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Abstract

Structured representation of product informa-
tion is a major bottleneck for the efficiency of e-
commerce platforms, especially in second-hand
ecommerce platforms. Currently, most prod-
uct information are organized based on manu-
ally curated product categories and attributes,
which often fail to adequately cover long-tail
products and do not align well with buyer pref-
erence. To address these problems, we pro-
pose Generative Semantic InDexings (GSID), a
data-driven approach to generate product struc-
tured representations. GSID consists of two key
components: (1) Pre-training on unstructured
product metadata to learn in-domain semantic
embeddings, and (2) Generating more effec-
tive semantic codes tailored for downstream
product-centric applications. Extensive exper-
iments are conducted to validate the effective-
ness of GSID, and it has been successfully de-
ployed on the real-world e-commerce platform,
achieving promising results on product under-
standing and other downstream tasks.

1 Introduction

The widespread adoption of digital technologies
and the evolution of e-commerce ecosystems have
led to rapid growth in the consumer-to-consumer
(C2C) second-hand e-commerce domain(Wu et al.,
2025). Unlike the traditional business-to-consumer
(B2C) model(Chan et al., 2023; Zhou et al., 2018),
C2C platforms have a majority of products listed by
individual users, often with limited inventory(Wu
et al., 2024), while also hosting professional sellers
with multiple stock-keeping units. The diversity
has resulted in a severe long-tail problem in C2C
platforms(Wu et al., 2025), making it challenging
to effectively organize product information.
Traditionally, product understanding has been
organized using manually curated product cate-
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Figure 1: Examples of product descriptions and associ-
ated search queries with their GSID.

gories and attributes named Category-Property-
Values (CPV(Su et al., 2025)), which not only have
limited coverage of long-tail products but also of-
ten misalign with buyer preference which is usu-
ally manifested through user search queries, as the
structure is typically designed from the seller’s per-
spective.

Inspired by tokenization learning paradigms(Sun
et al., 2023; Lee et al., 2022; Tay et al., 2022), we
propose a data-driven, self-organizing approach
to address the aforementioned issues. Tokeniza-
tion learning methods typically utilize an encoder
model to project unstructured text data into discrete
latent spaces, generating discrete, interpretable doc-
ument representations in an unsupervised frame-
work. Among the various tokenization learning
methods, we choose GenRet(Sun et al., 2023), a
novel document tokenization learning method that
learns to tokenize documents into short and dis-
crete representations using a discrete auto-encoding
framework with progressive training scheme, as our
base model, considering its potential for end-to-end
performance and efficiency breakthroughs through
global optimization, automatic feature learning,
and simplified workflows, as well as its hierarchical
structure that provides stronger interpretability.

Furthermore, we leverage user queries on e-
commerce platforms, which not only reflect users’
latest fine-grained needs but also contain user be-
havior patterns, to guide the structuring of product
information, thereby addressing the limitations of

1113

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1113-1121
November 4-9, 2025 ©2025 Association for Computational Linguistics



Cluster Coverage Accuracy
CPV 23.02 96.98
GSID 78.81 97.09

Table 1: Comparison between CPV Cluster and GSID
Cluster. The accuracy of cluster is manual annotation in
evaluation test with a million samples.

traditional CPV-based product organization.

However, directly applying GenRet(Sun et al.,
2023) to C2C product understanding tasks faces the
challenge that GenRet-related algorithms lack suc-
cessful large-scale industrial applications. Thus we
propose Generative Semantic InDexing (GSID),
a data-driven approach that generates discrete
product structured representations tree based on
the tokenization learning paradigms as shown in
Fig.1, which consists of two key stages: (1) Pre-
training on unstructured product metadata to learn
in-domain semantic embeddings, and (2) Gener-
ating more reliable structured representations tai-
lored for product understanding tasks, leveraging
the insights gained from the in-domain pre-training.
The proposed improvements not only alleviate the
long-tail data coverage issues in products but also
generate more reliable structured representations
on industrial-scale C2C product data, which can
be found in Tab.1. Furthermore, GSID partially
solves challenges in downstream applications, such
as search and recommendation systems, achieving
significant performance improvements compared
to previous methods.

Our contributions can be summarized as fol-
lows: (1) We introduce a generative semantic in-
dexing framework that establishes a data-driven
product understanding paradigm, overcoming the
limitations of traditional rule-based systems. This
method learns semantic representations directly
from raw product data through end-to-end train-
ing, eliminating the reliance on manually crafted
heuristics. (2) We optimize the GenRet training
framework to overcome the challenge of its diffi-
culty in training on large-scale datasets. (3) We
demonstrate the effectiveness of GSID in product
understanding and downstream tasks, particularly
in the second-hand e-commerce domain. Extensive
experiments validate the reliability of the proposed
method and provide a scalable application example
for industrial use.

2 Methods

In this section, we present Generative Semantic
InDexing (GSID), a novel approach to product un-
derstanding based on generative semantic indexing.
Fig.2 illustrates the overall architecture of our pro-
posed framework.

2.1 Model Architecture

Following GenRet, we employ a T5-based encoder-
decoder transformer(Raffel et al., 2020) to imple-
ment the generative semantic indexing model. The
encoder component of the model is responsible for
extracting semantic representations of the input text
d, which could be product descriptions or search
queries. The decoder component progressively de-
codes and generates semantic IDs, conditioned on
the encoder’s output and the prefix of previously
generated semantic IDs z.;. The output of the
decoder at step ¢ is a latent representation dy:

d; = Decoder(Encoder(d), z<;) € RP

where D represents the hidden size of the model.
Furthermore, at each step ¢, we define an exter-
nal embedding matrix, namely, a codebook(Van
Den Oord et al., 2017) E; € REXP where K is
the size of the discrete latent space, which also
defines the range of semantic IDs. The discrete
latent variable z; at step t can be obtained by a
dot-product lookup against the codebook F:

Q(z = jlz<t,d) = softmax;(d; - B}l)

where Q(2z; = j|z<¢,d) denotes the probabil-
ity that the semantic IDs for input d at step ¢ is
j € [K]. Through this sequential decoding pro-
cess, the lookup of d; against the codebook enables
vector quantization, thereby generating hierarchical
semantic IDs.

2.2 Training Methodology

Our training methodology employs a two-stage ap-
proach, comprising domain-adaptive pre-training
and a progressive training scheme. The pre-training
phase aims to inject e-commerce domain knowl-
edge into the open-source TS5 model, thereby en-
hancing its performance in e-commerce scenarios.
The progressive training phase focuses on the gen-
eration of semantic IDs, resulting in the final GSID.

2.2.1 Domain-Adaptive Pre-training Scheme

GSID is built upon Mengzi T5(Zhang et al., 2021),
a Chinese pre-trained model. While Mengzi TS5 en-
compasses general domain knowledge, it does not
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Figure 2: Pipeline of GSID. (a) illustrates the domain-adaptive pre-training scheme. (b) shows the progressive

training scheme

align well with the distribution of e-commerce data.
Continue pre-training tasks are thus utilized, taking
search queries and product descriptions as input, as
illustrated in Figure 2(a). Specifically, we design
three training tasks with loss as format Lpreqrain =
Equeryigeneration + Eitemﬁcloze + £item7completion- Each
of these tasks utilizes a standard negative log-
likelihood loss for sequence generation. Formally,
for a given task 7, the loss is defined as:

L

Ly =- Z log P(yx|y<k, Encoder(x))
k=1

where x represents the input sequence of task 7
fed into the TS encoder, y = [y1, Y2, ..., yr] is the
target output sequence generated by the decoder, L
is the length of the target sequence. The specific
inputs and targets for each task are follows:

Query Generation Task The encoder’s input
XQueryGen 18 @ product description d, and the target
sequence y is the corresponding user query g. This
task trains the model to understand the semantic
intent of a product description.

Item Cloze Task The encoder’s input XgemCioze
is a masked product description dasked, and the tar-
get sequence y is the complete product description
d. This task enhances the model’s ability to com-
prehend complete product information, improving
its contextual understanding of item details.

Product Suffix Completion Task The encoder’s
input XsyffixComp 18 @ product description prefix

dprefix» and the target sequence y is the subsequent
content (suffix) of the product description dgysfix.
This task encourages the model to learn the struc-
tural and semantic dependencies within product
descriptions, crucial for generating coherent prod-
uct attributes.

2.2.2 Progressive Training Scheme

To further enable the model to generate hierarchi-
cal semantic IDs, we adopt a Progressive Training
Scheme, as illustrated in Fig.2(b). The training
procedure consists of M steps, corresponding to
the M semantic IDs ultimately produced. Further-
more, at each step 7' € [M], when training seman-
tic IDs z7, the previously produced semantic IDs
z<T are kept fixed. At each optimization step, we
use the gradient descent with respect to the loss
Lgsia = Latign + Lcom- The alignment loss of query
and product L,jigy and code commitment loss Leom
are shown as follow:

Query-Item Alignment Objective To extract
user-intent semantics from product descriptions,
we introduce a query-item alignment objective to
jointly learn representations for queries and items,
as well as their corresponding semantic IDs. Specif-
ically, suppose (g, d) is a relevant pair of a query
and a product description, we define the alignment
objective as:

exp(gr - dr) )

ign = -1
Latign = ~log (Zd*wg explqr - dp)
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T
+ 5" Dt (P(atlz<t, )| Patlz<t, d)
t=1

where the first term is the contrastive learning loss
for the (¢, d) pair, and d* is an in-batch negative
sample from the same training mini-batch 5. g7
and dp denote the representations of the query and
item, respectively, at step 1. The second term is
the KL divergence(Pérez-Cruz, 2008) (by avoiding
the use of hard-label cross-entropy loss) between
the probability distributions of the query semantic
IDs and item semantic IDs, which helps stabilize
the training process.

Code Commitment Objective To prevent the
model from forgetting the previously generated
semantic IDs z.; when predicting the current step’s
semantic IDs, we introduce the code commitment
loss as follows:

T

Leom = — Y _ log Q(z]z<, Encoder(d))
=1

For the codebook update, to improve the stabil-
ity of codebook training, we do not employ the
original VQ-VAE(Van Den Oord et al., 2017) code-
book training algorithm. Instead, we update the
codebook using the Exponential Moving Averages
(EMA) method(Klinker, 2011). Given the mas-
sive scale of our training data, our codebook em-
ploys random initialization instead of the classical
constrained K-Means clustering approach(Hartigan
and Wong, 1979).

2.2.3 Data Sample Techniques

Effective training within a Progressive Training
Scheme heavily relies on robust data sampling. To
further enhance model performance, we adopt two
key strategies:

Multi-Query Sampling In the e-commerce do-
main, frequently searched queries are often generic
terms. These queries are characterized by an enor-
mous number of individual requests and broad se-
mantic meanings (e.g., "mobile phone", "laptop
computer"). In such scenarios, it is highly prone to
encountering samples of the same concept within
mini-batch, which is detrimental to model training.
To address this, we sample multiple positive query
examples for each item to mitigate the potential
impact of false negative samples.

Progressive Negative Sampling The construc-
tion of negative samples is crucial in contrastive
learning. Negative samples within a mini-batch

are often simple, which the model can easily dis-
tinguish, leading to insufficient learning. To in-
crease the difficulty of model training, we adopt
a difficulty-increasing adaptive negative sampling
method. Specifically, we require that training sam-
ples at each step 7' share the same semantic IDs
prefix. Since semantic IDs with the same prefix typ-
ically possess similar semantics, negative samples
within this range are correspondingly harder for
the model, which is more conducive to the model
learning fine-grained semantic distinctions.

3 Experimental Setup

3.1 Dataset

We collect search logs of 20 days from Xianyu'
search platform to build the training dataset with
200 millions samples. To evaluate the effective-
ness and generalization of GSID, we conducted a
series of experiments on two large-scale real-world
datasets collected: Xianyu-Retrieval and Xianyu-
Product-Understanding to validate the effectiveness
of GSID.

Xianyu-Retrieval Based on Xianyu online click
data, we collected query-product pairs (q2i) and
product-product pairs (i21), and ensuring that not
share any common pairs with training set. The
g2i contain of 30 thousands query triggers and a
million product candidates, while the i2i insist of
30 thousands product triggers and 150 thousands
product candidates.

Xianyu-Product-Understanding From Xianyu
item pool, we sampled a million products with their
operationally-annotated CPV information.

3.2 Baselines

To evaluate the superiority of GSID, we selected
several strong baselines for comparison, including:

« BM25(Robertson and Walker, 1994): a
probabilistic model that estimates the proba-
bility of a document being relevant to a query,
based on the occurrence of query terms in the
document.

« BGE(Xiao et al., 2024) a dense retrieval
model that leverages graph neural networks to
learn effective representations for documents
and queries.

* XY-BERT a bert encoder that trained by
masked language modeling, and then fine-
tuned with contrastive learning on Xianyu

Xianyu is a C2C e-commerce platform in Alibaba
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Methods QI 121

R@1 R@10 R@100 MRR@100 | R@l R@10 R@100 MRR@100
BM25 2241 44.52 64.11 29.89 592 12.89 19.19 8.24
BGE 2596 53.07 76.73 35.20 8.37 1991 32.48 12.23
XY-BERT | 26.80 55.92 77.69 36.73 7.05  20.85 33.57 11.82
GSID(ours) | 31.26  58.63 77.95 40.60 8.43 21.88 35.01 13.17

Table 2: Results of query-to-product (q2i) retrieval and product-to-product (i21) retrieval task.

dataset, which widely used in Xianyu search
business.

We conducted two types of experiments using
these baselines. For the first type, we compared the
retrieval performance of using the final representa-
tion output by the GSID decoder against these re-
trieval baselines. And for the other, we constructed
semantic encodings using hierarchical clustering
on top of these baseline models, and directly com-
pared them against the GSID approach. As BM25
is a pure text matching method, we excluded it
from the second type of experiments.

3.3 Experimental Settings

To evaluate the semantic similarity modeling ca-
pability of GSID, we utilize the g2i and i2i re-
trieval task on the Xianyu-Retrieval dataset with
Recall@k. And we evaluate the informative and
interpretable nature of GSID through alignment
with GSID-Query and GSID-Category relation-
ships which we use AMI and code_accuracy as
the metric on the Xianyu-Understanding dataset.
We will provide detailed descriptions of our experi-
mental setup in the Appendix.

4 Results

4.1 Retrieval Results

In Tab.2, we present the results on the Xianyu-
retrieval dataset for the two tasks of query-product
retrieval (q2i) and product-product retrieval (i2i), to
demonstrate the semantic similarity representation
capacity of the embeddings. And GSID outper-
forms all the baselines on both of these tasks. In
particular, for recall, GSID can achieve significant
improvements. For example, GSID get R@1 of
31.26% on q2i task, which is +4.46 % better than
the best baseline. This result highlights that the
representations conducted by GSID have stronger
semantic similarity expression capabilities than the
baselines.

Methods | BGE XY-BERT GSID(ours)
catel_AMI | 54.80 56.11 59.20
cated_AMI | 41.20 45.33 45.80
11_code_acc | 34.37 47.50 89.48
12_code_acc | 10.24 20.31 70.19

Table 3: Results of AMI and code consistency.

4.2 Interpretability

Tab.3 shows the performance comparison be-
tween our GSID and other semantic IDs obtained
through hierarchical clustering of baseline meth-
ods. Catel_AMI and cate4_AMI represent the
AMI between the semantic IDs and the Idle Fish
category labels at the first and fourth levels, re-
spectively. GSID achieves a +3.09% performance
improvement on catel_AMI and +0.47 % improve-
ment on cate4_AMI over the best baseline. As for
the query-item code consistency, which measures
the semantic similarity of GSID, we get 89.48% on
11_code_acc and 70.19% on 12_code_acc, which
significantly outperforms other methods. Com-
pared with Tab.2, results of Tab.3 indicate that the
final output GSID exhibits superior semantic encod-
ing performance compared to the representations.

4.3 Visualization

To provide a more intuitive visual comparison of
the structural properties between GSID and CPV,
we utilize concert tickets for the artist Jay Chou
as illustrative examples in the Fig.3. The result
shows that, in comparison to CPV, GSID exhibits a
finer granularity and an architectural design more
aligned with user need. Further, the result also
shows that CPV may have given different struc-
tured information to the same goods due to opera-
tional errors, but GSID can give the same semantic
ID to goods with the same semantics because it is
data-driven.
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Figure 3: Comparison of CPV and GSID.

5 Online A/B Test

The proposed GSID has been successfully inter-
grated into key functionalities of the e-commerce
platform Xianyu, including generative retrieval and
user interest modeling. Furthermore, we achieved
quite satisfactory online A/B testing gains.

GSID for generative retrieval consists of several
components. For the query side, we restrict the
beam search(Brown et al., 1993; Sutskever et al.,
2014) to generate multiple candidates, while also
collecting statistics on the user clicks on these can-
didates indexing. At the same time, we select high-
conversion products based on the GSID. After that,
we can perform query-product matching. In gen-
erative retrieval, GSID leads to a 1% increase in
GMYV and a 0.3% increase in average transactions
per user, while satisfying the relevance constraints.
This demonstrates the advantages of GSID’s con-
sistent encoding of queries and items, as well as
the benefits of end-to-end ID-based modeling.

GSID for user interest modeling means that we
regard GSID as a kind of feature in CTR model.
We used CTR, Clicks, and Bills as metrics to eval-
uate the online effectiveness. The IU-Boosted
model(Wu et al., 2025) demonstrated significant
improvements in both interest unit and normal prod-
uct recommendations. Specifically, for interest unit
recommendations, there was an 11.76% increase in
CTR, a 10.22% rise in Clicks, and a 5.61% boost in
Bills. For normal product recommendations, CTR
improved by 3.72% and Clicks by 5.20%. Overall,
the model achieved a 2.90% increase in CTR, a
2.62% rise in Clicks, and a 1.02% increase in Bills,
highlighting a notable performance enhancement.

6 Related Work

Product structured representation The struc-
tured understanding of products is a fundamen-
tal problem in the e-commerce domain. Early ap-
proaches, such as (Gao et al., 2020), utilized hierar-
chical category systems to organize products, with

deep hierarchical classification often employed for
product category prediction. Works like (Li et al.,
2023; Zhang et al., 2022; Xu et al., 2023) intro-
duced attribute tree systems, which are typically
constructed via data mining techniques to model
richer product information. However, the manage-
ment and maintenance of these attribute trees still
heavily rely on manual expert curation, leading
to high operational costs in practical e-commerce
scenarios. Further advancing product representa-
tion, methods like (Luo et al., 2020; Li et al., 2020;
Luo et al., 2021; Dong, 2019) leveraged knowledge
graphs. These approaches often involve extensive
data mining and graph construction efforts to build
comprehensive product profiles, which, while sig-
nificantly enriching the available information, also
introduce considerable system complexity.

Discrete representation learning Discrete rep-
resentation learning is a crucial area in machine
learning, especially for efficient data indexing and
retrieval. Early works VQ-VAE(Van Den Oord
et al., 2017), which learn quantized representa-
tions via vector quantization, primarily for images.
For discrete identifier generation in information re-
trieval, methods like DSI(Tay et al., 2022) employ
a two-stage process, typically involving clustering
over continuous item representations. This two-
stage approach, however, suffers from a strong de-
pendency on initial representation quality, and po-
tential information loss due to the disjointed nature
of learning and ID generation. To mitigate these
issues, RQ-VAE(Lee et al., 2022) integrates hierar-
chical quantization end-to-end. GenRet(Sun et al.,
2023) employs a T5-based seq2seq architecture
to generate discrete codes. Its key innovations in-
clude step-specific codebooks for rich information
preservation and per-step hard negative sampling.

7 Conclusion

In this paper, we proposed a generative semantic
indexing framework that establishes a data-driven
product understanding paradigm, overcoming the
limitations of traditional rule-based systems. This
method learns semantic representations directly
from raw product data through end-to-end training,
eliminating the reliance on manually crafted heuris-
tics. Extensive experiments validate the reliability
of the proposed method and provide a scalable ap-
plication example for industrial use.
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8 Limitation

While GSID demonstrates effectiveness in process-
ing textual product profiles, it does not currently
leverage multimodal information, such as product
images or videos. Multimodal data could provide
valuable complementary context for attributes that
are challenging to infer from text alone. Incorpo-
rating multimodal capabilities may further enhance
the model’s ability.

Another limitation is that once the GSID struc-
ture is fixed, it is difficult to make adjustments,
which is not conducive to the update of new prod-
ucts. Therefore, how to periodically update the
GSID system is an issue that still needs to be ex-
plored.
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A Evaluation Metrics

Recall@QF is a metric that measures the proportion
of expected product retrieved by the search system.

For a given k, RecallQF is defined as:

| L@
RecallQk = — Z

rety i

rely

where |()| is the number of queries in the set, ret,
is the number of expected products retrieved for
the g-th query within the top k results, and rel, is
the total number of expected documents for g-th
query.

Query-item consistency rate is used to eval-
uate the alignment between query and item se-
mantic IDs. Similar with Recall@k, we propose
11_code_acc and 12_code_acc to show the propor-
tion of queries and their retrieved products that
share identical primary and secondary IDs. We
randomly sampled 150,000 query-item pairs from
the g-i dataset to examine whether their GSID dis-
tributions are identical. Specifically, 11_code_acc
indicates the proportion where Level-1 semantic
IDs match and 12_code_acc indicates the propor-
tion where both Level-1 and Level-2 semantic IDs
are fully consistent;

Mean Reciprocal Rank (M RRQk) measures the
rank of the correct product category within the top
k ranked predictions. For a given k, MRR @k is
defined as:

el
MRRQk = —
Q| ; rank;

where || is the number of queries in the set, rank;
is the rank for i-th item.

Adjusted Mutual Information (AMI) measures
the agreement between the predicted product cate-
gories and the ground-truth labels, while account-
ing for the expected level of agreement due to
chance. AMI can be defined as:

MI(U,V) — E{MI(U,V)}
FH{U),H(V)) = E{MI(U,V)}

AMI =

where MI(U, V') is the Mutual Information of dis-
tribution U and V', H (-) is the information entropy,
E is the expectation and F'(-) means a function
which we use maz(+) in this paper. Furthermore,
we use the catel AMI and cate4_AMI to measure
the matching extent between category in CPV with
the semantic IDs.

As mentioned before, there are two different
experiments to demonstrate the effectiveness of
GSID. For the first type of experiment, we selected
recall@{1,10,100} and M RRQ100 to evaluate

1120



the retrieval performance of the representations,
following previous works(Sun et al., 2023). As for
the second type, we choose the category Adjusted
Multual Information (AMI)(Vinh et al., 2009) to
show the interpretability of GSID compared to the
baselines. We use Recall@{1,10,100} and Mean
Reciprocal Rank (MRR) @100 as evaluation met-
rics to evaluate the retrieval performance. And we
use query-item and item-item ID consistency as the
encoding accuracy. We also prove the effectiveness
of encoding interpretability with category Adjusted
Mutual Information (AMI) and SPU purity within
a cluster.

B Implementation Details

Dataset Description

Query-Item Dataset (200 million samples): Con-
structed based on user interactions with items under
different queries, including transaction, interaction,
and click behaviors along with their frequencies.
Each item corresponds to multiple queries. Item-
Item Dataset (78 billion samples): Obtained by
calculating swing 121 from 30-day user click se-
quences. 1.5 billion samples are extracted from
this dataset to form the evaluation set.

Domain-Adaptive Pretraining Phase

We first train the mengzi_t5 base model using
32 A800 GPUs on the 200-million-sample query-
item dataset for 2 epochs. And then we utilize 32
A800 GPUs and approximately 200 million query-
item samples. Task types include: Query Gen-
eration Task: Input item information, the model
must generate its associated query. During training,
one query is randomly selected from the multi-
ple queries co-occurring with the item as the label.
Item Cloze Task: Randomly masks 1-3 cloze spans
within the item description text, each span being 1-
3 characters long. The model predicts the masked
content. Product Suffix Completion Task: Ran-
domly splits the item description text into a prefix
and a suffix. Input is a random product query and
the item prefix, requiring the model to generate and
complete the suffix. Within each batch, the three
tasks are randomly assigned in a 1:1:1 ratio and
identified by special string tokens.

GSID Training Phase

Building upon the fully pre-trained mengzi_t5
base model, training proceeds incrementally across
4 steps, with each step corresponding to a code-
book size of 128. For any given step, samples
within a batch are formed by concatenating sev-

eral sample groups sharing identical prefix codes.
Samples within a group represent hard (difficulty-
increasing) samples, while samples across groups
represent easy samples. We perform a gather oper-
ation across different GPUs to compute the con-
trastive loss. Prior to the main training within
each step, an initial phase of n batches is dedi-
cated solely to contrastive loss training. During this
phase, only the contrastive loss is used to update the
model, aiming to achieve a reasonable spatial dis-
tribution of query-item vectors. Subsequently, we
further optimize the Query-Item Alignment Objec-
tive and Code Commitment Objective. The entire
GSID training utilizes 32 A800 GPUs and approxi-
mately 200 million query-item samples. Each step
is trained for only 1 epoch.
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