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Abstract

In a technology company, quality of customer
service that involves providing troubleshoot-
ing assistance and advice to customers is a
crucial asset. Often, insights from historical
customer service data are used to make deci-
sions related to future product offerings. In
this paper, we address the challenging prob-
lem of automatic assignment of product names
and software version labels to customer Service
Requests (SRs) related to Cisco Systems, Inc.,
a global company specializing in networking
hardware, software, and services.1 We study
the effectiveness of state-of-the-art Large Lan-
guage Models (LLMs) in assigning the correct
product name codes and software versions from
several possible label options and their “non-
canonical” mentions in the associated SR data.
We frame this assignment as a multiple-choice
question (MCQ) answering task instead of con-
ventional prompts and devise, to our knowl-
edge, a novel pipeline of employing a classifier
for filtering inputs to the LLM for saving us-
age costs. On our experimental dataset based
on real SRs, we are able to correctly identify
product name and software version labels when
they are mentioned with over 90% accuracy
while cutting LLM costs by about 40 − 60%
on average, thus providing a viable solution for
practical deployment.

1 Introduction and Background

Companies such as Arista Networks, Cisco Sys-
tems, Dell Technologies, and Huawei Technologies
offer a range of hardware devices and associated
software related to routers, switches, modems, fire-
walls, and other networking purposes. For these
companies, customer service which deals with pro-
viding technical assistance and troubleshooting sup-
port via emails, online chat, phone calls, etc. com-
prises a crucial aspect of business operations. In-
deed, customer service quality directly impacts cus-

1We use the name Cisco for future mentions in this paper.

tomer retention for a business and often insights
based on customer interactions are used while mak-
ing decisions regarding products (for example, ed-
its to technical documentation, future product fea-
tures, etc.) (Schijns, 2012; Brent Kitchens and Ab-
basi, 2018; Winkler and Wulf, 2019). However,
scaling customer service is particularly challenging
to these companies given the technical complex-
ity in their rapidly growing and evolving product
mix, high expectations of quality services from
a growing customer base, and increasing use of
digital touch-points. In this context, recent break-
through research in the form of Large Language
Models (LLMs) has particularly been of great inter-
est to these companies due to the LLMs’ advanced
language understanding, generation, and reason-
ing capabilities that can significantly improve the
automation of various tasks related to customer ser-
vice (Wulf and Meierhofer, 2024; Krishnan et al.,
2022; Cui et al., 2017; Su et al., 2025).

In this study, we investigate the use of LLMs
for a specific task pertaining to customer support
data related to Cisco, a company operating in the
networking domain providing thousands of prod-
ucts and services to customers across the world. As
new technologies emerge and applications evolve,
Cisco receives increasing volumes of customer
“Service Requests” (SRs) requesting assistance for
setting up, troubleshooting, and for information
via various channels such as emails, phone calls,
online forums, or virtual chat. Service requests
go through a lifecycle: (1) opening of an SR in
response to a customer problem, (2) back and forth
communication with the customer for any missing
relevant problem details, as well as with the rele-
vant internal product teams and knowledge experts,
(3) resolution where the required support is pro-
vided by the tech engineer to the customer, and (4)
closure where the SR is “marked” as closed after
resolution. On average, 1-2 million SRs are handled
in Cisco every year, with resolution times ranging
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from a few weeks to several months depending on
the complexity, priority, and severity of the SR.

Metadata

Technology: Cisco DNA Center - On-Prem ✓

Subtechnology: Cisco Software-Defined Access
(SDA Wired) ✓

Problem Code: Error Messages, Logs, Debugs
Problem Details: SDA FE C9300✓
Device is Experiencing TCAM Exhaustion 97.0%.
Layer2 TCAM Usage
Total Mac Addresses for this criterion: 583
Total Mac Addresses installed by LISP: REMOTE: 32768
(device log information is redacted)

Case Notes

Total Case Notes for this SR = 22
[Case Note:Log File]

File uploaded from Support Case Manager
File Name: IP address_12012023_2351.log

[Case Note: Email]
Country: Singapore
Software Version: 16.12.4 ✓

[Case Note: Email]
Moving to 9300 ✓ platform team

To Predict

Software Version → ‘16.12.04’
Product Name: → ‘C9300-48U’

Table 1: Example SR is shown with its metadata fields,
fields to predict, and associated case notes. Elements
useful for prediction are underlined and indicated (✓)

1.1 Motivation

During the closure of an SR, two key pieces of
information (“data fields”) are manually added
to the closure report forms by tech support engi-
neers. These fields capture the precise “product
code” referencing the hardware on which the cus-
tomer faced the problem as well as the “version”
of the software being used on the hardware, where
applicable. These assignments may be “NONE”
if the problem is generic or related to third-party
software/hardware. A chief motivation for collect-
ing this information in Cisco pertains to knowledge
completion for future reference, staff training, and
product improvements, as well as valuable macro-
level insights that can be derived from the associ-
ations to enable informed strategic decisions. For
example, missing documentation for a particular
configuration option that had led to several SRs
may be added in the next version of the configura-
tion guide for the product together with the infor-
mation shared during resolution by the tech sup-
port engineers for these SRs. Similarly, commonly

seen (problem, resolution) pairs can be used to cre-
ate troubleshooting FAQs for customers as well as
problem-solving chatbots (Zheng et al., 2023; Yang
et al., 2023).

Given the large and complex hardware-software
product mix offered by the company, adding prod-
uct name codes and software information is neces-
sary for enabling rapid retrieval of solutions when
similar problems are observed in future SRs. The
current manual assignment of product names and
software version information in Cisco is prone to er-
ror since these fields may not be directly available
as part of customer shared problem descriptions
and instead may require gleaning from the many
different types of structured and unstructured data
created for the SR during its life cycle. The pos-
sible labels for these fields are currently provided
for selection via dropdown lists in Cisco, but er-
rors often creep in due to the sheer length of these
dropdown options.2 On the other hand, product
and software information that can be extracted pre-
cisely and programmatically from specific device
log files is observed in only about 10% of the cases,
requiring manual labeling for the rest.

In Table 1, we show part of the data created
during the resolution of a real SR for illustration.
The SR data can be broadly categorized into–(1)
Metadata comprising of structured fields (submit-
ted via a form) of which the relevant ones for
our assignment tasks are “problem description,
customer symptoms, and resolution summary”,
and company-specific codes indicating the prod-
uct technology and sub-technology. A product
technology can pertain to a broad topic such as
“routers” with sub-technology referencing “wire-
less” or “wired” configurations. (2) Case Notes
are unstructured text documents shared during the
lifecycle of an SR. For the SR shown in Table 1,
we have a total of 22 associated case notes that are
of different types such as emails exchanged within
the company, with the customer, logs containing
output from commands, and notes made by tech
support engineers during the resolution process.

In Table 1, we highlight the relevant fields (with
✓) that can help determine the precise product
name and software version information in the pro-
vided metadata and case notes. In Cisco, related
alphanumeric codes are used to represent the prod-

2Due to decades of operation and the hundreds of varia-
tions of products being managed in the market for a given
purpose (e.g. routers), numerous options figure for a product
name and software version selection in the dropdown lists.

1093



uct type as well as the precise product name under
that type in SR documents. For instance, few prod-
uct codes under the technology/sub-technology
group “Wireless/2800 Series Access Point” include
AIR-AP2802I-S-K9, AIR-CT8540-1K-K9, and AIR-
AP2802I-Z-K9.

For the example SR shown in Table 1, the soft-
ware information is directly mentioned in one of
the emails (from case notes), whereas the complete
product name has not been mentioned anywhere.
Unlike this SR, software information typically ap-
pears in “non-canonical” formats– (15.5(1)SY1,
15.5(1)SY, 15.5(1)SY3 all referring to 15.5.1) and is
sometimes mentioned in filenames exchanged dur-
ing SR handling (‘cat9k_iosxe.16.12.04.SPA.bin’).

A manual assignment of product name and soft-
ware version information is both time-consuming
and error prone. Due to the myriad formats in
which the product name and software version in-
formation is expressed in texts, along with other
confounding patterns common in networking do-
mains such as IP addresses, dates, and system
logs messages, solutions based on pattern match-
ing alone are inadequate. Moreover, texts such as
“unavailable post upgrade from 2.2.2.9 to 2.3.3.7”
and “problem was first seen in AIR-CT8540 (see SR
659356)” are common and need a deeper, semantic
understanding for an accurate assignment.

Contributions: We present our LLM-based so-
lution using a multiple-choice question (MCQ) an-
swering formulation for predicting product names
and software versions from the SR metadata and
case notes in Cisco as an alternative to the cur-
rently adopted manual process. Our evaluation
experiments with a range of open-source and pro-
prietary LLMs show that with appropriate prompts
and custom matching functions, we are able to
predict product names with an accuracy of about
70-80% and software versions with over 96% accu-
racy in best settings. We address cost optimization
for LLM calls by training a binary classifier to filter
out the uninformative case notes available for an SR
in order to send only relevant documents that can
help with the prediction task to the LLM. Overall,
in our best settings, we filter out uninformative to-
kens in LLM API calls with high precision (∼90%)
and enable cost savings of ∼40-60%.

2 Methods

Our task is a combination of two NLP problems:
named-entity recognition (NER) and document

Figure 1: Workflow of our proposed approach.

classification. For a parallel, consider the task of
labeling financial documents with the full names
of the financial organization that each document
is about primarily. For example, consider a docu-
ment that is primarily about the company “Tesco
PLC” and its market competitors, the true label for
the document would be “Tesco PLC”. However,
the document’s content may not reference the true
label precisely, but only via its abbreviation such
as “Following Wal-Mart’s model, both France ’s
Carrefour, and TSCO.L...”. Our task is to predict
the true classification label “Tesco PLC” for the
document based on document understanding and
the mentions of “TSCO.L”. For Cisco, these tar-
get labels are various product names and software
versions where mentions tend to be partial or ad
hoc variations of the full names, and the documents
are noisy and in heterogeneous formats such as
unstructured notes, emails, metadata etc.

Our overall pipeline for predicting product
names and software version information in SRs
is illustrated in Figure 1. In zero-shot settings,
we leverage the language understanding capabil-
ities of LLMs via a straightforward question an-
swering prompt (“QPrompt") such as “What is the
product name being discussed in the document be-
low?” (Borst et al., 2022; Du and Cardie, 2020; Hu
et al., 2025). Product names in Cisco are alphanu-
meric codes assigned through naming conventions
internal to the company, unlikely to be “pretrained
knowledge” for LLMs. Product name codes are
indicative of organizational and grouping informa-
tion. For example, ‘AN5900-35X’ could be a spe-
cific product under the product group ‘AN5900’
whereas “AB5-JX-BRM” and “AB5-JX-BRM-XL”
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could be siblings under a common technology.
Despite indicative hints, consistent naming con-

ventions across the several product verticals are
lacking in Cisco. For instance, the code AIR-
CT8540-1K-K9 refers to the product “Cisco 8540
Wireless Controller supporting 1000 access points”
whereas SNS-3595 is a product code under the
technology “Security - Access Control - AAA
and Policy Management”. A lack of a clear nam-
ing schema and product code name conventions
makes it challenging to include this information
into LLM prompts for extracting product names
from SR data. In experiments, we find that provid-
ing sample product codes with the question prompt
improves prediction performance significantly for
product names although the overall performance is
still low compared to the multiple-choice question
formulation described next (Table 4).

We harness the technology/sub-technology orga-
nizational hierarchy by creating lists of all possible
product names (or alternatively, software versions)
using historical SR data, applying custom match-
ing functions to canonicalize their mentions, and
collating them to form options for multiple-choice
question (MCQ) prompts. Intuitively, MCQ op-
tions provide hints to the LLM on the correct label
choice for a document despite it not including a
precise mention. For the previous example using
organization names, an MCQ formulation “which
of the following companies– Tesco PLC, Carrefour
...” may enable the LLM to reason out the potential
connection between Tesco PLC and the mention
TSCO.L to make a more accurate prediction. Our
prompt templates are listed in Table 2.

Filter Classifiers: The case notes for an SR refer
to “free text” notes created and exchanged during
the process of resolving an SR and include different
types such as emails between customer and tech
support engineers, back and forth communications
about scheduling meetings, action plans, etc. The
numbers of case notes range from a few tens to hun-
dreds, and though mostly uninformative, few notes
contain vital exchanges related to product name or
software version details of the SR. For illustration,
the histogram of number of case notes for SRs as
well as samples of uninformative case notes in our
experimental dataset are shown in Figure 2 and
Table 3, respectively, whereas sample useful case
notes were highlighted in Table 1.

Given that commercially-available LLMs incur
a cost depending on the number of input tokens
per API call, it is not cost-efficient to send uninfor-

mative documents to the LLM. In addition, these
documents may instead add “noise” and affect pre-
dictions by the LLM. To address these concerns, we
train two classifiers (for product name and software
version, respectively) to filter out the uninformative
documents for a given SR before aggregating and
sending the rest to the LLM. The training data for

Figure 2: Histogram of number of SRs versus number
of associated case notes in our dataset.

our filter classifier for product name/software ver-
sion was created based on the following intuition–
for a given SR, if none of the elements in the poten-
tial list of product name/software version labels are
mentioned in a case note, it is unlikely to be useful
for predicting product name/software version infor-
mation (negative class), and conversely, if at least
one of the potential labels appears in a case note,
it may be useful for the prediction task (positive
class). Due to the large number of uninformative
case notes present in the SR data, the above process
results in highly skewed datasets. We employ sam-
pling on the negative class (“uninformative notes”)
and investigate smaller classification models for
training filter classifiers.

Matching functions: Human-generated product
name mentions in SR data do not always strictly
follow naming conventions and occur as ad hoc
variations (e.g., “AB5 JX BRM” or “Axx Byyy5
JX BRM” instead of “AB5-JX-BRM”). Similar to
product names, software mentions often occur in
non-canonical forms ( “yyyyy.3.1.3(c).A.bin” or
“3.1-3c” instead of “3.1.3c”) in SR data. In consul-
tation with domain experts, we adopted the longest
common sequence as the matching function for
product names.3 Software strings are first normal-
ized using various rules to extract the numeric se-
quence and alphabetic sequence separately and the

3LCS matches greater than 70% are considered equivalent.
Domain experts considered product group prediction to be of
value if the full mention is unavailable (Table 1).
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Q Prompt Which product/software version is principally discussed in these documents?
MCQ Prompt Which product/software version from the given list: {choice_list} is principally

discussed in these documents?

Extra Prompt + Answer “NONE” if you cannot find the answer in the given documents.
System Prompt You are a helpful Cisco tech support engineer . . .

Table 2: List of LLM prompt templates. {choice_list} is derived from the relevant product tech/subtech hierarchy.

Case Note 1
Hello Person Name , This email
is to let you know that the severity of Case Number
CaseNumber has been changed:

Previous Severity: 4
New Severity: 3
Reason for change: . . .

Case Note 2
Next Plan of Action:
For time being, if the RP connection is coming UP
and there is a proper RP communication, Please try
the following action
1. Need to bring down the RP Port
2. Make the reachability . . .

Case Note 3
Thank you for sharing the requested logs, I will review
and update the findings . . .

Table 3: Examples of SR case notes, unlikely to help
with our prediction tasks.

software version matching function incorporates
an exact match for the numeric parts and edit dis-
tance for the non-numeric parts of the string. This
combination ensures that “3.1.3” does not match
“3.1.1” or “3.1.35” but will match “3.1.3a” if the
edit distance of ‘1’ for alphabetic characters is ac-
ceptable to domain experts (Kleinberg and Tardos,
2005). Matching functions play a crucial role in
identifying ad hoc variations of product name and
software mentions and are used not only to com-
pile canonical options lists for MCQ prompts but
also to identify documents with mentions (“posi-
tive” class) for training the filter classifiers, as well
as during evaluation for comparing predictions and
gold labels.

Recently, retrieval augmented generation (RAG)
solutions that merge external knowledge (for
example, retrieved from a database or web
search) with LLMs’ intrinsic knowledge are being
widely adopted for domain knowledge-intensive
tasks (Gao et al., 2024). Note that our core task is
fundamentally extractive, framed as “What product
name (or software version) is this SR addressing?”.
In a typical RAG workflow, this question would
need to be transformed into an effective query to

retrieve relevant documents. However, in our con-
text, the necessary information is already expected
to be within the input texts related to the SR, pre-
cluding the “retrieval” step. In addition, for match-
ing against a pre-defined, structured list of product
names or software versions (our MCQ options),
we needs flexible matching functions for identi-
fying relevant lexical and syntactic patterns mak-
ing generic retrieval mechanisms (based on vector
similarity) unsuitable. Our classifier-enabled aug-
mentation approach based on matching functions
customized to our domain is motivated by these
challenges.

3 Experiments

Dataset: For studying this task, Cisco provided a
dataset of about 1, 287 SR metadata records and
their associated case notes (27,136 text documents).
After employing our matching functions to identify
canonical forms, we extracted 218 unique product
names and 375 unique software versions for
the provided data organized into a two-level
hierarchy of 44 and ∼ 200 product technology,
sub-technology categories, respectively. Correct
product names and software versions were pro-
vided by Cisco only for a small subset of SRs that
we use for evaluating product name and software
version prediction. “Gold” product name and
software version labels were available for 55 SRs
and 30 SRs, respectively. Though these numbers
are considerably small, for zero-shot settings and a
relative evaluation of LLMs and prompts, we posit
that our findings are still representative. The full
set of 1, 287 SR case notes were used for creating
data for product name (PName) and software
version (SWV) filter classifiers, with subsets of
“gold” SRs used to create the validation splits. After
sampling (10%) for the majority (“negative”) class,
our resulting datasets are summarized as follows:
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Train (+/-) Test (+/-) Val (+/-)

PName 1859/5192 409/1305 56/61
SWV 463/6588 125/1589 20/234

LLM Prediction Performance: We experi-
mented with a range of proprietary as well as
open-source state-of-the-art LLMs including those
from GPT-series (OpenAI), Claude (Anthropic),
DeepSeek-R1 (DeepSeek), Llama (Meta), and the
Qwen series for predicting product names and soft-
ware versions from SR data. Precise model names
can be found in Appendix A.1. We also included
experiments with smaller models in Appendix A.4
to highlight their significantly lower performance
compared to SOTA LLMs in zero-shot settings.

All result tables for product name/software ver-
sion prediction in this paper show averaged ac-
curacy values using the two matching functions
described previously.

Prompt PName SWV

QPrompt 0.3090 0.8965
QPromptEgs+NONE 0.4181 0.7931
MCQPrompt 0.7818 0.5172
MCQ+NONE 0.7272 0.9655

Table 4: Prediction accuracy with GPT-4o

A summary of performance with GPT-4o LLM
using different prompts is provided in Table 4.
Since product name strings are not “general knowl-
edge”, not surprisingly, the basic QPrompt does not
perform well for product names in contrast with
software version labels. Specifying exemplars for
indicating to the LLM the nature of product name
strings (“QPromptEgs+NONE”) significantly im-
proves the product name performance but with a
suitable MCQ prompt that includes option lists to
choose from, we obtain significantly higher per-
formance for both product names and software
versions. The prediction performance using best
prompts across LLM models (from Table 4) is sum-
marized in Table 5. Among the LLMs considered
as well as older models from OpenAI, GPT-4o per-
formed the best for product names whereas several
SOTA LLMs performed equally well for software
version identification.

In our dataset, there are SRs for which product
name (or software version) cannot be extracted
based the available information alone. For instance,
the SR pertains to a generic problem (agnostic to
specific devices) or related to a third-party product

Model Name PName SWV

Claude-3-7-Sonnet 0.6909 0.9655
GPT-4o 0.7818 0.9655
QwQ-32B 0.7273 0.9655
Llama-70B 0.6000 0.8620
DeepSeek 0.6545 0.7931

Table 5: Prediction Performance across LLMs

or software. In these cases, the “correct” prediction
should be “NONE” or “N/A” (empty). We summa-
rize the aggregate performance (on NONE and non-
NONE SRs) of best models across LLM groups on
the two prediction tasks using the best-performing
MCQ prompts in Tables 4 and 5. Overall, when
the labels are available (non-NONE cases), in best
settings, all latest LLM offerings (GPT-4o, Claude-
3.7-Sonnet, QwQ32B) perform competitively (over
85% accurate) but their aggregate performance is
affected by errors on the NONE cases. However,
an explicit instruction regarding NONE handling
affects performance differently for software and
product name prediction. Details of these experi-
ments, exact prompt texts, and other computational
setup information are included in the appendix in
view of space constraints (Table 7-11).

Filter Performances: We investigated models
from RoBERTa (Liu et al., 2019), T5 (Raffel et al.,
2020), Flan-T5 (Chung et al., 2024) (base and large
variants) for training our filters. On this binary clas-
sification task, the FlanT5-large model fined-tuned
using instructions including potential labels “Ques-
tion: Given the list of labels, does the passage
contain any of the labels? Answer True or False.
Labels= []” performed the best. Performance us-
ing standard classification metrics (Bishop, 2007)
on the test datasets with FlanT5-large is shown
in Table 6 with comparison experiments listed in
Table 16 of the Appendix.

Filter/Class Precision Recall F1

PName (+) 0.65 0.63 0.64
(-) 0.89 0.89 0.89

MacroAvg 0.77 0.76 0.76
SWV (+) 0.80 0.86 0.83

(-) 0.99 0.98 0.99
MacroAvg 0.90 0.92 0.91

Table 6: Performance of filters on Test Set
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The performance of the software version filter is
significantly better compared to that of the product
name filter. Similar to the earlier task, we attribute
this lower performance to the nature of product
name sequences (“alphanumeric” codes) which are
challenging to distinguish from other textual tokens
in SR data contexts. As such, in product name
and software version filters, we are able to identify
uninformative case notes in the test dataset with
high precision–89% and 99%, respectively.

The results in Tables 4 and 5 use the case notes
identified as informative (“True/+”) by our filters.
On average, we are able to filter out upto 40% of
total tokens while predicting software versions (for
30 SRs) and upto 60% of the total tokens while
predicting product names (for 55 SRs). Though
the specific percentage savings may be an artifact
of our datasets (since SRs have varying numbers
of case notes as shown in Figure 2), these results
highlight the effectiveness of using filters to ob-
tain considerable savings in Cisco where millions
of SRs are handled annually (Howell et al., 2023).

Deployment notes: Our LLM solution is ex-
pected to significantly decrease the earlier man-
ual effort during SR closure in Cisco. A GPT-4o
based solution is now being test-bedded for eval-
uating time and cost savings for manpower and
LLM usage in realistic conditions. We note that
though large-scale, open-source LLMs perform
comparably on our evaluation datasets as seen in
experiments, current commercial products have the
advantage of ease of use via APIs, and coupled
with smaller filter models eliminate the need for
in-house compute-intensive environments.

4 Related Work

Apart from chatbots, LLMs are being employed in
various tasks related to customer support data such
as automated text correction, summarization and
question answering (Wulf and Meierhofer, 2024;
Palen-Michel et al., 2024), product reviews evalua-
tion (Roumeliotis et al., 2024; Azov et al., 2024),
as well as knowledge and workflow representa-
tion (Su et al., 2025). Recently LLMs were used
for NER in datasets from customer order descrip-
tions (Oh, 2024), recipes (Agarwal et al., 2024),
clinical contexts (Lu et al., 2024), and the financial
news articles (Shah et al., 2024). Though ques-
tion answering techniques for extracting metadata
were previously investigated (Du and Cardie, 2020;
Borst et al., 2022; Song et al., 2024; Hu et al.,

2025), as far as we know, there is no multiple-
choice question answering formulation for similar
tasks in published works. Since our dataset is pro-
prietary, we also showcase our approach’s advan-
tage over conventional prompts on a recent public
dataset for the comparable task in the financial do-
main (Appendix A.3).

5 Conclusions

We investigated the use of SOTA LLMs for as-
signing product names and software version labels
for customer service requests (SR) data, previously
requiring human intervention. With appropriate
prompts, existing commercial LLMs are able to
extract the required information from SR data with
high accuracy. However, a naïve use results in high
LLM costs due to substantial amounts of irrelevant
data associated with SRs. To this end, we designed
filter classifiers that ensure that only SR data perti-
nent to prediction is included in the LLM prompts.
In on-going work, we are exploring practical de-
ployment of our developed pipeline within Cisco.

Limitations

Though our solution design was motivated by a con-
text exclusive to Cisco, we expect the general result
trends and ideas such as MCQ formulation and in-
put filtering for LLMs to carry across comparable
datasets as illustrated by our results on the NER
task from the financial domain (Appendix A.3).
Filter classifiers, despite being not very high per-
forming (particularly for product name), did not
adversely affect the final prediction results on our
SR datasets. Since errors on “positive” class re-
sult in informative case notes being mistakenly dis-
carded, there is a need to improve datasets both
for training the underlying classifiers as well as
for evaluating the effect of incorrect classification
on final predictions. We highlighted the contradic-
tory behavior of LLMs regarding handling “NONE”
cases for software version versus product name as-
signments requiring further investigation regard-
ing prompt sensitivity of LLMs (Bowman, 2023).
Studies on MCQ-answering behavior of LLMs are
on-going (Huang et al., 2022; Balepur et al., 2024;
Wang et al., 2025).

Our industry-partner Cisco keen on exploring
state-of-the-art LLMs for their in-house tasks, pro-
vided us fully-anonymized datasets replacing all
personally identifiable information such as cus-
tomer names and contact details with pseudo-
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identifiers. Generally speaking however, data pri-
vacy is a crucial concern while using proprietary
LLMs on data containing sensitive customer infor-
mation. Another caveat of our proposed solution is
the assumption of a “static ontology” as we use the
pre-existing product and software technology/sub-
technology information to construct options for our
MCQ prompts. While including a “NONE” option
among the choices aims to capture the missing in-
stances and highlight when the ontology updates
are due, future research is needed for developing
methods that can seamlessly handle dynamic ontol-
ogy updates.
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A Appendix

A.1 Model List

Table 13 presents the list of LLMs used in our
system. The models include both proprietary and
open-source options, with parameter sizes ranging
from 32B to 70B where available. For each model,
we provide its name, type, parameter size, and a
reference link for access or documentation.

A.2 Details of Product Name and Software
Version Prediction

Model training and inference with filter classifiers
were performed on a single GPU of an Nvidia Tesla
cluster (Linux) machine with 32GB RAM. For ex-
periments using open-source LLMs (from Meta,
Qwen, and DeepSeek), we used vLLM for infer-
ence on 4×H100 80GB GPUs.

In the following tables, we listed the perfor-
mance on the set of SRs for which the “gold” la-
bels are NONE in a separate column (NoneSet)
to highlight the difference in how different LLMs
handle these cases based on an explicit instruction
regarding “NONE” handling (See Extra row in Ta-
ble 2). Overall, about 30% and 50% of the cases
are NONE for the product name and software gold
SRs, respectively.

Model non-NoneSet NoneSet

Llama-8B 0.5777 0.1000
Llama-70B 0.7111 0.1000
DeepSeek 0.4000 0.7333
QwQ-32B 0.8888 0.0000
GPT-4o 0.9111 0.2000
Claude-3-7-sonnet 0.8444 0.0000

Table 7: Product Name Performance across LLMs with
MCQ Prompt

Model non-NoneSet NoneSet

Llama-8B 0.4667 0.3000
Llama-70B 0.6818 0.1818
DeepSeek 0.7500 0.2727
QwQ-32B 0.7209 0.5000
GPT-4o 0.7209 0.7500
Claude-3-7-sonnet 0.7209 0.4167

Table 8: Product Name Performance across LLMs with
MCQ-NONE Prompt

Model non-NoneSet NoneSet

GPT-4o-mini 0.8888 0.1000
GPT-o1 0.8666 0.0000
GPT-o1-preview 0.8666 0.0000
GPT-4o 0.9111 0.2000

Table 9: Product Name Performance across GPT Mod-
els with MCQ Prompt

Model non-NoneSet NoneSet

Llama-70B 0.9285 0.8000
Llama-8B 0.7142 0.1333
DeepSeek 0.7857 0.8000
QwQ-32B 0.9285 1.0000
Claude-3-7-sonnet 0.9285 1.0000
GPT-4o 0.9285 1.0000

Table 10: SWV Performance (with MCQ+NONE)
across LLMs

Model non-NoneSet NoneSet

Llama-70B 0.9285 0.0000
Llama-8B 0.7857 0.0000
DeepSeek 0.1429 0.7333
QwQ-32B 0.9285 0.3333
Claude-3-7-sonnet 0.9285 1.0000
GPT-4o 1.0000 0.0667

Table 11: SWV Performance (with MCQ) across LLMs

Prompt non-NoneSet None-Set

Product Name

noMCQ 0.2619 0.4615
noMCQwEg+NONE 0.1621 0.9444
MCQ 0.9111 0.2000
MCQ+NONE 0.7209 0.7500

Software Version

noMCQ 0.8571 0.9333
noMCQwEg+NONE 0.5714 1.0000
MCQ 1.0000 0.0667
MCQ+NONE 0.9285 1.0000

Table 12: Experiments with prompts using GPT-4o
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Model Name Type Size Link

Claude-Sonnet Proprietary Unknown https://www.anthropic.com/claude/sonnet
GPT-4o Proprietary Unknown https://openai.com/api/
QwQ-32B Open Source 32B https://huggingface.co/Qwen/QwQ-32B
Llama-70B Open Source 70B https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
DeepSeek-R1 Open Source 70B https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B

Table 13: List of selected LLMs used in our system, including their type (proprietary or open source), parameter
size (if available), and source links.

System Prompt

You are a helpful Cisco assistant designed to output JSON.

Prompt

Which software version is principally discussed in these documents?
Question: {question}
The ONLY software version should be selected from
the given software version list: [list of options]
Response in this JSON format: {"software_version": "",
"explanation": "", "summary": ""}
[DOCUMENT CONTENT] ”

Question

What product is principally discussed in these documents?
Product names are a mix of alphanumeric characters
and look like:
ABC-PN1805-X, D3500-WAS6K, CM3-IU

Table 14: MCQ prompt is shown for software version
assignment and QPrompt with exemplars is shown for
product name assignment. Experiments with slight word
variations of the prompt texts did not result in significant
performance changes on the prediction task.

Type Class Precision Recall F1

PName
False (-) 0.70 0.87 0.77
True (+) 0.80 0.59 0.68

SWV
False (-) 1.00 0.99 1.00
True (+) 0.91 1.00 0.95

Table 15: Classification performance of filters on the
validation set with FlanT5-large model

Model Precision Recall F1

RoBERTa-base 0.89 0.82 0.85
RoBERTa-large 0.80 0.95 0.86
T5-base 0.97 0.92 0.94
T5-large 0.89 0.94 0.91
Flan-T5-base 0.88 0.99 0.93
Flan-T5-large 0.95 1.00 0.97

Table 16: Validation performance with various mod-
els for software version filter, Macro-averages on both
classes are shown

A.3 FiNER-ORD experiments
To illustrate the benefit of the MCQ formulation
over the general question formulation, we sum-
marize experiments on FiNER-ORD, an open-
research dataset from the financial domain (Shah
et al., 2024) that includes English financial news ar-
ticles where sentences were manually-annotated for
person names, locations, and organizations. SOTA
LLMs such as GPT-4o in zero-shot settings only
achieve an accuracy of about 60% for organization
entity mentions in this dataset.

To be comparable to our problem setting, we con-
sider the sentences in the dataset that only include
the “abbreviations" of organizations but whose full
names are known at document level. For exam-
ple, “Associated Press” is known early on based on
document level information but the sentence only
mentions “AP”. The validation and test datasets
for our experiments comprised of 84 and 256 sen-
tences, respectively. We instruct GPT-4o LLM us-
ing the two question prompts “What organizations
are being discussed in the following text?” ver-
sus “Which of the following organizations ...” with
the fullnames of potential organizations provided
as MCQ options in the prompt. With the simple
question prompt, the accuracies range from 61-63%
(similar to published numbers) whereas with the
MCQ prompt, the performances were significantly
higher and in the range 80-83% for the two sen-
tence subsets. Our subsets of the original datasets
and prompts are available upon request.

A.4 Experiments with smaller models
We show performance of smaller language mod-
els Flan-t5-large from Google4 and Llama-3.1-8B-
Instruct from Meta5 in zero-shot settings on the
metadata from a subset of 30 SRs in Table 17
for product name and software version predic-
tion. As can be seen in this table (when compared

4https://huggingface.co/google/flan-t5-large
5https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
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to LLMs/GPT-4o from OpenAI), performance of
smaller models is significantly lower. In addition to
context length limitations, we observe that smaller
models are unable to generate output in consistent
formats or follow instructions to provide explana-
tions for a given answer choice. Consequently, best
results were obtained with simpler prompts of the
form “Question: Which of the product name labels
in <list-of-labels> best match the following text?
Context: []”. Due to unavailability of large-scale
labeled data, we did not investigate fine-tuning of
smaller models in this study.

Model PName SWV

FlanT5-large 0.2666 0.3448
Llama-3.1-8B-Instruct 0.5000 0.3448
GPT-4o 0.7333 0.5172

Table 17: Aggregate accuracies for product name and
software version prediction using smaller models are
shown against GPT-4o performance

For the results in Table 17, we manually exam-
ined the output from Llama-3.1-8B-Instruct models
since we were unable to adjust the prompt despite
multiple reformulations to ensure a consistent out-
put format. For the software version prediction
experiments, similar to experiments with LLMs
we added “NONE” handling with MCQ prompts
(Table 4).
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