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Abstract

Accurate intent classification is critical for ef-
ficient routing in customer service, ensuring
customers are connected with the most suit-
able agents while reducing handling times and
operational costs. However, as companies ex-
pand their product lines, intent classification
faces scalability challenges due to the increas-
ing number of intents and variations in taxon-
omy across different verticals. In this paper,
we introduce REIC, a Retrieval-augmented
generation Enhanced Intent Classification ap-
proach, which addresses these challenges ef-
fectively. REIC leverages retrieval-augmented
generation (RAG) to dynamically incorporate
relevant knowledge, enabling precise classifi-
cation without the need for frequent retrain-
ing. Through extensive experiments on real-
world datasets, we demonstrate that REIC out-
performs traditional fine-tuning, zero-shot, and
few-shot methods in large-scale customer ser-
vice settings. Our results highlight its effec-
tiveness in both in-domain and out-of-domain
scenarios, demonstrating its potential for real-
world deployment in adaptive and large-scale
intent classification systems.

1 Introduction

Customer service (Cui et al., 2017; Chen et al.,
2024; Nguyen et al., 2020; Qi et al., 2021; Chen
et al., 2023; Zhou et al., 2023; Pi et al., 2024) is
critical for modern e-commerce but also one of
the most resource-intensive departments. Different
agents, either human or model, are trained to handle
specific types of customer issues, making precise
intent classification, particularly at the issue level,
crucial for efficient routing. High issue-oriented in-
tent accuracy ensures that customers are connected
with the most suitable agents, reducing unnecessary
transfers and lowering handling times. This opti-
mization not only enhances customer satisfaction
but also cuts operational costs by streamlining in-
teractions and improving overall service efficiency.

For model-based automatic resolvers in chatbot
agentic systems (Gupta et al., 2024), the ability to
precisely identify user intent is essential for deliver-
ing contextually appropriate and solution-oriented
responses.

As companies expand their product lines, intent
classification faces two key challenges. First, the
number of customer intents grows over time, re-
quiring models to adapt to new intents quickly.
Second, intent taxonomies can vary across prod-
uct lines, making it difficult to maintain a unified
classification system(Pi et al., 2023). For exam-
ple we organize products into different verticals in
e-commerce: with third-party products, customer
usually inquire about physical retail orders or con-
sumer accounts, and intents are categorized into
three levels from coarse to fine-grained. In con-
trast, first-party products require more customized
customer services due to our proprietary device and
digital product offerings. For instance, a customer
seeking device troubleshooting may interact with
an agent who can access real-time diagnostic infor-
mation and perform specific troubleshooting steps
on the user’s behalf. This necessitates a broader
set of intent categories to accommodate diverse
customer needs, as illustrated in Figure 1. This
heterogeneity complicates intent classification, de-
manding scalable and flexible approaches to ensure
accurate routing and efficient customer service. In
this work we demonstrate our method using two
verticals but it can be easily adapted to more.

In this paper, we propose a novel Retrieval-
augmented generation Enhanced Intent
Classification (REIC) approach that reduces
computational complexity and improves scalability
for intent classification. We demonstrate the
effectiveness of this approach through extensive
experiments on real-world datasets , showing that
our method outperforms traditional fine tuning
and zero-shot or few-shot methods in large-scale
customer service settings. Our results on both
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in-domain and out-of-domain intents demonstrate
its potential to improve classification accuracy
and enable dynamic updates without retraining,
making it ideal for industry-scale applications.
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Figure 1: We present the heterogeneous intent structure
with representative examples, illustrating the intent label
hierarchy in each vertical.

2 Related Work

2.1 Intent classification
Early work on intent classification for dialogues of-
ten relied on bag-of-words or recurrent models. For
example, Schuurmans and Frasincar (2019) eval-
uated various classifiers on a multi-domain intent
dataset and found that a simple SVM with hierar-
chical label taxonomy outperformed deeper LSTM
models. With the advance of transformer architec-
tures, researchers began to leverage self-attention
and multi-task learning for intent understanding.
Ahmadvand et al. (2020) introduced a joint intent
mapping model that simultaneously classifies high-
level intent and maps queries to fine-grained prod-
uct categories. Wang et al. (2021) employed a
slowly updated text encoder and global/local mem-
ory networks to mitigate catastrophic forgetting
and parameter explosion for large-scale intent de-
tection task. Recent work has pushed toward us-
ing large pre-trained models and retrieval-based
prompting to enable cross-domain and zero/few-
shot intent classification. Liu et al. (2024) proposed
a framework which integrates a fine-tuned XLM-
based intent classifier with an LLM to essentially
treat multi-turn intent understanding as a zero-shot
task. Yu et al. (2021) also explored retrieval-based
methods for intent classification and slot filling
tasks in few-shot settings. Our work adopts similar
in-context learning (ICL) setup while focusing on
handling large-scale multi-domain intent classifica-
tion task from industry level applications.

2.2 In-context Learning
The performance of LLM has been significantly
enhanced in few-shot and zero-shot NLP tasks

through ICL. Recent ICL research focus on how
to effectively identify and interpret retrieved con-
text. Guu et al. (2020) first showed how to pre-
train masked language models with a knowledge
retriever in an unsupervised manner. Karpukhin
et al. (2020) proposed a training pipeline in which
retrieval is implemented using dense representa-
tions alone and embeddings are learned from a
small number of questions and passages with a
dual-encoder. Ram et al. (2023) considered sim-
ple alternatives to only prepend retrieved ground-
ing documents to the input, instead of modifying
the LLM architecture to incorporate external in-
formation. Similar approaches have proven par-
ticularly effective in the application of RAG on
dialogue systems (Shuster et al., 2022b,a), specif-
ically goal-oriented and domain-specific dialogs
from customer service scenarios (Zhuang et al.,
2021, 2023). In our work, we utilize ICL in both
LLM fine-tuning stage for data generation and at
inference-time with an intent candidate retriever.

3 Preliminary

Intent classification for queries is typically framed
as a multiclass text classification problem. Specif-
ically, given a customer query q ∈ Q, the goal
is to map it to one of the k pre-defined intents
t ∈ T = {t1, ..., tk} using a model M so that the
predicted intent t̂ = M(q) maximizes the proba-
bility of correctly classifying q. Formally, this can
be expressed as:

t̂ = argmax
t∈T

P (t | q; θ) (1)

where P (t | q; θ) denotes the probability of intent
t given query q, parameterized by θ of the model
M.

However, intent labels are often not mutually
independent; correlations between intents can exist,
making a flat classification structure suboptimal.
This leads to two major challenges in large-scale,
industry-level intent classification: 1) scalability:
a large number of intent labels k can make flat clas-
sification computationally expensive and difficult
to scale, especially as the set of intents grows; 2)
label correlation: related intents, such as "Order
Issue" and its sub-intents “Track Order” or “Cancel
Order”, are treated independently in flat classifica-
tion, ignoring their hierarchical relationships and
increasing the risk of misclassification.

To address these issues, hierarchical intent clas-
sification is preferred. In this approach, a query q
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Figure 2: The proposed REIC method from customer query to routing intent leveraging on vector retrieval and
probability calculation.

is classified progressively from general categories
to specific sub-intents, enhancing both efficiency
and accuracy for industry-scale applications.

Note that for a more generalized setting, intents
from different verticals and domains may have en-
tirely different hierarchy and ontology. In Figure
1, we demonstrated some examples of intent hier-
archy in our application, which involves customer
service query intent detection with two business
verticals: Third-Party or 3P business (customer
contacting about third-party physical retail orders
or consumer accounts) and First-Party or 1P busi-
ness (customer contacting about first-party digital
or device issues). Both verticals span a diverse
range of product types, reflecting the broad scope
of customer inquiries handled by our system. If
we use the traditional single-head flattened intent
labels, the total intent ontology set size would be at
103 level which create major challenges for accu-
rate intent classification. By creating hierarchical
intent ontology across different business verticals,
each classification head only needs to handle less
than 50 intents that are more manageable for lan-
guage models. In the following sections of this
paper, we utilize this intent ontology setup for ex-
periments and comparisons.

4 Method

LLMs has revolutionized the landscape of customer
engagement, particularly in the domain of intent de-
tection systems. While these models demonstrate
remarkable capabilities in language comprehen-
sion and knowledge representation, their adapta-
tion to domain-specific contexts presents notable
challenges. Specifically, the integration of industry-
specific terminology, organizational nomenclature,
and distinctive customer service scenarios necessi-
tates fine-tuning and customization of these models.

To address these limitations and enhance the accu-
racy of customer intent identification, we introduce
a novel approach REIC for RAG-Enhanced Intent
Classification.

REIC aims to bridge the gap between the gen-
eralized capabilities of LLMs and the specialized
requirements of diverse business environments. By
leveraging RAG, our approach seeks to enhance the
precision and relevance of intent detection, thereby
facilitating more nuanced and context-aware cus-
tomer interactions across various industry-specific
scenarios. The method consists of three main com-
ponents: index construction, candidate retrieval,
and intent probability calculation (Figure 2).

Index Construction We first construct a dense
vector index containing (query, intent) pairs from a
held-out annotated dataset. Each query is encoded
using a pre-trained sentence transformer model to
generate dense vector representations. The corre-
sponding intent labels are stored alongside these
embeddings. The intent labels follow a hierarchi-
cal structure with d dimensions which represents
different intent domain knowledge and might range
from different domains.

Candidate Retrieval Given a new query q, we
first encode it using the same encoder for index con-
struction to obtain its dense vector representation
vq. We then perform approximate nearest neigh-
bor search to retrieve the top-k most similar (query,
intent) pairs, denoted as set E. The similarity is
computed using cosine distance between the query
vector and indexed vectors:

sim(q, qi) =
vq · vi

∥vq∥∥vi∥
(2)

where vi represents the vector encoding of the i-th
indexed query.
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Intent Probability For the retrieved set E, we
leverage a fine-tuned LLM M to perform con-
strained decoding and calculate the probabilities of
the possible intents. Given a prompt template P ,
the LLM takes as input the instantiated prompt,
which includes the original query q and the re-
trieved (query, intent) pairs as context. For each
unique intent tj in E, we compute:

P (tj |q, E) = M(P, q, E)tj (3)

where M(P, q, E)tj represents the model’s pre-
dicted probability for tj given the query and re-
trieved examples.
The final intent classification is determined by se-
lecting the intent with the highest probability:

t̂ = argmax
tj∈E

P (tj |q, E) (4)

This approach enables dynamic updates to the
intent space by simply adding new (query, in-
tent) pairs to the index, leveraging the in-context
learning capabilities of the LLM without requiring
model retraining.

<instructions> Select the intent given 
candidate list and customer query 
</instructions> 

<candidates> Intent 1:Contact customer 
service agents. Example: talk to human
Intent 2:Delivery instructions. Example: 
Leave at doorstep
…
</candidates > 

<query> Update my shipping address 
</query >

Selected intent:

Shipping instructionsIntent:
+

masked out in 
log_prob calculation

ℳ ",	%, & !!

!

"

#

$!
Figure 3: Constrained decoding for probability calcula-
tion.

The probability-based reranking helps mitigate
potential LLM hallucination by grounding predic-
tions in retrieved examples (Figure 3). With tradi-
tion greedy decoding, sometimes the LLM might
generate intents outside of the given candidate list
and cause downstream routing failure. We perform
constrained decoding to calculate the probability
of each retrieved intent tj in E, which ensures
the success of downstream routing. Given prompt
P with instructions, retrieved candidates E, and
customer query q, we append tj at the end to cal-
culate the total logits from model forward pass
Ltj = M(P(E, q) + tj). Then we mask out the

positions of P(E, q) and accumulate the log prob-
abilities for the intent sequence tj with length sj :

M(P, q, E)tj = exp (
∑

tj

LogSoftmax(Ltj )/sj)

(5)
During training, we train the intent LLM M by
minimizing the cross-entropy loss between the pre-
dicted and ground-truth intents. During inference,
instead of traditional auto-regressive next token de-
coding, we perform one model forward-pass calcu-
lation with a batch size k for top-k intent candidates
and get the k probabilities for re-ranking and final
intent prediction.

5 Experimental Setup

5.1 Datasets
Due to business considerations, we are not permit-
ted to share the results using the original customer
data. As a result, we manually anonymized both the
labels and transcripts to ensure no personal infor-
mation is included. Additionally, specific product
and service names were denonymized to prevent
the identification of the company from the tran-
script or label descriptions. Despite these modifica-
tions, the conclusions drawn from our experiments
remain valid. The final dataset contains 52,499
training samples with 35,041 1P Business queries
and 17,458 3P Business queries. The test set con-
sists of 3,647 1P Business queries and 1,717 3P
Business queries respectively using random sam-
pling. All of the data samples have incorporated
retrieved intent candidates from the retriever. We
also performed dataset cleaning in the training set
to make sure the true intent is contained in the re-
trieved list. During inference, we use the actual
noisy retrieved list which also relies on the capabil-
ity of the embedding model.

5.2 Compared Methods
We consider the following baselines:

• RoBERTa: We fine-tune RoBERTa-base (Liu
et al., 2019) with multiple classification heads.
This adaptation allowed the model to simultane-
ously categorize utterances across multiple di-
mensions.

• Mistral Classification1: We fine-tune a Mistral-
7B-v0.32 with a sequence classification head. In-
stead of directly generating output sequences,

1Due to legal concerns, we are not permitted to use non-
commercial LLMs like Llama.

2https://huggingface.co/mistralai/Mistral-7B-v0.3
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Models 3P Business vertical 1P Business vertical Overall
Precision Recall F1 Precision Recall F1 Precision Recall F1

RoBERTa 0.527 0.447 0.483 0.583 0.488 0.531 0.565 0.474 0.516
Mistral Classification 0.215 0.228 0.221 0.301 0.250 0.273 0.269 0.243 0.255

Claude Zero-shot 0.338 0.250 0.287 0.238 0.170 0.199 0.271 0.196 0.227
Claude Few-shot 0.386 0.289 0.331 0.350 0.308 0.328 0.361 0.302 0.329
Claude + RAG 0.473 0.438 0.455 0.415 0.389 0.402 0.434 0.404 0.419

REIC 0.538 0.546 0.542 0.600 0.574 0.587 0.579 0.565 0.572

Table 1: Intent detection confusion matrix on different business with different methods

the model projects the pooled embedding into a
space with the same dimension as the number of
classes.

• Claude Zero-shot: We employ the Claude 3.5
Sonnet model in a zero-shot configuration. To fa-
cilitate accurate intent prediction, we craft a com-
prehensive prompt that explicitly defines each
potential intent.

• Claude Few-shot: Similar to Claude Zero-shot,
we incorporate 20 demonstration examples, with
10 from each vertical, to enhance coverage of
diverse intents across different domains.

• Claude+RAG: Instead of using a fine-tuned
LLM, we employ Claude 3.5 Sonnet as the back-
bone and incorporate the same set of retrieved
candidates as described in Section 4 into the
prompt. This comparison allows us to assess
whether a smaller fine-tuned LLM can perform
competitively against a large foundation model
for this task.

5.3 Implementation Details

The LLM component of our REIC approach uti-
lizes a fine-tuned model from Mistral-7B-Instruct-
v0.23. We applied 8 NVIDIA-A100 40GB GPUs
with 96 vCPUs to conduct PEFT (Mangrulkar
et al., 2022) training with LoRA adapters (Hu et al.,
2022). We choose a set of LoRA parameters with a
rank of 8, an alpha value of 16, and a dropout rate
of 0.1. The training batch size is set to 8 per GPU
with a learning rate of 2e−5. We train the model
using Cross Entropy Loss for 3 epochs which takes
around 3 hours on the instance.

We experimented with the following off-the-
shell retrievers for candidate retrieval:

• BM25 (Robertson et al., 1995) is a widely used
traditional sparse retrieval method. Although
it is unsupervised, it consistently demonstrates

3https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

strong performance across a variety of bench-
marks(Thakur et al., 2021).

• MPNet4 (Song et al., 2020) is a sentence embed-
ding model fine-tuned on one billion sentence
pairs using a contrastive learning objective.

• Contriever-MS MACRO (Izacard et al., 2022)
is an unsupervised dense retriever pre-trained
with contrastive learning and fine-tuned on MS
MARCO (Nguyen et al., 2016).

• ColBERT-v2 (Santhanam et al., 2022) is a late-
interaction retriever that combines denoised su-
pervision and residual compression to improve
retrieval quality and reduce space footprint.

6 Results

6.1 Intent Detection Ability
To evaluate the effectiveness of our REIC method
in intent detection, we conducted experiments com-
paring it against several baseline methods described
in §5.2. Our results, presented in Table 1, illus-
trate performance across two business verticals (3P
Business and 1P Business) and an overall aggre-
gate assessment based on Precision, Recall, and
F1-score.

The results indicate that our REIC offers signif-
icant advantages in intent detection over standard
fine-tuning or prompting-based methods. While
fine-tuned models like RoBERTa perform reason-
ably well, they require extensive retraining when
new intents emerge. We hypothesize that the
limited performance of the Mistral Classification
model stems from its nature as a decoder-only ar-
chitecture, which may be less effective in extracting
the semantic meaning of input query. Additionally,
since it is not pretrained for classification tasks, in-
corporating a classification head during fine-tuning
is unlikely to yield optimal results. Prompting-
based approaches (Claude Zero-shot and Few-shot)
generally underperformed, with Claude Few-shot

4https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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Retriever 3P Business 1P Business Overall

BM25 0.521 0.537 0.532
Contriever 0.450 0.461 0.457

ColBERTv2 0.503 0.560 0.542
MPNet 0.545 0.573 0.564

Table 2: Intent detection accuracy on different business
verticals using different retrievers in REIC

achieving a maximum F1-score of 0.329 overall.
The Claude + RAG method improved performance
compared to standalone prompting but remained
inferior to our approach by 26.7%.

These observations confirm that the integration
of RAG and fine-tuned LLM enables greater flexi-
bility, improved precision, and higher recall rates,
making it well-suited for handling diverse and
evolving intent spaces in different applications.

6.2 Impact of Retrievers
In order to evaluate the impact of retrievers on the
final performance, we experimented four different
retrievers in REIC including one sparse retrieval
method and three dense retrievers, details in §5.3.
The intent detection accuracy across different busi-
ness verticals using these retrievers is presented in
Table ??.

BM25, despite being an unsupervised sparse re-
trieval method, performs competitively, achieving
an overall accuracy of 0.532. Among the dense
retrievers, MPNet outperforms the others, attaining
the highest accuracy across both the 3P Business
and 1P Business verticals. This suggests that MP-
Net’s contrastive learning-based sentence embed-
dings are highly effective for retrieving relevant
candidates that aid intent classification. In contrast,
Contriever exhibits the lowest accuracy across all
categories.

Our findings show that retriever selection sig-
nificantly impacts intent classification. Although
BM25 is a strong baseline, dense retrievers like
MPNet consistently outperform it. This highlights
the value of high-quality embeddings and extensive
fine-tuning on large datasets, which is why we have
chosen MPNet as our final retriever in REIC.

7 Impact of Retrieval Candidate Size

We investigated the impact of different retrieval
candidate numbers (top-k) in REIC to balance in-
tent detection accuracy and inference latency. The
Figure 4 illustrates the trade-off between these two
factors, with overall accuracy plotted on the left

y-axis (blue) and inference latency on the right y-
axis (red) against different values of top-k. From
the accuracy perspective, increasing top-k allows
the model to access a broader range of relevant
information, leading to better predictions. Beyond
a certain threshold, additional retrieved candidates
contribute minimally to accuracy while still increas-
ing computational complexity. Latency, on the
other hand, exhibits a sharp rise as top-k increases.
This indicates a crucial trade-off: although retriev-
ing more candidates can improve accuracy, it also
leads to longer inference times, which may not be
suitable for real-time applications.

In our experiments, we select top-k = 10 which
ensures a meaningful accuracy boost without in-
curring excessive computational costs. However,
the ideal top-k may vary depending on application
requirements. For instance, real-time systems such
as customer service chatbots or voice assistants
may favor a lower top-k to maintain fast response
times. Conversely, offline or batch-processing ap-
plications could accommodate higher top-k values
if maximizing accuracy is a priority. Our findings
emphasize the need to carefully tune retrieval pa-
rameters in REIC to meet specific operational de-
mands.

Figure 4: The accuracy and latency when using different
retrieval top-k values.

7.1 Robustness on Unseen Intents

To evaluate REIC’s robustness on unseen intents,
we trained our models exclusively on the 3P Busi-
ness vertical and tested them on the 1P Business
vertical, simulating a real-world out-of-domain sce-
nario. As illustrated in Figure 1, 1P Business verti-
cal has 4 intent category with more than 800 unique
intent combinations, while the training data used
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from 3P Business vertical has 3 intent category with
only around 70 unique intents. This out-of-domain
scenario helps assess how well REIC generalizes
to new, previously unseen intents. The results are
summarized in Table 3.

Claude Zero-shot performs the worst, with an ac-
curacy of 0.17 on the 1P Business vertical. In con-
trast, Claude Few-shot shows improvement, achiev-
ing an accuracy of 0.308 on the 1P Business verti-
cal. This demonstrates that providing a few exam-
ples significantly enhances the model’s ability to
generalize.

Notably, the RAG-based methods, particularly
Claude + RAG, significantly outperform Claude
Few-shot, achieving 0.389 on the 1P Business ver-
tical. This demonstrates the advantage of our RAG-
based strategy in handling unseen intents, as it dy-
namically retrieves the most relevant examples to
enhance predictions, surpassing static few-shot ex-
amples. Similarly, REIC, although slightly lower
than Claude + RAG, still performs strongly com-
pared to Claude Few-shot, highlighting the model’s
effectiveness on both in-domain and out-of-domain
intents. Overall, REIC excels in-domain, and its
performance on the 1P Business vertical remains
competitive with Claude Few-shot, underscoring
the robustness and adaptability of our REIC ap-
proach for unseen domains.

Models 3P Business 1P Business Overall

Claude Zero-shot 0.250 0.170 0.196
Claude Few-shot 0.289 0.308 0.302
Claude + RAG 0.438 0.389 0.404

REIC 0.538 0.283 0.364

Table 3: Out-of-domain intent detection accuracy

7.2 Online Deployment Performance
Following the deployment of our REIC in an in-
ternal system, we observed significant improve-
ments in online performance, particularly in intent
detection accuracy. Compared to the previously
deployed system, which relies on two separate
models using traditional fine-tuning approaches
for different business verticals, our REIC method
simplified the system using just one consolidated
model, which reduced misclassifications and im-
proved resolution routing. To measure the success
rate, we include a confirmation question for the
customer to verify whether the predicted intent or
issue is correct. Our REIC leads to a 3.38% abso-
lute improvement for customer positive response

rate. These improvements validate the efficacy of
REIC for real-world deployment, offering both ac-
curacy gains and operational efficiency in intent
classification.

8 Conclusion

This paper presents a novel RAG-Enhanced Intent
Classification (REIC) method that addresses scal-
ability challenges and the heterogeneity of intent
taxonomies in large-scale customer service systems.
By incorporating a hierarchical intent classification
strategy, REIC significantly reduces computational
complexity. Leveraging the RAG technique, our
method dynamically integrates contextually rele-
vant retrieved examples, outperforming traditional
fine-tuning, as well as zero-shot and few-shot ap-
proaches, in intent detection tasks. Additionally,
our results demonstrate strong performance on both
in-domain and out-of-domain test sets, highlighting
its applicability for industry-scale applications.

9 Limitations

While REIC demonstrates strong performance in
both in-domain and out-of-domain intent classifica-
tion, it has a few limitations. Its accuracy remains
closely tied to the quality of the retriever: if the
correct intent is not among the retrieved candidates,
the model cannot recover, underscoring the need
for more robust retrieval methods or fallback mech-
anisms. In addition, although REIC allows for
dynamic updates without retraining, it still relies
on a fixed number of retrieved candidates, creat-
ing a trade-off between accuracy and latency that
may hinder its deployment in real-time applications.
Future work could address these challenges by de-
veloping adaptive retrieval strategies or introducing
confidence-based mechanisms to dynamically ad-
just the candidate pool.
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