However, we found that adding the keyword val-
idator doubles the number of length validator vio-
lations. We speculate that this is because some key-
words are long themselves. Compared to other val-
idators, keywords have a significant impact on di-
versity and BLEURT (forcing the inclusion of key-
words hinders learning diversity). Consequently,
the final results of GRPO and AW-GRPO are simi-
lar. Despite these constraints, the proposed method
can achieve performance equivalent to GRPO’s. In
terms of other metrics (see Table 7), AW-GRPO is
slightly better in terms of readability.
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Method Length↓ Bracket↓ Num
Limit↓ Auxiliary↓

SFT 83 0 0 0

Table 8: The available dataset only provided a single ref-
erence per prompt. This resulted in an SFT model that
could not generate five diverse outputs; consequently,
we only measured the validation error on that output (a
total of 500 outputs).

Advertising text Generation with Supervised
Fine-Tuning. We experimented comparing Su-
pervised Fine-Tuning (SFT) with our proposed
method. However, since our dataset contains only
one reference per input, we performed SFT based
on this and then applied the prompt from Ap-
pendix D. However, it only returned a single output.
Consequently, we only measured the validation er-
ror on that output (a total of 500 outputs) in Table 8.

As shown in Table 8, the number of validation
errors has decreased. The increase in Length is
due to the use of long keywords when creating
advertising text.

Simulated click-through rate (CTR). We used
our in-house click-through rate (CTR) simulation
model to estimate the CTR of the generated adver-
tisements. The simulation model makes use of a
proprietary LLM (e.g., GPT-4) and estimates the
CTR of the given advertisement text.

Table 9 shows the results of the pairwise eval-
uation of the generated advertisement texts, i.e.,
which ad copy will be clicked, using the CTR pre-
diction model. As shown in Table 9, GRPO per-
forms well when keywords are not included as con-
straints, whereas AW-GRPO performs better when
keywords are included.

Method w/o Keywords ↑ w/ Keywords ↑

GRPO 74.8 % 27.8%
AW-GRPO 25.2% 72.2%

Table 9: Pairwise evaluation (which ad copy will be
clicked) of generated advertisement texts using a click-
through rate (CTR) prediction model. We report the es-
timated click-through rates under two conditions: gener-
ation without keywords and generation with keywords.

Evaluation on a task where the objective func-
tions are overlapping rather than conflicting.
We designed an experiment to confirm the behavior

of AW-GRPO in scenarios where its core mecha-
nism is not expected to yield significant gains, such
as tasks with no strong trade-off between objec-
tives. The JADOS text simplification task (Nagai
et al., 2024) is an ideal problem for this because
its evaluation metrics, BLEURT and jReadability,
are generally synergistic and do not conflict with
each other in text simplification tasks, and we use
Sarashina as a base model.

Table 10 presents BLEURT and jReadability
scores on the JADOS’s test data for both GRPO
and AW-GRPO. Both methods achieve the same
BLEURT score. In terms of readability, GRPO
scores 0.49 while AW-GRPO scores 0.48 on jRead-
ability. The experiment confirmed that the perfor-
mance of AW-GRPO did not degrade compared to
GRPO. This result demonstrates the robustness of
our method, showing that it does not negatively im-
pact performance, even when dynamic weighting
is not critical.

Method BLEURT ↑ jReadability ↑

GRPO 0.65 0.49
AW-GRPO 0.65 0.48

Table 10: Ablation study on a text simplification task
(JADOS); BLEURT and jReadability are less likely to
be evaluated together text simplification task.

7 Conclusion

First, we conduct a machine translation task as
a constrained generation task and validated AW-
GRPO compared to GRPO, where it consistently
avoided reward hacking. Next, we also applied it to
our advertising text data and evaluated its effective-
ness. Beyond empirical gains, AW-GRPO directly
addresses our operational concerns. Commercial
LLM APIs set a high bar for fluency, but they pro-
vide no guarantees of constraint satisfaction and
incur ongoing usage fees. The proposed approach
enables faster, cheaper, and easily controllable text
generation.

8 Limitation

We have the right to use them as our company
has the copyright. We are not able to release the
raw dataset publicly because of the policy of our
company (copyright holder). To compensate for
the problem, we conducted an experiment using an
open-source dataset (WMT).
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We tried using SFT and DPO as comparative
methods. However, the SFT model was not effec-
tive because it only had one reference sentence. As
we were trying to implement the DPO model us-
ing the SFT model, this was not feasible. We plan
to extend our experiments with SFT, DPO, and
constrained decoding in future work once suitable
datasets are prepared.

9 Ethics Statements

Ensure that the advertising text data set to be used
does not contain any personal information, that
input containing inappropriate expressions is re-
moved in advance, and for output ad texts, a human
check is always assumed for the system. We rec-
ognize that automated advertisement generation
carries potential risks of misuse, such as malicious
influence or propaganda. In our industrial setting,
all ad copies are carefully reviewed by humans be-
fore deployment, and malicious or harmful con-
tent is strictly excluded. However, beyond hu-
man oversight, we acknowledge the importance
of technical controls. In the future, we will in-
corporate some techniques, such as Watermarking
techniques for large language models, for example,
which can help trace automatically generated con-
tent (Kirchenbauer et al., 2023). Methods from the
literature on fake news detection and political fact-
checking could help identify and filter potentially
harmful outputs (Rashkin et al., 2017).
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A Reproducibility Statement

The experiments are conducted using an NVIDIA
A100 GPU with 80 GB VRAM.

Experiments in WMT and JADOS, datasets, and
models used in the experiments are publicly avail-
able (Table 11).

B Experiment Settings in WMT

Table 12 shows the prompt to evaluate on gpt-4o-
mini we use, and Table 13 shows the parameter
settings applied in the experiment.

C Analysis of GRPO with Multiple
Reward Functions

Proposition C.1 (Correlation each reward function
and advantage function with GRPO). We assume
the generation sample G → ∞. The calculation
method for the advantage function in GRPO tends
to correlate with the standard deviation of each
reward function.

Corr(Ri, Â) =
σi
S

(7)

Proof. We put R1, . . . , RK are K reward and
assume Cov(Ri, Rj) = 0 (i ̸= j). Denote
σ2
i := Var[Ri], µi = E[Ri] and write

S2 :=
∑K

j=1 σ
2
j . We first form a weighted sum

Rsum :=
∑

j wjRj(y) =
∑

j Rj(y) ,

Â :=
Rsum − µ

σ
, µ = E[Rsum], σ

2 = Var[Rsum].

(8)
The definition of the correlation coefficient is:

Corr(X,Y ) =
Cov(X,Y )√
V(X)V(Y )

(9)

The correlation coefficient between the ith re-
ward and the advantage is:

Corr(Ri, Â) =
Cov

(
Ri, Â

)

√
Var (Ri)Var

(
Â
) (10)

We first calculate the covariance Cov
(
Ri, Â

)
:

Cov
(
Ri, Â

)
= Cov

(
Ri,

Rsum − µ

σ

)
(11)

=
1

σ
Cov (Ri, Rsum − µ) (12)

=
1

σ
Cov (Ri, Rsum ) (13)

=
σ2
i

S
(14)
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Name Reference

WMT https://github.com/wmt-conference

BLEURT https://huggingface.co/lucadiliello/BLEURT-20

Sarashina https://huggingface.co/sbintuitions/sarashina2.2-3b-instruct-v0.1

Qwen https://huggingface.co/Qwen/Qwen3-4B

jReadability https://github.com/joshdavham/jreadability

JADOS https://github.com/tmu-nlp/JADOS

Table 11: List of datasets and models used in the experiments.

Finally, we can get the correlation coefficient be-
tween each reward function and advantage function
with GRPO.

Corr(Ri, Â) =
σ2
i

Sσi
(15)

=
σi
S

(16)

D Prompt template used for advertising
text generation experiment

Table 14 shows the prompt for the advertising text
generation experiment.

E Validator Functions

The code below shows the implementation of the
validator function.

from abc import ABCMeta , abstractmethod
class BaseValidator(metaclass=ABCMeta):

@classmethod
@abstractmethod
def scan(self , text , ** kwargs):

pass

@classmethod
def check(cls , text , ** kwargs):

try:
cls.scan(text)
return True

except ValidationError:
return False

class LengthValidator(BaseValidator):
@classmethod
def scan(cls , text , ** kwargs):

text_len = len(text)
lower = min_char
upper = max_char
if text_len < lower:

raise ValidationError(
cls , f"text␣too␣short", f"actual␣{

text_len}␣<␣{upper}"
)

elif text_len > upper:
raise ValidationError(

cls , f"text␣too␣long", f"actual␣{
text_len}␣>␣{upper}"

)

% Validator function as Reward function
try:

LengthValidator.scan(text)
reward = 0.0

except ValidationError as e:
reward = -1.0

F How to Calculate Slopes

We explain the following method to calculate the
slope. The actual reward Ri for the i-th step and
the slope a that minimizes it are shown below.

E =
n∑

i=0

|(axi + b)−Ri|2 (17)

where xi contains {x0 = 0, x1 = 1, x2 =
2, ..., xn = n}, b is a coefficient. In practice, we
use the polyfit function in numpy.

G Formal Formulation of GRPO

The formal formulation of GRPO is as follows:

JGRPO(θ) = E q,{og}∼πθref

[
1

G

G∑

g=1

1

|og|
(18)

min

(
πθ(og | q)
πθref (og | q) Ag, (19)

clip
(
1− ϵ, 1 + ϵ,

πθ(og | q)
πθref (og | q)

)
Ag

)
(20)

− β KL(πθ ∥πθref )
]
. (21)

where ϵ is a threshold parameter.

H The Weight of Each Function During
Training in Advertising Text Task
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As a neutral reviewer, please evaluate the quality of the Japanese translations provided by two AI
assistants for the following users’ English texts.
Follow the user’s instructions and select the assistant that provides the most appropriate response to
the question. When evaluating, consider factors such as the accuracy of the response (similarity to the
(Reference) text) and readability.
When starting the evaluation, compare the two responses and provide a brief explanation. Avoid bias
and ensure that the order in which the responses are presented does not influence your judgment. Do
not let the length of the response influence your evaluation. Do not favor the name of a specific AI
assistant. Strive to be as objective as possible.
After providing an explanation, output your final judgment in the following format: “[[A]]” if
Assistant A is superior, “[[B]]” if Assistant B is superior, and “[[C]]” if it is a tie.

(User Question)
question

(Reference)
reference

(The Start of Assistant A’s Answer)
answer a
(The End of Assistant A’s Answer)
(The Start of Assistant B’s Answer)
answer b
(The End of Assistant B’s Answer)

Table 12: Prompt to evaluate on gpt-4o-mini.
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Figure 3: The weight of BLEURT during training in the
advertising text task.
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Figure 4: The weight of BLEU during training in the
advertising text task.
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Parameter

temperature 0.7
learning rate 2e-6
adam beta1 0.9
adam beta2 0.99
weight decay 0.1
gradient accumulation steps 4
num generations 8
num train epochs 3
beta 0.04
LoRA rank 128
LoRA alpha 128
batch size 1

Table 13: Parameter Setting of the Experiment in WMT.
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Figure 5: The weight of diversity during training in the
advertising text task.
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あなたはプロの広告ライターです。
You are a professional advertising writer.

以下の【条件】に必ず従って、多様な広告文を5つ考えてください。
Please create five diverse ad copies in strict compliance with the [Conditions] below.

それぞれの広告文は \nで改行して出力してください。
Output each Advertising text separated by “\n”.

【条件】
Conditions

• 全角7文字以上全角15文字以内に収めてください。
Each line must contain 7–15 full-width characters.

• 絵文字や顔文字などは使わないでください。
Do not use emojis or emoticons.

• 次の【キーワード】を必ず含めてください。
Include all of the [Keywords] below.

【キーワード】
Keywords

◦ ◦ ◦, ×××

Table 14: Prompt template used for advertising text generation task.
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