
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1122–1133
November 4-9, 2025 ©2025 Association for Computational Linguistics

Learning from LLM Agents: In-Context Generative Models
for Text Casing in E-Commerce Ads

Yingxue Zhou, Tan Zhu, Tao Zeng, Zigeng Wang, Wei Shen,

Walmart Global Technology, Sunnyvale, USA
{yingxue.zhou, tan.zhu, tao.zeng, zigeng.wang0, wei.sheng}@walmart.com

Abstract

E-commerce ad platforms enforce content poli-
cies and review created ads before publication,
with casing requirements playing a critical role
in maintaining readability and brand consis-
tency. Existing NER-based transformer models
have been widely used for casing correction,
but they process characters independently in
a classification-based manner, failing to cap-
ture sentence level contextual dependencies,
making them less reliable when handling un-
seen or ad-specific terms, e.g., brand names.
LLMs like ChatGPT offer better generalization
to proper nouns, but they are expensive and
have high latency. Besides, generative model
can suffer from hallucination. To address these
challenges, we propose a two-stage approach:
(1) an LLM-based Agent leveraging Chain-of-
Actions (CoA) to enforce casing policies while
accurately handling ads-specific terms, such as
brand names, and (2) a lightweight generative
model that preserves the LLM Agent’s knowl-
edge while significantly reducing latency and
costs. We design a novel in-context decoding
strategy, which avoids hallucinations. Our ap-
proach outperforms NER-based methods and
achieves near-LLM Agent performance, mak-
ing it a scalable and efficient solution for real-
world ad compliance automation.

1 Introduction

E-commerce advertising platforms, such as Ama-
zon, Target and Walmart, enforce various content
policies to ensure consistency, readability, and com-
pliance with platform standards for publishing ads.
One such policy is sentence casing for text content,
including headlines and calls to action (CTAs) (see
Figure 1). Sentence casing requires capitalizing
only the first letter of a sentence while preserv-
ing proper nouns and specific terms, such as brand
names. To enforce this policy, ad platforms review
content submitted by ad creators. For example,
an ad creator might submit the headline "Nourish

Figure 1: Example of an e-commerce ad which con-
tains text in multiple sections, including the headline,
subheadline, and call-to-action (CTA), along with an
accompanying ad image.

Your Hair", which needs to be modified to "Nour-
ish your hair". Similarly, "Buy your gift with lego"
should be rewritten as "Buy your gift with Lego",
as "Lego" is the brand name. However, enforcing
sentence casing is challenging due to variations in
brand names, domain-specific terms, and context-
dependent capitalization rules. Manual review is
expensive, time-consuming, and unscalable, mak-
ing automated solutions essential for ensuring ac-
curacy and efficiency.

Existing solutions, such as statistical language
models (Pauls and Klein, 2011; Lita et al., 2003;
Mikheev, 1999), have limited capacity, failing to
capture context and semantic meaning. Named
Entity Recognition (NER)-based transformer mod-
els (Priya et al., 2024; Singhal et al., 2021; Devlin
et al., 2019; Liu et al., 2019; Conneau et al., 2020),
which are primarily encoder-only architectures, tag
tokens or characters sequentially, treating sentence
casing as a classification problem. These models
are typically trained on public datasets designed
for general sentence casing correction and sentence
splitting. While effective in general contexts, those
approaches lack learning capacity and struggle to

1122

generalize to unseen or specialized entities. Given
these limitations, we reformulate the sentence cas-
ing problem as a generation task, enabling the
model to produce well-structured, sentence-cased
text while handling ad-specific domain terms, such
as brand and product names. While commercial
LLMs, such as ChatGPT (Ouyang et al., 2022;
Achiam et al., 2023), offer better generalization,
they are expensive, have high latency. Additionally,
as generative models, they suffer from hallucina-
tion, occasionally generating entities not present in
the original content, limiting their reliability.

To overcome these limitations, we propose a two-
stage approach. First, we introduce an LLM-based
sentence casing agent built on a Chain-of-Actions
(CoA) framework, which decomposes the task of
sentence casing into a sequence of sub-tasks (Yao
et al., 2023b; Wei et al., 2022; Pan et al., 2025)
to enhance awareness of domain-specific terms in
advertising. Given the text content of an ad, the
LLM CoA agent first identifies special terms, i.e.,
brand names, verifies their correct casing against a
predefined reference library, and then generates
sentence-cased text accordingly. In the second
stage, we distill knowledge from the LLM CoA
agent into a lightweight generative model (Vaswani
et al., 2017; Raffel et al., 2020), significantly reduc-
ing latency and computational costs while preserv-
ing the agent’s domain-specific knowledge. Since
the goal is to correct casing without rewriting or
hallucinating new entities, we design an in-context
decoding method that constrains the model to gen-
erate only characters present in the original in-
put—allowing only casing changes. We conduct
various experiments on both public datasets and
real-world ad data, demonstrating that the proposed
approach outperforms traditional NER-based meth-
ods—achieving near-LLM performance while re-
maining scalable and cost-effective for real-world
ad text casing compliance automation.

2 Related Work

Text Casing Methods Truecasing is the task of
restoring proper capitalization in text, has been
widely studied in natural language processing.
Early approaches primarily rely on statistical meth-
ods, such as n-gram language models (Pauls and
Klein, 2011) trained on large corpora to predict
the most likely casing for each token based on its
context (Lita et al., 2003; Mikheev, 1999). Later,
sequence labeling models, such as Conditional Ran-

dom Fields (CRFs) (Lafferty et al., 2001; Mayhew
et al., 2020) and transformer-based models such
as BERT (Priya et al., 2024), NER-based mod-
els (Singhal et al., 2021) are introduced treating
truecasing as a classification task where each to-
ken is assigned a casing label. However, these
models lack contextual awareness at the sequence
level and struggle with unseen or domain-specific
terms, such as brand names. Generative models,
particularly unified sequence to sequence architec-
tures like T5 (Raffel et al., 2020; Vaswani et al.,
2017) and large language models such as Chat-
GPT (Ouyang et al., 2022; Achiam et al., 2023),
have demonstrated superior performance in learn-
ing sentence-level dependencies and allowing for
more flexible corrections. But they may still suffer
from hallucinations and inconsistencies.

LLM Agent Recent advances in LLM agents
leverage structured reasoning and tool use to im-
prove task performance and interpretability. Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
improves multi-step reasoning by generating inter-
mediate steps, while ReAct (Yao et al., 2023b) ex-
tends this by interleaving reasoning and actions,
enabling LLMs to interact with tools and envi-
ronments. Follow-up works such as Toolformer
(Schick et al., 2023), AutoGPT, and LangChain
have explored self-instructed tool use and mod-
ular agent design. Tree-of-Thoughts (Yao et al.,
2023a) and Graph of Thoughts (Besta et al., 2024)
further expand reasoning through structured explo-
ration. Other efforts like Plan-and-Solve (Wang
et al., 2023) and CAMEL (Li et al., 2023) intro-
duce planning and multi-agent collaboration for
complex tasks. Building on these developments,
we propose a simplified Chain-of-Actions (CoA)
framework tailored for sentence casing correction.
Unlike prior work that relies on complex reasoning,
our CoA defines a standard, interpretable sequence
of steps (e.g., identify, verify, generate) specific to
the task, enabling effective knowledge distillation
into a compact generative model.

3 Approaches

We formulate sentence casing correction as a gen-
eration task, where the model takes raw ad text
submitted by ad creators as input and produces a
properly cased output, ensuring compliance with
platform policies while preserving domain-specific
terms. For example, given the input "Buy gift with
lego", the expected output is "Buy gift with Lego",

1123

Figure 2: Illustration of the LLM CoA Agent framework. Given an input sentence (e.g., "Buy your gift with lego"),
the agent first detects potential brand names. If a brand is identified, it retrieves the correct form from a brand hub
library (e.g., "lego" → "Lego") and passes it to the Sentence Rewrite Task to generate sentence-cased text (dashed
line). If no brand is detected, the agent directly trigger the Sentence Rewrite Task (solid line).

where "Lego" is correctly capitalized as a brand
name. To achieve this, we propose a two-stage
approach: first, we develop an LLM Agent specifi-
cally designed to generate sentence-cased text for
ads content, and second, we train a lightweight
seq2seq generation model that preserves the LLM
Agent’s knowledge while utilizing an in-context
decoding method to avoid hallucinations.

LLM CoA Agent In the first stage, preliminary
experiments with commercial LLMs such as GPT-
4o (Ouyang et al., 2022; Achiam et al., 2023)
demonstrated that while these models perform well
in general cases, they often fail with brand names
that are not popular or not always present in their
training data. To address this limitation, we in-
troduce an LLM Chain-of-Actions (CoA) Agent
framework, explicitly designed to enforce brand
name correctness in sentence casing 1. In the LLM
Agent CoA method, given an ad’s text content, the
agent first identifies potential special terms, such
as brand names. If a brand name is detected, the
agent queries a Brand Hub Library—a structured
repository containing a comprehensive set of brand
names sponsored by the advertising platform—to
retrieve the correct spelling and capitalization. The
retrieved brand name is then incorporated into the
LLM prompt 2, ensuring that the model correctly
applies brand name casing while adhering to sen-
tence casing conventions (see example in Figure
2). This CoA approach effectively addresses LLM
limitations in handling unseen entities. In the next
stage, we distill knowledge from this LLM CoA
Agent to train a lightweight generative model.

Distilled Generative Model In the second stage,
we utilize a sequence-to-sequence (Seq2Seq) gen-
eration model (Vaswani et al., 2017) to learn and
distill the knowledge from the LLM CoA Agent.
Specifically we leverage the T5 model structure

1Details of CoA can be found in Appendix A.
2Prompt examples can be found in Appendix D.

(Raffel et al., 2020). The model architecture
follows an encoder-decoder structure (Figure 3),
where the encoder processes the raw ad text input,
and the decoder generates the sentence-cased out-
put autoregressively. Since T5 was not originally
designed for sentence casing correction, we adapt it
to the sentence casing domain through a two-phrase
training process.

In the first phrase, we pretrain the model on
publicly available data to develop general sentence
casing capabilities. We collect English news data
from the News Crawl WMT corpus, which typi-
cally adheres to sentence casing rules, and augment
it by randomly altering the casing to create a set of
input–target sentence pairs M = {(x,y)}, where
y is the properly cased target sentence, and x is
a modified version with incorrect casing. An ex-
ample pair is: x = "Welcome to My HOME" and
y = "Welcome to my home". This augmentation
allows the model to learn sentence casing correc-
tion as a text-to-text transformation task. The ulti-
mate goal of the sentence case generation problem
is to learn a probability distribution Pθ(·|x) over
the variable-length text sequence x, where θ is the
parameter of the T5. Typically, the maximum like-
lihood estimation (MLE) objective is used to train
the language model. Given finite training examples,
i.e., |M | pairs of (x,y) the model is trained by min-
imizing the empirical finite sample loss function:

Lθ(M) = − 1

|M |
∑

(x,y)∈M
logPθ(y|x) (1)

Let θP denote the model trained in the first
stage. In the second phase, we fine-tune θP on ad-
specific content to capture domain-specific knowl-
edge from the LLM CoA Agent. We collect
a set of raw ad texts {xa} from ads submitted
in the most recent three months, covering head-
lines, subheadlines, and CTAs. The LLM CoA
Agent is then used to generate sentence-cased

1124

Figure 3: Illustration of the Seq2seq model architect for
the sentence casing generation.

ground truth label, resulting in a set of sentence
pairs N = {xa,ya}, where ya = A(xa) and
A denotes the LLM CoA Agent. An example
pair is: xa = "Make Your Meal Complete" and
y = "Make your meal complete". Then we use
this dataset further fine-tune the T5 model, ensur-
ing it adapts to ad-domain content while retaining
the LLM CoA Agent’s knowledge. Formally, the
model θP is further fine-tuned by minimizing the
empirical finite-sample objective loss function de-
fined on the ads dataset N :

Lθ(N) = − 1

|N |
∑

(xa,ya)∈N
logPθ(ya|xa) . (2)

Once the model is fine-tuned, we design an in-
context constrained decoding method during infer-
ence to prevent hallucination and ensure the gen-
erated text strictly adheres to the original content,
allowing only casing modifications.

In-context Decoding The in-context decoding
method is a constrained decoding algorithm (pesu-
docode in Appendix B) designed for character-level
casing correction, where the model is restricted to
generating tokens that follow the original input
text sequence, allowing only casing changes. To
achieve this, we construct a prefix trie T over the
model’s token vocabulary V , where each node rep-
resents a character and each path corresponds to a
wordpiece (subword token).

At each decoding step, given a generated prefix
p, we get the remaining ungenerated portion of the
input text u = x[|p| :] . We then perform depth-first
search (DFS) over the trie T to collect candidate
token set C that satisfy the constraint

C = {c ∈ V | lower(c) = lower(u[: |c|])} . (3)

Figure 4 illustrates the trie structure and candi-
date selection process. For example, given input
x = "Buy your gift with lego" and already

Figure 4: Illustration of the trie structure and the can-
didate token set during decoding for the phrase "Buy
your gift with", where the next character is "l" or "L"
from the input word "lego". After searching the trie, the
constrained candidate set is ["L", "l", "le", "Le", "Leg"],
i.e., marked in green in the trie.

generated prefix p = "Buy your gift", the re-
maining text u = "lego" yields candidate set
C = ["L", "l", "le", "Le", "Leg"], which
match substrings of the ungenerated segment. ia
DFS over T . Then beam search is applied over this
dynamically generated candidate set rather than the
full vocabulary, ensuring that the output preserves
the original character sequence while allowing cas-
ing modification only.

4 Experiments

We evaluate our proposed approach on both public
datasets and real-world e-commerce ad data, com-
paring it against multiple baselines. We conduct
two sets of experiments: (1) evaluating the per-
formance of various LLMs with different model
sizes—specifically GPT-4o, GPT-4, Llama-2-13b-
chat, and Llama-2-70b-chat, and comparing LLM-
only with the LLM CoA Agent 3; (2) comparing
the LLM CoA Agent with the distilled lightweight
model in terms of accuracy, latency and cost.

4.1 Experimental Setup

Datasets We use two datasets in our experiments:
public news data and real-world e-commerce ad
data. For the public dataset, we extract approxi-
mately 3 million sentence-cased examples from the
News Crawl WMT corpus and apply randomized
augmentation to generate training pairs, each con-
sisting of an input sentence and a target sentence.
Each pair is labeled as either positive or negative:
a positive sample indicates that the input is not

3We choose the GPT and LLaMA series due to resource
and access limitations.

1125

Dataset Type Size Augmented Pos/Neg

Public News Train 6M Yes 50% / 50%
Evaluation 4k Yes 50% / 50%

Real Ads Train 22k Yes 50% / 50%
Evaluation 1k No 15% / 85%

Table 1: Dataset Statistics

in sentence case and requires correction4, while
a negative sample indicates that the input already
conforms to sentence casing and matches the tar-
get5. To study the impact of both sample types,
we construct a balanced training set of 6 million
pairs (50% positive, 50% negative). For the ads
dataset, we collect approximately 3,500 ads from
historical ad platform data, resulting in 7,700 text
samples (headlines, sub-headlines, CTAs). The
LLM CoA Agent is used to annotate these samples
with sentence-cased labels. After augmentation, we
generate 22,000 training pairs, also with a balanced
50% positive and 50% negative distribution. Both
datasets are split temporally, using older samples
for training and newer samples for evaluation. For
the ads evaluation set, to ensure valid evaluation,
we use human annotators to provide the ground
truth labels. This evaluation set preserves the natu-
ral distribution of the data, with no augmentation
applied, and consists of 15% positive and 85% neg-
ative samples. Table 1 summarizes the statistics of
the training and evaluation datasets, including the
distribution of positive and negative samples.

Model Setup and Baselines We first set up the
LLM CoA Agent as described in Section 3. Then,
we train the lightweight model in two stages. We
choose Flan-T5-Small for efficiency, excluding
mid-sized models like Flan-T5-Large and LLaMA-
3B due to latency and cost constraints in real-time
ad systems. In the first stage, we train Flan-T5-
Small on the public news training data to adapt the
model to the general sentence casing domain. To
study the impact of positive and negative samples,
we train two variants: T5-News-PN, trained on 6M
sentence pairs with a 50%/50% positive/negative
split, and T5-News-P, trained on 3M positive-only
examples. In the second stage, we fine-tune the
T5-News-PN model on the augmented 22k ads
training set, where targets are labeled by the LLM

4Positive example: {"input": "Shop for your Cozy Home",
"target": "Shop for your cozy home."}

5Negative example: {"input": "shop for your cozy home",
"target": "Shop for your cozy home."}

Methods Public News Data

FTR ↓ Precision Recall F1

GPT-4o 14.89% 77.68% 82.88% 0.8019
GPT-4 14.41% 80.44% 85.7% 0.8299
Llama-2-13b-chat 58.96% 29.77% 37.14% 0.3305
Llama-2-70b-chat 48.55% 51.22% 62.55% 0.5625
NER 8.5% 48.53% 49.28% 0.4891

Methods Real Ads Data

FTR ↓ Precision Recall F1

CoA Agent 2.93% 79.85% 89.92% 0.8458
GPT-4o 5.19% 57.71% 75.43% 0.6539
GPT-4 9.64% 48.4% 79.82% 0.6026
Llama-2-13b-chat 63.71% 1.52% 7.43% 0.0252
Llama-2-70b-chat 46.13% 11.11% 44.62% 0.1779
GRMR-V3-G4B 14.42% 19.86% 25.21% 0.2222
GRMR-V3-Q1.7B 13.31% 26.84% 33.61% 0.2985
NER 6.61% 54.61% 64.71% 0.5923

Table 2: Performance comparison of different LLMs on
the Public News and Real Ads datasets. GPT-4 series
outperforms other LLMs. The CoA Agent outperforms
standalone LLMs, demonstrating the effectiveness of
enforcing brand name awareness and task decomposi-
tion during generation.

Methods Public News Data

FTR ↓ Precision Recall F1

Distil-Ads-PN 4.38% 90.32% 94.27% 0.9225
T5-News-PN 0.36% 95.89% 96.08% 0.9599
T5-News-P 5.34% 90.77% 95.91% 0.9327

Table 3: Ablation study on the impact of positive and
negative samples in training on the Public News dataset.

CoA Agent with a balanced 50%/50% positive/neg-
ative distribution. This fine-tuned model, named
Distil-Ads-PN, enables adaptation to real-world
ad content and brand-specific terms. For ablation,
we also fine-tune T5-News-P on 11k positive-only
ads data, resulting in the model Distil-Ads-P, to
analyze the effect of training with only positive
samples. We consider the following baselines and
proposed models.

• NER baselines: XLM-Roberta fine-tuned for
Truecasing (Conneau et al., 2020).

• GEC baselines: GEC (grammar error cor-
rection) models fine-tuned from Gemma
(Gemma Team et al., 2025) and Qwen models
(Yang et al., 2025) such as GRMR-V3-G4B
and GRMR-V3-Q1.7B.

• LLM baselines: GPT-4o, GPT-4, Llama-2-
13b-chat, and Llama-2-70b-chat.

1126

Methods FTR ↓ Precision Recall F1 Latency (s/sample) Cost ($/sample)

CoA Agent 2.93% 79.85% 89.92% 0.8458 1.7315s 0.000145
GPT-4o 5.19% 57.71% 75.43% 0.6539 1.0756s 0.000082
Distil-Ads-PN-ICD 4.63% 72.41% 86.77% 0.7895 0.0042s 0.000003
Distil-Ads-PN 4.63% 71.03% 85.12% 0.7744 0.0036s 0.000002
Distil-Ads-P 7.14% 62.28% 87.39% 0.7273 0.0036s 0.000002
NER 6.61% 54.61% 64.71% 0.5923 0.0018s 0.000001

Table 4: Comparison of the CoA Agent and distilled models on the Real Ads dataset. Distil-Ads-PN-ICD
outperforms GPT-4o, achieves performance close to the CoA Agent, with significantly reduced latency and cost.

• CoA Agent: CoA Agent as described in Sec-
tion 3, with GPT-4o as the LLM backbone.

• Distilled Models: Distil-Ads-PN, Distil-Ads-
P and Distil-Ads-PN-ICD (Distil-Ads-PN
with in-context decoding).

Evaluation Metrics To assess the effectiveness
of our approach, we evaluate the model’s ability to
correctly generate sentence-cased text using a set
of diverse metrics. Since the evaluation data is im-
balanced—we consider metrics that capture both
correction accuracy and error sensitivity. False
Trigger Rate (FTR) measures the proportion of neg-
ative samples (sentences already in correct sentence
casing) where the model unnecessarily modifies
the text. Precision is the percentage of modified
samples where the generated sentence correctly
matches the target label. Recall reflects the percent-
age of samples requiring correction for which the
model produces the correct output. Finally, the F1
score, computed as the harmonic mean of Precision
and Recall, provides a balanced summary of the
model’s performance.

4.2 Experiment Results

The first set of experiments evaluates the perfor-
mance of different LLMs, the LLM CoA Agent,
and the NER model on the Public News and
Real Ads datasets (Table 2). Among LLMs, the
GPT-4 series outperforms LLaMA-2, particularly
in instruction following and output control, with
GPT-4o offering the best cost-performance bal-
ance. GPT-4 models also significantly outperform
the NER model, which struggles with character-
level casing errors, e.g., FDA → Fda (example
in the Appendix). However, GPT-4 models still
struggle with brand names, especially uncommon
terms. For instance, GPT-4o fails to correct "babe"
to Babe" which is a brand in the example "Bath-
time routines from babe" (Example 1, Table 5).
In contrast, the LLM CoA Agent (and the distilled

Methods Brand Output

Example 1: Input is "Bathtime routines from babe"
LLM CoA "Babe" Bathtime routines from Babe ✓
GPT-4o NA Bathtime routines from babe ✗
Distil-Ads-PN NA Bathtime routines from Babe ✓
NER NA Bathtime routines from babe ✗

Example 2: Input is "Try our Tea Floater recipe"
LLM CoA None Try our tea floater recipe ✓
GPT-4o NA Try our tea floater recipe ✓
Distil-Ads-PN NA Try our tea flosser recipe ✗
Distil-Ads-PN-ICD NA Try our tea floater recipe ✓

Table 5: Ads example of different models on detecting
and correcting brand names in sentence casing.

model Distil-Ads-PN), which integrate brand detec-
tion and retrieval, correctly capitalize brand names.
GEC models underperform as they are designed
for grammar correction rather than sentence casing,
leading to errors with title case, brand names, and
unnecessary rewrites (e.g., failing to rewrite “Ele-
vate Your Routine Today,” which remains in title
case). As a result, the CoA Agent achieves the best
performance across all evaluation metrics.

The second set of experiments evaluates the per-
formance of the lightweight model. Table 3 reports
results on the Public News dataset under differ-
ent training strategies, showing that training with
both positive and negative samples outperforms
training with positive-only data. Incorporating neg-
ative samples helps reduce the false trigger rate and
improve precision, leading to overall better perfor-
mance. Distil-Ads-PN achieves competitive results
on public news data, indicating it does not suffer
from catastrophic forgetting. Table 4 further shows
that both Distil-Ads-PN and Distil-Ads-PN-ICD
outperform GPT-4o, while significantly reducing
cost and latency 6, demonstrating the efficiency of
the proposed two-stage approach. Although Distil-
Ads-PN-ICD incurs slightly higher latency and cost
due to in-context decoding, it offers improved re-
liability by preventing hallucination. Example 2

6Latency is measured on NVIDIA A100 GPUs (batch size
256), and cost is estimated based on GPU host pricing.

1127

in Table 5 illustrates that in-context decoding ef-
fectively preserves brand-specific terms, enhancing
correctness in domain-sensitive generation.

5 Conclusion

In this work, we present a two-stage approach
for casing correction in e-commerce ad content,
addressing challenges related to brand name and
domain-specific terms. We first introduce an LLM-
based Chain-of-Actions (CoA) Agent that incorpo-
rates brand detection and retrieval to guide sentence
generation. To reduce latency and cost, we dis-
till the CoA Agent’s knowledge into a lightweight
generative model with constrained decoding to pre-
vent hallucination. Experiments on public and real-
world ad datasets show that our approach outper-
forms traditional NER models and achieves near-
LLM performance at a fraction of the cost, offering
a scalable, efficient solution for ad text casing.

Limitations

While our two-stage approach achieves strong per-
formance with reduced latency and cost, it has sev-
eral limitations. First, the system assumes the avail-
ability of an accurate brand name list for retrieval;
incomplete or outdated brand data may affect cas-
ing quality. Second, the lightweight student model
may underperform in handling rare linguistic pat-
terns or ambiguous casing contexts compared to
larger LLMs. Lastly, our evaluation focuses on
English-language ads; adapting the system to mul-
tilingual content or languages with different casing
rules requires further investigation.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, and 1 others. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pages 17682–17690.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, page 8440.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171–4186.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey
Cideron, Jean bastien Grill, Sabela Ramos, Edouard
Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev,
and 197 others. 2025. Gemma 3 technical report.
Preprint, arXiv:2503.19786.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. Truecasing. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 152–159.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Stephen Mayhew, Gupta Nitish, and Dan Roth. 2020.
Robust named entity recognition with truecasing pre-
training. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8480–8487.

Andrei Mikheev. 1999. A knowledge-free method for
capitalized word disambiguation. In Proceedings of
the 37th Annual Meeting of the Association for Com-
putational Linguistics on Computational Linguistics,
ACL ’99, page 159–166, USA. Association for Com-
putational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with

1128

https://arxiv.org/abs/2503.19786
https://doi.org/10.3115/1034678.1034710
https://doi.org/10.3115/1034678.1034710
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu.
2025. Chain-of-action: Faithful and multimodal
question answering through large language models.
In The Thirteenth International Conference on Learn-
ing Representations.

Adam Pauls and Dan Klein. 2011. Faster and smaller
n-gram language models. In Proceedings of the 49th
annual meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
258–267.

Sathi Krishna Priya, Senthil Kumar A, Selvaraj Kesa-
van, G R L M Tayaru, Kakarla Maanasa, and Vinod
Babu. 2024. Transformer based lightweight model
for punctuation restoration and truecasing. In 2024
IEEE International Conference for Women in Innova-
tion, Technology Entrepreneurship (ICWITE), pages
340–344.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539–68551.

Shreya Singhal, Naman Modi, Ved Dandekar, and
Sunil Mane. 2021. Leveraging various transform-
ers based architectures for truecasing. Procedia
Computer Science, 193:432–441. 10th International
Young Scientists Conference in Computational Sci-
ence, YSC2021, 28 June – 2 July, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

1129

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=1BdPHbuimc
https://openreview.net/forum?id=1BdPHbuimc
https://doi.org/10.1109/ICWITE59797.2024.10502420
https://doi.org/10.1109/ICWITE59797.2024.10502420
https://doi.org/10.1016/j.procs.2021.10.045
https://doi.org/10.1016/j.procs.2021.10.045
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

A LLM Chain-of-Action (CoA) Agent

In the first stage, we explore commercial LLMs
such as GPT-4o (Ouyang et al., 2022; Achiam et al.,
2023), and preliminary experiments demonstrate
that while these models perform well on common
sentence casing tasks, they often fail to correctly
handle brand names that are rare, newly introduced,
or not well represented in their training data. This
limitation is critical in the e-commerce advertis-
ing domain, where accurate brand representation
is essential for compliance and trust. To overcome
this, we introduce a Chain-of-Actions (CoA) Agent
framework, explicitly designed to ensure brand
name correctness in sentence casing tasks.

Algorithm 1 gives pesudo code of the LLM
Agent framework. In the LLM Agent CoA
method, given an ad’s text content x, e.g.,
x = "Buy your gift with lego", the agent
first identifies potential brand names within the
input using a Brand Detection LLM:

B = DetectBrands(x), B ⊆ x (4)

where B denotes the list of entities in x that are
likely to be brand mentions, e.g., B = ["lego"]
for input x = "Buy your gift with lego". In
practice, since ad text typically contains at most
one brand name, the size of B is usually either one
or zero when no brand is mentioned in the input.

If brand names are detected, each candidate
b ∈ B is queried against a structured Brand Hub
Library, which serves as a mapping from surface
forms to their canonical brand spellings and capi-
talizations. Then a list of corrected brand name is
retrieved:

Bcorrect = BrandRetrieve(B) . (5)

This produces a set of verified brand names Bcorrect,
which is then incorporated into the prompt of sen-
tence case rewrite process. For example, given
B = ["lego"], Bcorrect is expected to be Bcorrect =
["Lego"] (see example in Figure 2). The model
prompt P is constructed conditionally as:

P (x, Bcorrect) =

{
ConstructPrompt(x, Bcorrect), if B ̸= ∅
ConstructPrompt(x), otherwise

(6)

The prompt constructed functions for different
tasks and LLMs are given in Appendix D. The con-
structed prompt P is then passed to the Sentence
Rewrite LLM, which generates the sentence-cased
output:

y = SentenceRewrite(P) . (7)

Algorithm 1 LLM CoA Agent for Sentence Casing

1: Input: Raw ad text x
2: Output: Sentence-cased ad text y
3: B ← BRANDDETECTION(x)
4: if B ̸= ∅ then
5: Bcorrect ← BRANDRETRIEVE(B)
6: P ← CONSTRUCTPROMPT(x, Bcorrect)
7: else
8: P ← CONSTRUCTPROMPT(x)
9: end if

10: y← SENTENCEREWRITE(P)
11: return y

This Chain-of-Actions (CoA) approach effectively
addresses the limitations of LLMs in handling un-
seen or domain-specific entities. Once the CoA
Agent is established, we evaluate its performance
on a real-world ads dataset, incorporating human
feedback to assess compliance with sentence casing
policies. After the CoA Agent consistently meets
the expected performance threshold, we treat it as
a teacher model and distill its knowledge into a
lightweight generative model. Note that the dis-
tilled model is intentionally kept small to satisfy
the latency requirements of real-time inference and
to control computational cost in large-scale produc-
tion deployments.

B In-context Decoding Algorithms

The in-context decoding method is a constrained
generation technique designed for character-level
casing correction, where the model is restricted
to generating tokens that follow the original input
text sequence, allowing only casing changes. To
achieve this, at each decoding step , we perform a
depth-first search (DFS) over a vocabulary token
trie (Algorithm 3) to identify valid candidate to-
kens—i.e., subword units that match the remaining
ungenerated portion of the input text, regardless of
casing. For instance, given the input "Buy your
gift with lego" and generated prefix "Buy your
gift ", the ungenerated part "lego" yields can-
didates like ["L", "l", "le", "Le", "Leg"].
Then, beam search operates over this constrained
candidate set instead of the full vocabulary, ensur-
ing the output matches the original text content
while allowing only casing modifications. Figure 4
illustrates the trie structure and candidate selec-
tion process. Below we present the details of the
in-context decoding algorithm (Alorithm 2).

1130

Algorithm 2 In-Context Constrained Decoding
with Trie

1: Input: Input text x, token vocabulary V , vo-
cabulary trie T , model θ

2: Output: Generated output y (sentence-cased)
3: p← ""
4: while p is not the full length of x do
5: u← x[|p| :]
6: C ← DFS_T(T , u,V)
7: t← argmaxc∈C Pθ(c|p)
8: p← p+ t
9: end while

10: return p as final output y

Specifically, we construct a prefix trie T over
the model’s token vocabulary V , where each node
represents a character and each path corresponds
to a wordpiece (subword token). The algorithm 2
provides a complete overview of the decoding pro-
cedure.

At each decoding step, given a generated prefix
p, we get the remaining ungenerated portion of the
input text u:

u = x[|p| :] . (8)

We then perform DFS_T (Algorithm 3), i.e., depth-
first search (DFS) over the trie T to collect candi-
date token set C that satisfy the constraint:

C = {c ∈ V | lower(c) = lower(u[: |c|])} , (9)

In other words, a token is valid if its case-
insensitively character sequence matches the start
of the remaining input substring u, preserving con-
tent while allowing casing variation. For example,
given input x = "Buy your gift with lego"
and prefix p = "Buy your gift", the remain-
ing text u = "lego" yields candidate set C =
["L", "l", "le", "Le", "Leg"] via DFS over
T .

Then we select the token with highest likelihood
from the constrained candidate set C rather than
the full vocabulary. Formally, the next token is
chosen as:

t = argmax
c∈C
Pθ(c|p), (10)

where Pθ(·|p) indicates the probability distribution
over candidate tokens given the prefix p, as pro-
duced by the model trained in Section 3. Then
prefix is updated p ← p + t and decoding pro-
ceeds until the full length of x is generated. This

Algorithm 3 DFS_T: Depth-First Search over Trie
to collect valid token candidates

1: Input: Trie T , remaining string u, vocabulary
V

2: Output: Candidate token set C
3: C ← ∅
4: function DFS(T , prefix)
5: if lower(prefix) = lower(u[: |prefix|]) and

prefix ∈ V then
6: C ← C ∪ {prefix}
7: end if
8: for all child character node ℓ of T do
9: if lower(ℓ) matches next char in u then

10: Tℓ ← subtree of T rooted at ℓ
11: DFS(Tℓ, prefix + ℓ)
12: end if
13: end for
14: end function
15: DFS(T , "")
16: return C

method ensures that the output text strictly adheres
to the original character sequence, allowing only
casing transformations and preventing hallucina-
tions. This in-context constrained decoding algo-
rithm can be applied to any autoregressive gener-
ative model. It functions as a lightweight plug-in
during inference and requires no additional training
or model modification.

C Additional Results

Table 6 compares the latency and projected cost per
sample for each method. The CoA Agent has the
highest latency (1.7315s) and cost ($0.000145), as
it involves two stages—brand detection (0.6559s)
and sentence rewrite (1.0756s)—each contributing
to both time and cost. The GPT-4o model, which
performs only the rewrite step, shows reduced total
latency (1.0756s) and cost ($0.000082), but still
requires significantly more resources compared to
distilled models.

In contrast, Distil-Ads-PN-ICD and Distil-Ads-
PN, our lightweight generative models, achieve
sub-second latency and very low cost. Distil-Ads-
PN-ICD incurs a slightly higher latency (0.0042s)
and cost ($0.000003) than Distil-Ads-PN (0.0036s,
$0.000002) due to in-context decoding, but still
remains orders of magnitude more efficient than
LLM-based approaches. These results demonstrate
the computational efficiency of our proposed dis-
tilled models, making them highly suitable for real-

1131

time, large-scale deployment.
Table 7 presents a qualitative comparison of dif-

ferent models on a sentence containing a known
acronym, FDA. While all methods receive the same
input ("Easy set-up & FDA-registered"), their out-
put quality varies. The LLM CoA and GPT-4o mod-
els correctly preserve the casing of FDA, producing
accurate sentence-cased outputs. The Distil-Ads-
PN model generates a nearly correct output but in-
troduces a minor hallucination by appending an ex-
tra character ("FDA-registerede"). In contrast, the
NER model misclassifies the acronym, incorrectly
lowercasing it to "Fda-registered", which violates
casing conventions and reduces output reliability.
This example highlights the limitations of tradi-
tional NER-based models in handling acronyms
and special terms and underscores the robustness
of generative models, especially when guided by
context or structured reasoning like in the LLM
CoA method.

D Prompts for different LLMs and CoA
Agent

Listing 1: Prompt formatting function for LLaMA
def get_llama_prompt(instruction):

B_INST , E_INST = "<s>[INST]", "[/
INST]"

B_SYS , E_SYS = "<<SYS >>\n", "\n<</
SYS >>\n\n"

DEFAULT_SYSTEM_PROMPT = """
You are a writing assistant .\n
Your task is to check and rewrite

the query so that the query is
in sentence case writing style.

You *only* capitalizes the first
letter of the first word in the
query , as well as the first
letter of some special nouns.
Other words in the query should
be lowercased. \n

Your response format should be: Sure
! Here is the rewrite: \n\n
rewrite \n\n

"""

SYSTEM_PROMPT = B_SYS +
DEFAULT_SYSTEM_PROMPT + E_SYS

prompt_template = B_INST +
SYSTEM_PROMPT + instruction +
E_INST + "\n Assistant: Sure!
Here is the rewrite:"

return prompt_template
instruction = f"Rewrite the input text:

{query}"
prompt = get_llama_prompt(instruction)

Listing 2: Prompt for Brand Dection with ChatGPT-4o
and ChatGPT-4
prompt = f"Given the headline of an

advertisement , extract the potential
brand name and directly output the

brand name. If no brand name found ,
output 'None '. Here is the input
headline: {query}"

Listing 3: Prompt for Sentence Rewrite with ChatGPT-
4o and ChatGPT-4
prompt = f"Generate the sentence case

for the input text. Follow spelling
for entitiy in {brand_list }. Here is
the input query: {query}"

1132

Method Latency (s/sample) Projected Cost ($/sample) Total

brand detect rewrite brand detect rewrite latency cost

CoA Agent 0.6559s 1.0756s 0.000063 0.000082 1.7315s 0.000145

GPT-4o - 1.0756s - 0.000082 1.0756s 0.000082

Distill-Ads-PN-ICD - 0.0042s - 0.000003 0.0042s 0.000003

Distill-Ads-PN - 0.0036s - 0.000002 0.0036s 0.000002

NER - 0.0018s - 0.000001 0.0018s 0.000001

Table 6: Latency and Projected Cost Comparison of Different Methods

Method Input Text Detected Brand Output Text

LLM CoA

Bathtime routines from babe

"Babe" Bathtime routines from Babe ✓

GPT-4o NA Bathtime routines from babe ✗

ads_pos_neg NA Bathtime routines from Babe ✓

NER NA Bathtime routines from babe ✗

LLM CoA

Easy set-up & FDA-registered

None Easy set-up & FDA-registered ✓

GPT-4o NA Easy set-up & FDA-registered ✓

Distil-Ads-PN NA Easy set-up & FDA-registerede ✓

NER NA Easy set-up & Fda-registered ✗

LLM CoA

Try our Tea Floater recipe

None Try our Tea Floater recipe ✓

GPT-4o NA Try our Tea Floater recipe ✓

ads_pos_neg NA Try our tea flosser recipe ✗

ads_pos_neg-icm NA Try our tea floater recipe ✓

NER NA Try our tea floater recipe ✓

Table 7: Comparison of Different Methods for Final Output

1133

