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Abstract

The peer review process is fundamental to
scientific progress, determining which papers
meet the quality standards for publication. Yet,
the rapid growth of scholarly production and
increasing specialization in knowledge areas
strain traditional scientific feedback mecha-
nisms. In light of this, we introduce Gen-
erative Agent Reviewers (GAR), leveraging
LLM-empowered agents to simulate faithful
peer reviewers. To enable generative reviewers,
we design an architecture that extends a large
language model with memory capabilities and
equips agents with reviewer personas derived
from historical data. Our experiments demon-
strate that GAR performs comparably to human
reviewers in providing detailed feedback and
predicting paper outcomes. Beyond mere per-
formance comparison, we conduct insightful
experiments, such as evaluating the impact of
reviewer expertise and examining fairness in
reviews. By offering early expert-level feed-
back, typically restricted to a limited group of
researchers, GAR democratizes access to trans-
parent and in-depth evaluation.

1 Introduction

Assessing the quality of research is central to the
advancement of scientific discovery. Peer review
remains a cornerstone of scientific publication, en-
suring that manuscripts meet standards of novelty,
rigor, and significance. Although essential, this
process faces several challenges, including biases
(Stelmakh et al., 2021), inconsistencies among re-
viewers (Kravitz et al., 2010), and an urgent need
for scalable solutions (Liu and Shah, 2023). Esti-
mates suggest that researchers collectively invest
millions of hours in reviewing activities annually
(American Journal Experts (AJE), 2024). Further-
more, access to high-quality feedback remains lim-
ited to a small fraction of researchers with estab-
lished networks. Large language models (LLMs)

hold considerable potential in relieving some of
these issues in the scientific review process.

Recent breakthroughs in LLMs have shown
promise in human behavior modeling, enabling
the creation of autonomous agents (Hardy et al.,
2023; Jansen et al., 2023). A growing body of
research has explored LLM-based agents for sim-
ulating diverse societal environments (Park et al.,
2023; Törnberg et al., 2023), such as software engi-
neering, and recommender system evaluation (Wu
et al., 2023; Anonymous, 2024). However, stud-
ies examining the use of LLM-based agents for
academic peer review remain sparse.

Few approaches have explored the use of LLMs
as tools to assist researchers at various stages of
the scientific workflow (Lu et al., 2024). Yet, the
peer review process remains a particularly chal-
lenging domain (Jansen et al., 2023). For instance,
ReviewerGPT has demonstrated how LLMs can
identify errors, verify checklists, and select the best
version of a paper (Liu and Shah, 2023). Other
efforts have shown LLMs capable of reviewing
academic manuscripts (Liang et al., 2024b) and
generating creative research ideas (Koivisto and
Grassini, 2023). Although LLM-generated reviews
may be preferred by authors (Tyser et al., 2024),
their ability to predict final paper outcomes still
lags behind human experts (Lu et al., 2024). In
addition, several challenges remain open. These in-
clude modeling the intricate relationships between
ideas, claims, and technical details in lengthy and
complex papers, accurately capturing granular re-
viewer profiles, and reliably predicting final accep-
tance outcomes. Addressing these issues is essen-
tial to achieving reviewers that match the nuance,
diversity, and rigor of human judgment.

We present Generative Agent Reviewers (GAR),
a novel framework that simulates peer reviewers
through LLM-based agents. Each agent is initial-
ized using real-world datasets and equipped with
four core modules: profile, memory, novelty, and
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review modules. The profile module stores traits
and historical preferences, including characteris-
tics like strictness and focus areas, inferred from
past reviews via contrastive comparison. The re-
view process begins by constructing a graph-based
representation of the manuscript, mapping relation-
ships among ideas, claims, and results. Next, the
novelty module assesses the manuscript’s novelty
with support from external knowledge. Leverag-
ing this representation alongside retrieved genuine
reviews from the memory module, the reviewer
module then generates structured feedback and an
overall score, which is conducted over multiple
rounds. This process emulates real-world peer re-
view where reviewers provide initial evaluations
and refine them in subsequent iterations. Finally, a
meta-reviewer agent synthesizes individual reviews
to determine the paper’s final decision.

2 Related Work

Advances in AI have introduced new methods that
enhance the research process (Xu et al., 2021). Fur-
thermore, (Wang et al., 2024a; Baek et al., 2024)
LLMs can generate research concepts, and (Wang
et al., 2024b) automate survey writing. LLMs
have also extended to peer review tasks (Zheng
et al., 2023; Wang et al., 2023; Miret and Kr-
ishnan, 2024), leveraging their language under-
standing to simulate reviewer decision-making (Liu
et al., 2023). Studies show GPT-generated reviews
align with human assessments (Robertson, 2023;
Liang et al., 2023), while ReviewerMT (Tan et al.,
2024) reformulates peer review as a multi-turn di-
alogue. Recent work includes simulating peer re-
view through LLM agents (Jin et al., 2023), exam-
ining LLM reliability in review settings (Anony-
mous et al., 2023b), exploring LLMs as evaluators
(Anonymous et al., 2023c), and showing LLMs
can provide feedback but struggle with complex
manuscripts (Anonymous et al., 2023a). Earlier ap-
proaches focused on semi-automated review tools
(Checco et al., 2020), while recent systems like
MARG (D’Arcy et al., 2024) use collaborative
frameworks with distinct agents for different pa-
per sections. GAR differentiates itself by incor-
porating a memory-based reviewer with granular
personas and a graph-based paper representation
that systematically connects evidence with argu-
ments. By linking claims with evidence and re-
trieving relevant documents at a claim level, GAR
enables memory-augmented multi-round evalua-

tions, producing more comprehensive, faithful, and
token-efficient peer review simulacra.

3 Methodology

Generative reviewers provide automated paper
review, generating scores (soundness, presenta-
tion, contribution, overall, confidence), identifying
strengths/weaknesses, and predicting acceptance.

Task Formulation. Given a paper p ∈ P
and a reviewer r ∈ R, let yrp = 1 denote
that reviewer r has reviewer the paper p, and
subsequently assigned a score srp with srp ∈{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The average score
of each paper p can be represented by Rp =

1
∑r∈R yrp

srp ⋅ yrp. The simulator’s goal is to faith-
fully distill the human genuine preferences such as
ŷrp and ŝrp of reviewer r for an unseen paper p.

Review Process Design. GAR employs a 4-
phase pipeline to simulate the peer review process.
1. Graph Construction: The manuscript is struc-
tured into a knowledge graph that establishes con-
nections between essential ideas, claims, technical
details, and results. 2. Reviewer Selection: Next,
three to six reviewers are selected and their profile
modules are initialized from historical data. 3. Re-
viewer Evaluation: Each manuscript undergoes a
multi-round evaluation by independent reviewers.
4. Meta-Review: Finally, a meta-reviewer com-
piles the reviews to determine the final decision.

3.1 Graph-Paper Representation

Parsing scientific manuscripts presents challenges
due to their length and complex relationships be-
tween evidence and arguments. Contributions and
technical details typically appear in early sections,
while supporting results are often presented later,
raising questions about information structuring,
manuscript length management, and redundancy
reduction. This raises several key questions: How
can the diverse elements be effectively organized
to enable LLM-based agents to cross-reference
and analyze them? How can redundant claims or
findings be minimized to ensure an accurate and
thorough assessment? To escape these pitfalls, we
introduce a graph-based representation G that or-
ganizes academic paper content into a structured
graph G(p):

Acronym Extraction The first step identifies
acronyms and their definitions from the manuscript.
The LLM parses the title, abstract, and introduction
to retrieve a list of acronyms and their correspond-
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ing definitions, Racr.
Extraction of Core Elements: The second step

identifies and extracts instances of graph nodes and
edges from each chunk of the source paper. Let
C

∗ = {c∗1 , c∗2 , . . . , c∗n} denote the set of chunks in
the paper p (e.g., Introduction, Methods, Results).
We leverage a multipart LLM prompt that first iden-
tifies all entities in the text, including ideas, claims,
technical details, and supporting evidences, before
identifying all relationships between clearly-related
entities, including the source and target entities
and a description of their relationship. Each entity
e ∈ E becomes a node in G(p), with relationships
r ∈ R as edges such as “proves” or “supports”.
The graph is defined as: G(p) = (E,R).

Concept Merging: To reduce redundancy, we
merge nodes that represent the same or simi-
lar concepts but are phrased differently across
the manuscript, using the function: E

′ =
LLM(⟨Qmerge, E,Racr⟩), where Qmerge is the
merging prompt and ( E’ ) is the new entity set. If
two claims are merged, their technical details and
supporting evidence — edges, will then point to
the newly merged entity, R′. The updated graph
becomes: G ′(p) = (E ′

, R
′), and G(p) ← G ′(p).

Community Detection: Given the homoge-
neous undirected weighted graph G(p), we lever-
age a community detection algorithms to parti-
tion the graph into communities of nodes with
stronger connections to one another than to the
other nodes in the graph, with c referring to a com-
munity. Namely, we use Leiden (Traag et al., 2019)
to partition the graph into modular communities of
closely related nodes (Edge et al., 2024), grouping
nodes into thematically related clusters.

Community-Based Descriptor: The final step
creates report-like descriptors for each community
in the Leiden hierarchy, Ĉ = {ĉ1, ĉ2, . . . , ĉk}. The
representation of the nodes and edges in the com-
munity serves to query the LLM, which produces a
descriptor ĉi representing ci. Each community in
the graph is assigned its corresponding descriptor,
ĉi = LLM(⟨Qsum, ci, Racr⟩), where Qsum is a
prompt instructing the LLM to describe the com-
munity, its structure, and cite the original text as
much as possible to mitigate hallucination. These
descriptors are attached to the graph G(p).

3.2 Reviewer Agent Architecture
Leveraging this graph-based representation, GAR
structures agents in terms of four specialized mod-
ules tailored for review scenarios.

3.2.1 Profile Module
The profile module ensures the alignment of syn-
thetic agents with the diverse behaviors of genuine
reviewers. Each reviewer persona has eight core
attributes: strictness, expertise level, focus areas,
evidence focus, open-mindedness, ethic focus,
tone, and attention to technical details. Predict-
ing these characteristics is inherently challenging,
as anonymization in blind review limits each re-
viewer to a single evaluation. Thus, we introduce
contrastive comparison, performing pairwise com-
parisons across inter-reviewer and intra-reviewer
assessments. Specifically, we conduct N compar-
isons in which the LLM assesses whether the re-
viewer’s review, r̄, is stricter than another review
from a different paper r̄i. To ensure fairness —
acknowledging that stricter reviews are often asso-
ciated with lower-quality submissions, the LLM is
also presented with inter-reviews (anchors) of the
same target paper as context. The strictness score
s
∗
r of the reviewer r is formally defined as follows:

s
∗
r =

1

N

N

∑
i=1

1(LLM (r ≻ ri ∣ ⟨Qcomp, r̄, r̄int, r̄i⟩))
(1)

where Qcomp is the comparison prompt, r̄ is the
target reviewer’s review, r̄int represents the intra-
reviews, and r̄i refers to a review randomly sam-
pled from another reviewer ri. Finally, strictness
is categorized into low, medium, and high levels
based on percentiles. Similar formulas apply for
other characteristics. The expertise level is derived
from real reviews using their confidence scores
∈ {1, 2, 3, 4, 5} while focus area is extracted from
past reviews via a one-shot prompt Qfocus.

3.2.2 Novelty Module
The novelty module draws upon external knowl-
edge sources to gauge the originality of the
manuscript in comparison to prior research. It
begins by extracting keywords from the introduc-
tion of the targeted paper, which are then em-
ployed in a semantic search to retrieve similar
papers (Ammar et al., 2018), Bsim. Retrieved
documents are filtered to include only prior work
based on submission year. The title, abstract, and
introduction of the retrieved papers serve to an-
alyze the extent of innovation, clarity of differ-
ences from past contributions, and adequacy of
related work citation. The LLM generates a nov-
elty snov score from 1-4, accompanied by a concise
explanation enov, formalized as: (s∗nov, e∗nov) ←

100



LLM(⟨Qnovel, Racr,Bsim, p⟩), where p denotes
the source paper.

3.2.3 Memory Module
We present a novel memory module to enable
retrieval-augmented reviews. Assuming a bench-
mark dataset, each academic paper is structured as
a graph G(p) = (V,E), as detailed in Section 3.1.
However, here, we introduce an extra step. Given a
community descriptor ĉ ∈ Ĉ, we query the LLM
to determine if ĉ is mentioned in the human review.
If mentioned, the agent is instructed to cite the
original review, otherwise, the LLM is prompted
to output No specific mention was found in
the review., denoted as rc. Then, the memory
is filled with pairs of community descriptor ĉ and
associated reviews, {ĉ, rc}. All descriptors ĉ are
embedded and used as index of the memory mod-
ule, hĉ. The memory offers two retrieval schemes,
serving at different stages of our framework:

Community-level retrieval: Retrieve similar
communities and their associated reviews {ĉ, rc},
using this similarity function: sim(hc,hĉ′) =

h
⊤
ĉ hĉ′∥hĉ∥∥hĉ′∥ , where ĉ is the target community descrip-

tor and ĉ
′ represents other communities.

Paper-level retrieval: Retrieve similar papers
based on node and edges overlap, comparing two
papers p1 and p2 at the descriptor level rather than
direct embedding similarity (Cohan et al., 2020).
The similarity function simstruct between papers p1
and p2 is expressed as: simstruct(G(p1),G(p2)) =∣{ĉ∈Ĉ1∣∃ĉ′∈Ĉ21(sim(hĉ,hĉ′)>τ)}∣

max(∣Ĉ1∣,∣Ĉ2∣) , where τ is a scalar
that defines whether communities discuss similar
concepts, and Ĉ1 and Ĉ2 are community descrip-
tors of p1 and p2.

3.2.4 Review Module
We enhance the agent’s reasoning capabilities
through Chain-of-Thought (Wei et al., 2022).
Namely, the review is initiated by the agent process-
ing the paper and generating an initial review Rr,0

based on its persona and the preliminary novelty
assessment {snov, enov}. In this stage, the agent
evaluates each community descriptor Ĉ ∈ G(p),
then outputs numerical scores (soundness, presenta-
tion, contribution, overall, confidence), weaknesses
and strengths, as well as a preliminary binary
decision. The initial assessment prompt is: Qr,0 =⟨Qreview, Qnovelty, Qstyle, snov, enov, Racr, Ĉ⟩,
where the score, accompanied by a summary of
supporting arguments, is formatted into plain text

and passed on to subsequent review stages. Second,
the agent r engages in multi-round refinement,
where at turn k, it receives the review and thoughts
from the previous response Rr,k−1. Agents are
successively presented each community descriptor
ĉ from the manuscript to review along with the M
most similar communities ĉ′1, ..., ĉ

′
M retrieved from

the memory module and their associated reviews
rĉ′1 , ..., rĉ

′
M

. To reduce the cognitive workload
of reviewers, the agent evaluates communities

in blocks of size ∣Ĉ∣
K

, where K is the number of
review rounds. This retrieval-augmented scheme
guides the agent in assessing each community by
guiding its attention toward relevant human-like
considerations. Drawing inspiration from retrieved
exemplars, the agent may decide to add strengths,
weaknesses or correct potential mistakes made
during the initial review. Thus, the prompt at turn
k is formally defined as:

Qr,k = ⟨Qcheck, Rr,0,
K

⋃
k=1

(Rr,k−1, (ĉ1, ..., ĉ ∣Ĉ∣
K

),
(ĉ′1, ..., ĉ′M , ĉ

′
2, ...), (rĉ′1 , ..., rĉ′M , rĉ′2 , ...)⟩,

(2)

where Rr,0 denotes the initial review and Rr,k−1

is the k-th review. Given the prompt Qr,k, each
review agent generates a response Rr,k, sampled
from a probability distribution Rr,k ∼ P (⋅∣Qr,k),
as well as the thoughts/rationales behind their
choices. The last review is then selected as the
final review of reviewer r of the paper p.

3.3 Meta-Reviewer
After the individual reviews are completed, a meta-
reviewer agent synthesizes the final decision. It
retrieves the top-K2 most similar genuine papers
and their meta-reviews, and combines them with
the scores and reviews provided by the individual
reviewers, along with its own preliminarily assess-
ment. This produces a concise, structured summary
highlighting the paper’s strengths and weaknesses,
consolidating key insights raised by individual re-
viewers and presenting a balanced evaluation of the
submission. After T turns of self-reflection, the
meta-reviewer generates the final decision Rmeta

following:

Qm,t = ⟨Qmeta, r̂1, ..., ˆrK2

T

⋃
t=1

(St), ∣R∣
⋃
j=0

(Rj,K)⟩
(3)
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Figure 1: Win rates among LLM-generated and human
reviewers based on GPT-4 preferences.

where r̂1, ..., ˆrK2
are retrieved meta-reviews,

Qmeta is a meta-review prompt, and St is the meta-
reviewer’s summary of dialogues from turn t. The
final acceptance decision is chosen among: ACCEPT
(ORAL), ACCEPT (POSTER), or REJECT. We com-
pare our meta-reviewer method, GAR, with a
threshold-based approach GAR

> that uses review
scores against a fixed threshold reflecting confer-
ence acceptance ratios (see Sec. 4.3).

4 Experiments

Datasets. We primary conduct the experiments on
the ICLR 2023 dataset, which consists of 3,797 pa-
pers obtained from Openreview, with additional
experiments on ICLR 2022 and NeurIPS 2023
(Beygelzimer et al., 2021) datasets. Each paper
was retrieved by at least three reviewers.
Baselines We compare our method with AI-
Scientist (Lu et al., 2024), OpenReviewer (Tyser
et al., 2024), ReviewerGPT (Liu and Shah, 2023),
and AI-Review (Chiang and Lee, 2023).
Implementation. Each paper is evaluated by a
committee of 3-6 reviewers and one meta-reviewer.
Agents use GPT-4o-mini (OpenAI et al., 2024),
with some experiments using GPT-4o (OpenAI
et al., 2024) and Llama-3.1 (8b/70b) (Grattafiori
et al., 2024). Results are averaged over 20 runs.

4.1 LLM vs Human Reviews

To assess the quality of LLM-generated reviews,
five evaluators were given 200 papers, each with
two anonymous reviews. As LLM Evaluators (Chi-
ang and Lee, 2023) achieve comparable perfor-
mance with human evaluators, we utilized GPT-
4o as evaluator. For every paper, two reviewers

Rank Reviewer Score

1 GAR 0.684
2 Human 0.523
3 AI-Scientist 0.242
4 ReviewerGPT 0.000
5 AI-Review -0.365
6 OpenReviewer -0.632

Table 1: Preference ranking of reviewers based on GPT-
4o. Bold: best results; underlined: second-best.

Rank Reviewer Score

1 GAR 0.143
2 Human 0.112
3 AI-Scientist 0.000
4 AI-Review -0.245
5 ReviewerGPT -0.764
6 OpenReviewer -1.461

Table 2: Human preference ranking of reviewers. The
best results of each model are marked in bold and the
second-best results are marked with underline.

were randomly assigned and evaluators were tasked
with selecting their preferred review between the
two provided for each paper. We ranked reviewers
using a win matrix (Figure 1) and Bradley-Terry
(BT) model coefficients. The win matrix records
matchup outcomes, where element wij indicates
the probability that competitor i defeats competi-
tor j. Results in Table 1 show GAR leads with
a score of 0.684, outperforming human reviewers
(0.523). AI-Scientist and ReviewerGPT achieve
scores of 0.242 and 0.000, respectively. Upon look-
ing at the responses, GAR generated reviews stem
from their depth, resulting in high preferences. One
key factor is the retrieval of relevant reviews for
each community descriptor, helping the LLM to
identify specific issues or strengths. In contrast,
some human reviews are more shallow, often due
to reviewers having limited expertise in the field or
constrained time for evaluating the manuscript.

4.2 Human Review Preferences

To evaluate GAR reviews against prior work, we
followed the same experimental setup as Section
4.1, but with human evaluators selecting their pre-
ferred review between pairs, in one-on-one compar-
isons. Table 2 shows the ranking results. Similarly
with LLM preferences, GAR achieves a top score
of 0.143, higher than the human reviewers. On
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Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

Human* 0.66 0.49 0.66 0.49 0.66 0.49
Random Decision 0.50 0.33 0.50 0.38 0.50 0.40
Always Reject 0.50 0.00 0.50 0.00 0.50 0.00

AI-Scientist 0.58± 0.04 0.51± 0.06 0.65± 0.04 0.57± 0.05 0.63± 0.05 0.55± 0.06
OpenReviewer 0.39± 0.05 0.39± 0.04 0.49± 0.05 0.47± 0.05 0.50± 0.06 0.45 ± 0.05
ReviewerGPT 0.41±0.06 0.40±0.05 0.54±0.04 0.52±0.06 0.55±0.07 0.51±0.05
AI-Review 0.59±0.04 0.49±0.05 0.64±0.06 0.55±0.04 0.61±0.06 0.53±0.07

GAR 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GAR> 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

Table 3: GAR vs baselines on three datasets (1,000 papers each). Bold: best results; underline: second-best. GAR
improvements are statistically significant (p < 0.05). (*) Human scores from (Beygelzimer et al., 2021). Results are
averaged across 3 seeds.

the other hand, baseline methods underperformed
(≤ 0) compared to human reviewers (0.112). A
key advantage of GAR is the use of different re-
viewer personas, each focusing on distinct aspects
of the paper. In contrast, most prior work struggle
to determine specific criteria for assessment or to
identify potential issues effectively at a claim level
— they tend to produce generic feedback, as they
do not explicitly retrieve relevant reviews.

4.3 Predicting Paper Acceptance

To evaluate the effectiveness of GAR, we compared
its decisions against a ground truth dataset com-
prised of 1,000 papers from the NeurIPS 23, ICLR
22, and ICLR 23 submissions. The remaining re-
views in each dataset were utilized to initialize the
memory module. Table 3 shows our method out-
performs previous state-of-the-art methods with
an f1 score of 0.66 versus AI-Scientist’s 0.54, sig-
nificantly exceeding human reviewers’ 0.49 score
(Beygelzimer et al., 2021) (p < 0.002). We attribute
GAR’s improvements to our profile module with
granular information (strictness, focus area) ob-
tained via contrastive matching. Prior LLM-based
methods struggle with complex papers and often
overweight redundant claims. We alleviate this
pitfall by leveraging the proposed paper represen-
tation, grouping together related claims/evidences
and reducing redundancy through concept merging.

4.4 Human Likeliness

We use GPT-4o to assess whether agent-generated
reviews appeared AI-generated or human-like us-
ing a 5-point Likert scale, with higher scores indi-
cating stronger resemblance to human reviewers.
As shown in Table 4, our method significantly out-

performs AI-Scientist in generating reviews that
align closely with human feedback. GAR scores
are consistently higher, suggesting that the inclu-
sion of graph-based memory and profile modules
enhances the human-likeness of reviews. Addition-
ally, allowing agents to simulate reviewer-specific
characteristics, such as self-assessed confidence
and depth of expertise, further contributed to review
consistency and believability. Conversely, Open-
Reviewer and ReviewerGPT displayed tendencies
towards inconsistency, such as generating shallow
comments or narrowly focusing on methodological
details without evaluating the validity of technical
claims and results. This lack of critical depth raised
suspicions of AI involvement.

NeurIPS ICLR 22 ICLR 23

AI-Scientist 3.34 ± 0.09 3.39 ± 0.11 3.38 ± 0.08
OpenReviewer 2.45 ± 0.10 2.43 ± 0.09 2.43 ± 0.09
ReviewerGPT 3.26 ± 0.13 3.25 ± 0.14 3.29 ± 0.15
AI-Review 3.30 ± 0.09 3.42 ± 0.11 3.38 ± 0.08
GAR 3.89 ± 0.11* 4.02 ± 0.10* 3.99 ± 0.09*

Human 4.37 ± 0.08 4.45 ± 0.07 4.32 ± 0.08

Table 4: Human-likeness scores for several approaches.

4.5 Assistive Value for Human Reviewers
While the primary focus of our work has been
on simulating peer review, an important question
is whether GAR can assist human reviewers. To
study this, we conduct a human-in-the-loop evalua-
tion with 15 volunteer reviewers, each reviewing 6
ICLR-2024 papers. For half of the papers, review-
ers had access to GAR-generated reviews, while
the other half served as controls. After completing
each review, participants answered three Likert-
scale questions (1 = strongly disagree, 5 = strongly
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Metric Control GAR-assisted ∆ Direction

Review time (min) ↓ 42 ± 11 34 ± 9 −8 Faster
Q1 Clarity ↑ 3.2 ± 0.7 4.0 ± 0.6 +0.8 Higher
Q2 Confidence ↑ 3.1 ± 0.8 3.7 ± 0.7 +0.6 Higher
Q3 Workload (rev.) ↑ 2.9 ± 0.6 3.6 ± 0.5 +0.7 Lower Load

Table 5: Effect of GAR assistance on human reviewers.
Likert items use a 5-point scale (1 = strongly disagree,
5 = strongly agree).

agree) on clarity of contributions, confidence in fair-
ness, and perceived workload. We also recorded
review time. As can be observed in Table 5, GAR
reduces review time while improving clarity, con-
fidence, and perceived workload. These findings
reinforce the role of GAR as an assistive frame-
work that augments, rather than replaces, human
reviewers.

5 Conclusion

This research marks a step towards improving
scientific writing and research by offering cost-
effective, in-depth, and on-demand reviews. We
describe an architecture for generative review-
ers that employs a graph-based representation
of manuscripts, a memory module for storing
past reviews, and a novel technique to assign re-
viewers with specific traits and preferences. We
then demonstrate the potential of GAR to achieve
human-level feedback and accurately predict accep-
tance outcomes. Our vision is not to replace human
reviewers but to enhance the review process by sup-
porting them with synthetic reviewers capable of
managing the increasing volume of submissions
and providing early, constructive feedback. This
collaboration between agents and human experts
has the potential to accelerate scientific progress,
foster innovation, and reduce time-to-publication.

6 Limitations

There are several limitations to our work. First, our
study primarily focuses on isolating and evaluating
specific factors in the peer review process, such as
reviewer dedication or expertise, instead of account-
ing for the inherent variability and arbitrariness that
occur in real peer review scenarios. Second, the
large number of interacting modules makes it dif-
ficult to isolate the effect of each component; we
include ablation studies in the Appendix to par-
tially address this. In the future, we will explore
and improve these aspects. Related to this, our
analysis mainly isolates and examines individual

variables of the peer review process. Real-world
peer reviews, nevertheless, involve multiple inter-
acting dimensions. Third, our method may inherit
biases, due to the nature of LLMs. Our framework
is largely reliant on the strengths and weaknesses
of the underlying LLMs. The accuracy of the sim-
ulated user behavior may be impacted by LLMs’
occasional inconsistent, biased, or unfounded out-
puts. A limitation is GAR’s difficulty in evalu-
ating highly novel or paradigm-shifting work, as
noted in Appendix A.4. The system may struggle
to recognize contributions that deviate from estab-
lished norms, potentially overlooking groundbreak-
ing ideas. Finally, our evaluation was conducted
in the context of machine learning conferences; as
such, the generalizability of our findings to other
domains or conference communities remains to be
established.

7 Ethics Statement

This paper introduces an LLM-powered framework
that simulates peer reviewers to enhance the scien-
tific review process. While GAR provides a scal-
able and efficient approach to assessing research
quality and generating structured feedback, its de-
ployment raises important ethical considerations.

First, LLM-based reviewer agents may inherit bi-
ases from their training data, potentially amplifying
systemic biases in peer review, such as preferen-
tial treatment toward well-established institutions
or underestimating novel but unconventional ideas.
Additionally, these agents might struggle with sub-
jective aspects of reviewing, such as evaluating the
broader impact of a work, leading to inconsisten-
cies in their assessments. Furthermore, reliance
on automated reviewers raises concerns about the
depersonalization of the review process, where hu-
man intuition, domain expertise, and contextual
understanding remain irreplaceable.

Another ethical concern involves transparency
and accountability. If LLM-generated reviews in-
fluence acceptance decisions, it is crucial to en-
sure that the decision-making process remains in-
terpretable and that researchers understand the lim-
itations of AI-generated feedback. Additionally,
while GAR is designed to assist in peer review
rather than replace human reviewers, there is a
risk that institutions or conferences might over-rely
on automated evaluations, reducing human over-
sight in critical decision-making processes. Auto-
mated reviewers should complement, rather than re-
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place, human judgment, serving as tools to assist re-
searchers rather than deterministic decision-makers.
Recent machine learning conferences have reported
an increase in reviews suspected to be AI-generated
(Liang et al., 2024a). While LLM-generated re-
views can provide valuable feedback, we strongly
advise against their use as replacements for geni-
une reviewers in real-world peer review processes.
Since LLMs are still prone to errors, human judg-
ment remains essential to ensure the quality, fair-
ness, and integrity of manuscript evaluations. By
adhering to these principles, we aim to ensure that
GAR contributes to a more efficient, fair, and re-
producible peer review system.
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A Appendix

A.1 Additional Details
In the profile module, the following attributes are
derived from historical datasets:

• Strictness reflects the degree to which a re-
viewer adheres to high standards in evaluating
submissions, ranging from lenient to highly
critical.

• Evidence Focus describes how much impor-
tance the reviewer places on the evidence pro-
vided in the submission to support claims,
highlighting their emphasis on empirical vali-
dation or theoretical soundness.

• Open-mindedness measures the reviewer’s
willingness to consider unconventional or
novel ideas. A higher score indicates more
openness to creative methodologies or specu-
lative hypotheses.

• Tone refers to the overall style and approach
taken by the reviewer in their feedback, rang-
ing from highly critical to constructive.

• Technical Focus reflects the extent to which
the reviewer is detail-oriented in evaluating
the technical correctness and methodological
rigor of a submission.

To enhance reliability of the novelty detection
module, the LLM undergoes an adversarial self-
check by re-evaluating its initial assessment in
light of the retrieved documents and its prior rea-
soning. Namely, it is presented with the same
context, including the retrieved documents and
its own previously generated assessment, but is
now instructed to identify any contradictory or
overlapping evidence in prior work that might re-
duce or challenge the initial novelty determination.
This iterative refinement results in a revised score,
snov ∈ {1, 2, 3, 4}, and explanation enov, which
are subsequently used during paper review to con-
dition reviews. Unless otherwise specified in an ex-
periment, all modules in GAR used GPT-4o-mini.

The meta-reviewer agent follows the same archi-
tecture as the reviewer agent, including the memory
module and novelty module. The primary distinc-
tion lies in the initialization of its memory: whereas
reviewer agents incorporate historical data from
individual reviewers, the meta-reviewer agent’s
memory is initialized from historical meta-reviews.

This enables the meta-reviewer agent to contextual-
ize and emulate higher-level assessment consistent
with human meta-reviewers.

Note that we filter out from the memory mod-
ule any documents whose title matches the paper
currently being reviewed, in order to avoid reusing
prior reviews or content that could introduce eval-
uation bias. However, this approach is not fool-
proof: if a manuscript has undergone a title change
or minor textual modifications, exact matching
may fail to detect overlaps. Thus, contamination
risks may remain, particularly for widely circulated
preprints. Addressing this limitation may require
more advanced strategies, such as fuzzy match-
ing or content-based similarity filtering, which we
leave to future work.

An example prompt when presenting claims,
along with retrieved evidences and genuine feed-
back from the memory module is provided below:

Prompt Block

Idea 1: (ĉ1) Utilizing graph neural net-
works (GNNs) to model user-item interac-
tions in large-scale recommender systems.
The approach claims to enhance scalability
and accuracy through advanced message-
passing mechanisms. Experiments indi-
cate a 15% improvement in nDCG@10
compared to baseline collaborative filtering
models on the MovieLens dataset.

Most Similar Claims:

• Similar Claim 1: (ĉ′1) Implementing
dynamic user-item graph construction
for scalable recommendations using
GNNs...
Reviewer comment: (rĉ′1) The
dynamic graph approach is compelling
but could benefit from further compar-
isons with static graph baselines.

• Similar Claim 2: (ĉ′2) Applying
attention-based GNNs to enhance ex-
plainability in recommender systems...
Reviewer comment: (rĉ′2) The work
convincingly demonstrates improved
explainability, but additional bench-
marks against non-attention models
are needed.
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• Similar Claim 3: (ĉ′3) Integrating
GNNs with latent factor models to
address cold-start issues in recommen-
dation scenarios...
Reviewer comment: (rĉ′3) The
integration with latent factors is
innovative, though evaluations on
datasets with extreme sparsity could
strengthen the claim.

Idea 2: (ĉ2) ...
Most Similar Claims: ...

where Idea 1 refers to a descriptor of the paper
being evaluated, Similar claim 1 is a descriptor
from another paper, which is similar to Idea 1,
and Reviewer Comment is the actual review cor-
responding to this similar claim Similar claim 1.
This structure helps agent reviewers to thoroughly
assess each claim by guiding its attention toward
relevant human-like considerations.

A.2 Simulation Platform

A challenging problem in processing research pa-
pers lies in preserving their structural integrity, par-
ticularly complex elements like mathematical for-
mulas. Unlike prior work such as AI-Scientist (Lu
et al., 2024), which converts PDFs to plain text
and may compromise document formatting, we uti-
lize Nougat (Blecher et al., 2023) to extract the
Markdown (MMD) version of each manuscript,
maintaining structural and formatting fidelity.

We argue that experimental results are indispens-
able for determining a paper’s alignment with pub-
lication standards. Hence, we further graft figures
into the paper representation. That is, figures that
contain empirical findings, such as bar charts, are
identified using Molmo-7b (Deitke et al., 2024).
Next, we prompt GPT-4o to generate detailed cap-
tions for these figures, describing the methods be-
ing compared, important findings, and key results.
Each caption is placed immediately following the
original figure title, providing LLM reviewers with
direct access to experimental data, enhancing their
ability to rigorously evaluate the paper’s technical
soundness.

A.3 Bradley-Terry Model Details

In experiments 4.1 and 4.2, we measure and rank
reviewers based on match outcomes, using a win

matrix, coefficients from the Bradley-Terry (BT)
model, and logistic regression. The win matrix
records the results of matchups between competi-
tors. For N competitors, the matrix W is an N×N
grid where each element wij indicates the proba-
bility that competitor i defeats competitor j, calcu-
lated as wij =

# wins by i over j
total matches between i and j

. The matrix
is constructed by processing a list of match results,
updating both win counts and total match counts
for each competitor pair. The win matrix generated
in our experiment is displayed in Figure 1.

The Bradley-Terry model applies a parametric
approach to estimate the relative strengths of com-
petitors through pairwise comparisons. In this
model, the probability P that competitor m pre-
vails over competitor m

′ is given by a logistic
function: P (H = 1

1+eξm′ −ξm ), where ξ represents
the vector of BT coefficients, with the constraint
ξ1 = 0 imposed. These coefficients are derived by
minimizing the binary cross-entropy loss over all
observed matches, using the following loss func-
tion: ℓ(h, p) = −(h log(p) + (1 − h) log(1 − p)).
The optimization task can then be expressed as
ξ̂ = argminξ ∑T

t=1 ℓ (Ht,
1

1+eξA2−ξA1
), while keep-

ing ξ1 = 0 to anchor the scale. Once calculated,
the BT coefficients ξ are used to rank competitors,
ordering them from strongest to weakest by sort-
ing the ξ values in descending order, as shown in
Ranked Competitors = sort(ξ, descending).

We developed an automated paper review frame-
work, which demonstrates that LLMs, while still
evolving, can provide review quality close to hu-
man standards. GPT-4o consistently produced the
best results, occasionally reaching scores above hu-
man experts. However, we do not rely solely on pro-
prietary models; as LLMs advance, both open and
closed models are likely to improve. Our approach,
therefore, remains model-agnostic, balancing the
high performance of closed models like GPT-4o
with the flexibility, lower cost, and transparency
of open models such as Llama-3. Although open
models currently show slightly lower quality, they
hold the potential for cost-effective and adaptable
AI systems. Future efforts will explore a closed-
loop, self-improving system using open models to
maximize discovery potential.

Another limitation concerns potential informa-
tion leakage from pre-training corpora. Since most
frontier LLMs are trained on proprietary datasets,
it remains difficult to ascertain whether evaluation
papers may have been partially included in the mod-
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Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

GAR (♦) 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GAR> (♦) 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

GAR (♠) 0.60±0.06 0.58±0.05 0.65±0.05 0.63±0.04 0.64±0.05 0.57±0.06
GAR> (♠) 0.63±0.05 0.60±0.06 0.67±0.04 0.63±0.05 0.63±0.05 0.57±0.05

GAR (♥) 0.55±0.05 0.52±0.04 0.63±0.05 0.56±0.06 0.60±0.05 0.53±0.05
GAR> (♥) 0.58±0.05 0.53±0.04 0.65±0.06 0.59±0.04 0.61±0.06 0.64±0.06

Table 6: Effect of paper representation on the performance for predicting the acceptance of manuscripts. Asterisks
(*) denote statistically significant improvements over the best baseline (t-test at p < 0.05).

Figure 2: Violin plots showing the distribution of scores generated by several AI-generated models for ICLR 23
papers. Scores on the y-axis refer to paper ratings, which range from 1 (Strong Reject) to 10 (Weak Accept).

els’ training data. Wwe acknowledge it as an in-
herent limitation of our approach. To mitigate this
risk, future work could employ locally trained mod-
els on carefully controlled corpora, ensuring that
training data is disjoint from evaluation papers.

A.4 Additional Experiments

A.4.1 Effect of Paper Representation

To validate the significance of our graph-based
representation, we compare RAG’s effectiveness
in predicting paper acceptance using three input
types: (1) community descriptors ♦, (2) node-
edge representations ♠, and (3) raw text ♥. The
experiment results, illustrated in Table 6, demon-
strate that different manuscript representation meth-
ods significantly influence the F1-scores achieved
in the review process. Our analysis shows that
structured representations, particularly graphs and
community-based descriptors, yield higher F1-
scores compared to raw text. These structured for-
mats enhance the extraction and alignment of key
concepts, leading to more precise and contextu-
ally aware assessments. In contrast, raw text lacks
such structured organization, resulting in lower F1-
scores due to its reliance on linear narrative, which
may increase the cognitive load for reviewers. This

observation aligns with existing research in natural
language processing, which underscores the value
of structured representations in enhancing informa-
tion extraction and interpretation (Liu et al., 2021;
Schneider et al., 2022).

A.4.2 Review Scores Across Different Models

This experiment validates the effectiveness of
five LLM-powered reviewers in scoring ICLR
23 papers: GAR, AI-Scientist, AI-Review, Re-
viewerGPT, and OpenReviewer. Figure 2 shows
violin plots of score distributions aligned with
ICLR ratings, allowing for an assessment of each
model’s alignment with human review standards.
AI-Scientist exhibits a concentrated distribution
around 4, indicating moderate alignment, while
GAR showed greater variability. ReviewerGPT
and OpenReviewer skewed higher, suggesting a
higher inclination to accept manuscripts. On the
other hand, GAR demonstrates consistent scores
between 1 and 10, with the ability to accept high-
quality papers (score >7) while strongly rejecting
papers (≤3) that do not meet the quality standards
for publication.
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Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

GAR (random persona) 0.59±0.05 0.57±0.05 0.60±0.07 0.68±0.06 0.61±0.03 0.61±0.06
GAR> (random persona) 0.62±0.05 0.59±0.04 0.63±0.04 0.69±0.05 0.64±0.06 0.65±0.06
GAR (historical persona) 0.65±0.05 0.60±0.04 0.65±0.06 0.64±0.04 0.69±0.06 0.66±0.05
GAR> (historical persona) 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05
GAR (NN selected) 0.66±0.07 0.61±0.04 0.72±0.05 0.66±0.05 0.72±0.06 0.67±0.05
GAR> (NN selected) 0.70±0.06 0.63±0.05 0.74±0.05 0.69±0.04 0.74±0.05 0.70±0.06

GAR (w/o memory) 0.54±0.04 0.54±0.06 0.61±0.05 0.53±0.04 0.61±0.05 0.52±0.06
GAR> (w/o memory) 0.59±0.04 0.54±0.05 0.65±0.04 0.58±0.06 0.64±0.05 0.54±0.05

GAR 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GAR> 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

Table 7: Ablation study of GAR on three datasets, each consisting of 1,000 papers. Lines 3-5 report results for
different approaches to select reviewers’ persona. Line 6 highlights the performance without memory module.

A.4.3 Experiment: Reviewer Persona
Selection

Reviewer personas shape the tone and content of
paper evaluations. We compare three approaches
for selecting reviewer personas:

• Random Persona Selection: Reviewer pro-
files are randomly selected among possible
personas. This approach serves as the base-
line, representing the scenario where the per-
sona is not known in advance.

• Historical Data Initialization: Reviewer per-
sonas are initialized using historical data from
prior reviews, matching the profile of a re-
viewer based on their past decisions and sub-
ject matter expertise. This setting replicates
the reviews collected in real-world datasets.

• Neural Network-Optimized Persona: In this
approach, a small neural network is trained
to select reviewer personas that maximize the
paper acceptance rate.

Results (Table 7) depict that Neural Network-
Optimized Persona and historical data initializa-
tion produce the most consistent results, achiev-
ing a 0.74 and 0.70 on ICLR 23, respectively.
This suggests that further tuning of the network
could reduce over-acceptance of borderline papers,
while maintaining a strong acceptance rate for high-
quality submissions. On the other hand, the random
selection method, while less accurate, performs at
0.64. For the random selection setting, inconsisten-
cies arise due to misaligned reviewer traits, such
as focus areas or strictness levels, which can lead
to decisions that diverge significantly from those
of real reviewers. These findings underscore the

importance of the profile module, and its impact on
achieving human-like evaluations.

A.4.4 Effect of Reviewer Expertise Level
The effect of reviewer expertise on the acceptance
likelihood and feedback quality is unclear. Thus,
we investigate how varying levels of simulated re-
viewer expertise impact the quality and consistency
of reviews. We set the persona of reviewers with
the following expertise levels: a Novice Reviewer
with limited knowledge, an Intermediate Reviewer
with general familiarity with the field, and an Ex-
pert Reviewer with deep expertise in the research
domain. As a baseline, we also report the results
of GAR that assigns the expertise level based on
genuine values from OpenReview.

The results, summarized in Table 8, reveal that
reviewers with higher expertise levels consistently
outperformed those with lower expertise. That is,
expert reviewers achieve the highest accuracy and
consistency, approaching the level expected of hu-
man experts. Notably, novice and intermediate
reviewers also produced reasonably accurate as-
sessments, but their performance lagged behind
that of expert-level reviewers. This suggests that
emulating expertise levels in simulated reviewers
improves the quality of automated reviews, sup-
porting the use of calibrated expertise to enhance
the reliability and value of LLM-based reviews.

A.4.5 Review Scores Across Different LLMs
This experiment examines the alignment between
the LLM-based reviewer and human reviewers on
key review criteria: soundness, presentation, and
contribution. A subset of 1,000 papers from ICLR
2023 was selected, with both human and LLM-
based reviewers providing scores for each criterion

111



Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

Novice Reviewers 0.57±0.05 0.55±0.05 0.61±0.04 0.59±0.05 0.59±0.04 0.57±0.05
Novice Reviewers> 0.59±0.05 0.56±0.05 0.63±0.04 0.60±0.05 0.61±0.04 0.58±0.05

Intermediate Reviewers 0.60±0.05 0.58±0.05 0.64±0.04 0.62±0.05 0.62±0.04 0.60±0.05
Intermediate Reviewers> 0.62±0.05 0.59±0.05 0.66±0.04 0.64±0.05 0.64±0.04 0.62±0.05

Expert Reviewers 0.62±0.07 0.60±0.04 0.65±0.05 0.62±0.04 0.64±0.05 0.61±0.05
Expert Reviewers> 0.66±0.05 0.61±0.03 0.68±0.05 0.63±0.05 0.67±0.05 0.62±0.04

GAR 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GAR> 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

Table 8: Performance for predicting the acceptance of manuscripts with varying levels of review expertise.

Figure 3: Alignment Between Human and LLM Re-
viewer Scores.

on a scale from 1 (Poor) to 4 (Excellent). Pearson
correlation coefficients were calculated to measure
the alignment of scores between human and LLM
reviewers.

As illustrated in Figure 3, GAR demonstrates
high correlation coefficients across all criteria, sug-
gesting that the LLM-based reviewer aligns closely
with human reviewers. This strong alignment, es-
pecially on aspects of soundness and presentation,
highlights the LLM’s ability to approximate human
assessment. While the correlation for the contribu-
tion attribute is comparatively lower, our approach
still surpasses prior work. This may be attributed to
the inherent challenge of assessing a paper’s nov-
elty based solely on limited contextual information,
whereas human reviewers benefit from extensive
field-specific expertise and years of experience.

A.4.6 Novelty Score

We now assess the alignment between predicted
and ground truth novelty scores derived from his-

Figure 4: Comparison between predicted and ground
truth novelty scores across 500 papers. Each dot rep-
resents a paper’s score. The color gradient denotes the
intensity of predicted novelty.

torical review data. Figure 4 presents a scatter
plot comparing predictions and true novelty values.
The diagonal line (y = x) indicates perfect align-
ment, while deviations highlight prediction errors.
Results show a moderate correlation, with predic-
tions closely following ground truth in the mid-
range (2.5–2.9). However, deviations increase at
the extremes: the model overestimates low-novelty
papers (1.4–2.0) and underestimates highly novel
papers (3.5–4.0), suggesting limitations in captur-
ing novelty of papers with very low or high novelty
scores.

A.4.7 Main Concerns in Reviews
To understand whether some aspects of reviews are
more/less likely to be discussed by agent and hu-
man reviewers, we analyze 11 aspects of comments.
Human annotation was performed a randomly sam-
pled subset of feedback, following established re-
search in machine learning peer review (Birhane
et al., 2022; Smith et al., 2022). Figure 5 displays
the relative frequency of each feedback aspect for
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Figure 5: Relative frequency of feedback aspects by
different types of reviewers.

all six reviewer types: GAR, AI-Scientist, Open-
Reviewer, ReviewerGPT, and AI-Review. Taking
advantage of its graph-based representation, GAR
aligns more closely with human reviewers than
prior work, particularly in technical domains such
as experiments and results. While AI-Scientist and
OpenReviewer frequently highlight experimental
recommendations, GAR offers a more balanced
assessment.

A.4.8 Human Likeness Across Foundation
Models

NeurIPS ICLR 22 ICLR 23

GPT-4o 3.91 ± 0.10 4.08 ± 0.10 4.11 ± 0.10
Mistral-7b Instruct 3.59 ± 0.08 3.67 ± 0.10 3.68 ± 0.11
Llama-3.1 (8b) 3.33 ± 0.08 3.64 ± 0.11 3.64 ± 0.12
Llama-3.1 (70b) 3.66 ± 0.09 3.63 ± 0.10 3.73 ± 0.07
GPT-4o-mini 3.89 ± 0.11 4.02 ± 0.10 3.99 ± 0.09

Table 9: Human likeness with different types of founda-
tion LLMs.

We assess the human-likeness of reviews gener-
ated by various foundation models, including GPT-
4o, GPT-4o-mini, Mistral-7b Instruct, Llama-3.1
(8b), and Llama-3.1 (70b). The results, shown in
Table 9, demonstrate that GPT-4o achieves the high-
est overall scores across all datasets, with a score
of 4.11 ± 0.10 on ICLR 2023. This highlights GPT-
4o’s ability to closely mimic human review styles.
Overall, GPT-4o and GPT-4o-mini emerge as the
most human-like in their feedback across datasets,
particularly on ICLR 2023.

A.4.9 Acceptance Prediction Across
Foundation Models

We now seek to evaluate the performance of our
methodology using various foundation models on

the acceptance prediction task. Specifically, we
compare the results obtained by employing GPT-
4o-mini, GPT-4o, Mistral-7b Instruct, Llama-3.1
(8b) and Llama-3.1 (70b). The results, presented
in Table 10, demonstrate that the performance of
GAR is generally robust across different founda-
tion models. While GPT-4o exhibits significantly
higher F1-score score (t-test p < 0.05), GPT-4o-
mini achieves similar performance but with a lower
inference time. Mistral-7b Instruct also performs
reasonably well on the ICLR dataset. Among the
smaller models, Mistral-7b Instruct> shows no-
table improvements, making it a competitive option
for resource-constrained applications. However,
Llama-3.1 models, particularly the 70b variant,
demonstrate only modest gains despite their larger
size, indicating diminishing returns for increased
model complexity in this specific task, similarly to
results obtained in Section A.4.8.

A.4.10 Impact of the Number of Reviewers on
Acceptance Prediction

We investigate the impact of the number of review-
ers on acceptance prediction by varying the number
of available reviews from 1 to 5. To ensure consis-
tency, ground truth labels are derived exclusively
from papers that received five reviews. This setup
allows us to assess how additional reviewer per-
spectives influence prediction performance.

Figure 6 reports the results. Increasing the
number of reviewers significantly enhances per-
formance, particularly from 1 to 3 reviewers, indi-
cating that the early integration of multiple perspec-
tives yields substantial improvements. However,
beyond three reviewers, the performance gains
diminish, suggesting that additional reviews con-
tribute to robustness but with limited marginal ben-
efits. This aligns with prior findings in Section
4.3, where the model’s ability to integrate reviewer
feedback played a key role in decision accuracy.

A.5 Review Score Alignment

To evaluate the fidelity of each reviewer model in
replicating real-world review judgments, we mea-
sure the agreement between model-generated re-
view scores and ground-truth scores obtained from
geniune reviewers. We report quadratic-weighted
Cohen’s κ, a standard metric for ordinal score align-
ment, across three datasets (NeurIPS 2023, ICLR
2022, ICLR 2023). Results (Table 11) show that
GAR achieves near-human alignment, outperform-
ing prior LLM-based baselines on all datasets. This
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Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

GPT-4o 0.73 ± 0.03 0.71 ± 0.03 0.75 ± 0.03 0.72 ± 0.03 0.74 ± 0.03 0.73 ± 0.03
GPT-4o> 0.70 ± 0.03 0.68 ± 0.03 0.73 ± 0.03 0.70 ± 0.03 0.72 ± 0.03 0.71 ± 0.03

Mistral-7b Instruct 0.62 ± 0.04 0.60 ± 0.04 0.64 ± 0.04 0.62 ± 0.05 0.65 ± 0.04 0.63 ± 0.05
Mistral-7b Instruct> 0.66 ± 0.05 0.64 ± 0.04 0.68 ± 0.04 0.66 ± 0.04 0.69 ± 0.05 0.67 ± 0.05

Llama-3.1 (8b) 0.60 ± 0.06 0.58 ± 0.05 0.62 ± 0.05 0.60 ± 0.05 0.63 ± 0.04 0.61 ± 0.05
Llama-3.1 (8b)> 0.61 ± 0.04 0.59 ± 0.05 0.63 ± 0.05 0.61 ± 0.05 0.64 ± 0.04 0.62 ± 0.05

Llama-3.1 (70b) 0.63 ± 0.03 0.61 ± 0.04 0.65 ± 0.07 0.63 ± 0.04 0.66 ± 0.03 0.64 ± 0.07
Llama-3.1 (70b)> 0.67 ± 0.04 0.65 ± 0.04 0.69 ± 0.04 0.67 ± 0.03 0.70 ± 0.05 0.68 ± 0.06

GPT-4o-mini 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GPT-4o-mini> 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

Table 10: Performance comparison of GAR and baselines on three datasets, each consisting of 1,000 papers. Results
are presented for different foundation models.

NeurIPS ICLR 22 ICLR 23

κ κ κ

AI-Scientist 0.50 ± 0.04 0.56 ± 0.04 0.52 ± 0.05
OpenReviewer 0.35 ± 0.04 0.37 ± 0.04 0.35 ± 0.04
ReviewerGPT 0.47 ± 0.05 0.51 ± 0.05 0.48 ± 0.05
AI-Review 0.48 ± 0.05 0.53 ± 0.05 0.54 ± 0.05

GAR 0.61 ± 0.04 0.63 ± 0.03 0.62 ± 0.04

Table 11: Alignment between synthetic reviewer scores and OpenReview ground-truth ratings, measured with
quadratic-weighted Cohen’s κ (higher = better). Bars show relative performance; medals mark the top-3 per dataset.
Mean ± std over three seeds.

Figure 6: Effect of the number of reviewers on accep-
tance prediction.

confirms GAR’s effectiveness in producing reviews
that closely match actual reviewer scoring patterns.

A.6 Accuracy of Profile Attributes

Among the profile attributes, we focus on expertise
level, as a reliable ground-truth can be retrieved
from OpenReview. Both NeurIPS and ICLR re-
quire reviewers to self-report their confidence or
expertise level for each review. We evaluate the ac-
curacy of GAR’s inferred expertise by comparing
predicted reviewer confidence to the actual self-
reported values, using quadratic-weighted Cohen’s
κ as the primary metric. On NeurIPS 2023, GAR at-
tains a κ of 0.65±0.05; for ICLR 2022, 0.68±0.08;
and for ICLR 2023, 0.65 ± 0.06. Macro-F1 scores
range from 0.51 to 0.55. These results indicate
that GAR can reliably recover reviewer expertise
from review text and interaction history, achieving
substantial agreement with real scores. While we
expect similar trends for other profile attributes,
their systematic evaluation is left to future work.
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Phase Tokens (Input/Output) Estimated Cost (USD)

Graph Construction 2,500 / 400 0.00037
Novelty Assessment 1,000 / 300 0.00023
Review Generation 6,000–9,000 / 2,000–3,000 0.00060–0.00390
Meta-Review 1,500 / 400 0.00047

Total 11,000–14,000 / 3,100–4,100 0.00094–0.00572

Table 12: Estimated token consumption and cost per
paper.

A.7 Running Time Analysis

We evaluate the computational efficiency of GAR
by measuring the time required to process 1,000
papers under sequential and parallelized execu-
tion. When running sequentially, GAR requires
10.8 hours to process 1,000 papers due to addi-
tional LLM calls for multi-round refinement and
community-based retrieval. Parallel execution sig-
nificantly reduces runtime to 0.62 hours, demon-
strating the scalability of the approach.

A.8 Cost Analysis

Table 12 summarizes the estimated token usage per
paper. The cost scales linearly with the number of
reviewers and refinement rounds. For large-scale
evaluations, processing 1,000 papers incurs an es-
timated cost of $0.94–$5.72, assuming the same
number of reviewers and refinement rounds. For
10,000 papers, the estimated cost similarly scales
to $9.38–$58.11, and with parallel execution, GAR
can complete the evaluation in under 9 hours, well
within typical conference deadlines. Optimizing
inference through batch processing and caching
can further reduce costs. Compared to human peer
review, which is time-intensive and costly, GAR
provides an efficient and scalable alternative while
maintaining review depth and consistency.

A.9 Bias Amplification and Mitigation

Institutional bias is a critical concern in peer re-
view. To investigate this, we measured accep-
tance rates (ICLR 2023) conditioned on whether
at least one author is affiliated with a QS-2025
top-50 university. Table 13 compares the distribu-
tion of submissions, real-world accepted papers,
and GAR reviewer-agent decisions. GAR’s ac-
ceptance share for top-50 institutions (69.2%) is
substantially closer to the submission pool base-
line (66.1%) than the real-world outcome (72.2%),
while maintaining similar overall acceptance. This
suggests that GAR may reduce, rather than amplify,
institutional bias.

Split ≥1 Top-50 Non-Top-50 Total

Overall submission pool 66.1% 33.9% 3,793
Real-world accepted 72.2% 27.8% 1,572
GAR reviewer-agent (accepted) 69.2% 30.8% —

Table 13: Acceptance rates conditioned on institutional
affiliation.

A.10 Impact of Reviewer Personas

To directly assess the contribution of reviewer per-
sonas, we introduce a no-persona baseline, where
agents perform reviews without any persona initial-
ization. Table 14 reports results across NeurIPS,
ICLR’22, and ICLR’23. Relative to the no-persona
baseline, historical personas consistently improve
balanced accuracy and F1 scores, demonstrat-
ing that persona modeling contributes measurable
gains in predictive performance. Historical per-
sonas consistently yield improvements in balanced
accuracy and F1 over no-persona variants, confirm-
ing that persona modeling contributes to GAR’s
performance gains.

A.11 Discussion

In this work, we present GAR, one of the first
framework for simulating the peer review process
through the use of LLM-empowered agents. GAR
agents autonomously analyze the manuscripts, eval-
uate their content, provide feedback, and predict ac-
ceptance outcomes. This end-to-end framework in-
tegrates stages of novelty assessment, multi-round
review, and meta-review, aiming to replicate gen-
uine reviewers in an cost-efficient and scalable man-
ner. As a demonstration, the proposed method has
been applied to major machine learning confer-
ences, showcasing its potential to provide human-
like feedback and determine which papers meet the
quality standards for publication.

We also acknowledge that our method has cer-
tain limitations. One remaining challenge is iden-
tifying genuinely groundbreaking or paradigm-
shifting ideas. GAR presents a novelty module
that leverages external knowledge to detect inno-
vative contributions at the paper-level. However,
future work should focus on equipping synthetic
reviewers with the ability to recognize novelty at a
more nuanced level. This may include leveraging
the knowledge graph structure of manuscripts to
assess paper novelty at a community level, or using
citation embeddings to capture shifts in research
topics and trends (Shibayama et al., 2021).

Our experiments are limited to machine learn-
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Methods NeurIPS ICLR 22 ICLR 23
Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑ Balanced Acc. ↑ F1 Score ↑

GAR (random persona) 0.59±0.05 0.57±0.05 0.60±0.07 0.68±0.06 0.61±0.03 0.61±0.06
GAR> (random persona) 0.62±0.05 0.59±0.04 0.63±0.04 0.69±0.05 0.64±0.06 0.65±0.06
GAR (historical persona) 0.65±0.05 0.60±0.04 0.65±0.06 0.64±0.04 0.69±0.06 0.66±0.05
GAR> (historical persona) 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05
GAR (no persona) 0.56±0.05 0.55±0.05 0.60±0.05 0.66±0.05 0.59±0.04 0.58±0.05
GAR> (no persona) 0.60±0.05 0.57±0.05 0.63±0.04 0.67±0.05 0.62±0.05 0.63±0.05
GAR 0.64±0.05 0.61±0.04 0.68±0.03 0.66±0.05 0.66±0.04 0.60±0.04
GAR> 0.68±0.05 0.62±0.05 0.71±0.04 0.67±0.06 0.70±0.05 0.69±0.05

Table 14: Ablation on reviewer personas across NeurIPS, ICLR’22, and ICLR’23. Bold: best results; underline:
second-best. Results are averaged across 3 seeds.

ing conferences (ICLR, NeurIPS), and we recog-
nize that peer review practices vary widely across
disciplines. As such, GAR’s generalizability be-
yond these domains remains to be established.
Future work will involve adapting and validat-
ing our framework in fields with different review
norms, such as mathematics or experimental sci-
ences, which present unique challenges, including
the evaluation of mathematical proofs or detailed
experimental protocols.

Practical deployment of GAR in real-world peer
review systems presents several implementation
challenges. Ensuring effective oversight by editors
or chairs is essential for maintaining review quality
and accountability, necessitating transparent con-
trols and intervention mechanisms. Additionally,
handling sensitive information requires confiden-
tiality and intellectual property safeguards. Ad-
dressing these challenges is critical for practical
adoption and widespread impact.

Despite efforts to reduce bias, AI models like
GAR are not immune to inherent biases present in
training data, which can impact the evaluation pro-
cess and potentially disadvantage certain research
fields or authors (Gallegos et al., 2024). Estab-
lishing clear guidelines for ethical AI evaluation,
incorporating fairness checks, regular audits, and
opportunities for human oversight will be critical
for maintaining trust in AI-driven review processes
(Haffar et al., 2019). Furthermore, we must ques-
tion: Are we certain that these papers are not al-
ready part of the LLMs’ training corpus? If such
overlap exists, it could inadvertently introduce bias,
as the model may demonstrate familiarity with the
content, concepts, or style of certain papers, pro-
viding an unfair advantage or skewing evaluations.
This issue is particularly pronounced for widely
circulated preprints or seminal works that are likely
to have influenced the training datasets of LLMs.

Addressing this challenge presents a promising di-
rection for future research.

116


