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Abstract

Real-time identification of out-of-context out-
puts from large language models (LLMs) is
crucial for enterprises to safely adopt retrieval
augmented generation (RAG) systems. In this
work, we develop lightweight models capable
of detecting when LLM-generated text deviates
from retrieved source documents semantically.
We compare their performance against open-
source alternatives on data from credit policy
and sustainability reports used in the bank-
ing industry. The fine-tuned DeBERTa model
stands out for its superior performance, speed,
and simplicity, as it requires no additional pre-
processing or feature engineering. While recent
research often prioritises state-of-the-art accu-
racy through fine-tuned generative LLMs and
complex training pipelines, we demonstrate
how detection models are deployed efficiently
with high speed and minimal resource usage.

1 Introduction

In enterprise settings, Generative AI has received
widespread adoption as a tool to uplift employees’
productivity (Brachman et al., 2024). Enterprises
require a high degree of factuality of generated an-
swers in popular language tasks, such as question-
answering (QA) and summarisation.

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) allows users to interact with large lan-
guage models (LLMs) for industry-specific knowl-
edge spanning multiple use cases and document
types. It is adaptable to tasks requiring evolving
knowledge, such as synthesising information from
the latest industry news. However, a key limita-
tion of RAG is the generation of outputs that are
observed to be out-of-context. This is related to
hallucination of LLMs, manifesting itself in incon-
sistent or fabricated claims (Huang et al., 2025) that
can be subtle and phrased confidently even if factu-
ally incorrect (Li et al., 2024). For highly sensitive

working environments such as financial institutions,
the inability to ensure faithful LLM output can be
one of the biggest limitations to widespread adop-
tion of LLM-powered applications (Maple et al.,
2024).

To address this barrier to enterprise adoption,
in this study we narrow the scope of “hallucina-
tion” and focus only on hallucinations that render
the LLM response semantically inconsistent with
the provided context. This is commonly known as
faithfulness hallucination (Huang et al., 2025; Es
et al., 2024; Saad-Falcon et al., 2024), contextual
hallucination (Chuang et al., 2024), or a lack of
grounded factuality (Bespoke Labs) or support (Be-
lyi et al., 2025); to aid business understanding, we
adopt the term out-of-context (OOC). We consider
any LLM-generated response to a RAG prompt as
semantically OOC if any part of the response is
ungrounded based on the retrieved context alone,
even if it is otherwise factual according to world
knowledge. In contrast, an in-context response is
one where every claim embedded in the response
can be inferred solely from the retrieved context.

Approaches to mitigate OOC generation can be
broadly classified into 2 types – black-box and
grey-box methods. Black-box methods employ
strong generative LLMs to assess if a candidate
answer is OOC, and these LLMs are usually aug-
mented with various prompting or fine-tuning tech-
niques. Examples of black-box methods include
RARR (Gao et al., 2023), WikiChat (Semnani et al.,
2023), FreshPrompt (Vu et al., 2024), SelfCheck-
GPT (Manakul et al., 2023), RAGAS (Es et al.,
2024), ChainPoll (Friel and Sanyal, 2023), and
Lynx (Ravi et al., 2024). However, black-box ap-
proaches that rely on strong closed-source LLM
judges are less suitable for enterprises that are
constrained by budget and/or data privacy require-
ments. Grey-box methods are alternatives which
aim to detect OOC generation through a proxy met-
ric or model. Grey-box approaches either assess
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Figure 1: Example LLM responses from RAG systems in the banking industry.

final/hidden LLM states, such as FLARE (Jiang
et al., 2023) and Lookback Lens (Chuang et al.,
2024), or use a score computed by an independent
discriminative model of lower complexity, such as
SummaC (Laban et al., 2022), AlignScore (Zha
et al., 2023), HHEM (Mendelevitch et al., 2024),
and Luna (Belyi et al., 2025).

In this work, we propose RAGulator, a series
of lightweight OOC detectors for RAG applica-
tions. We create a training dataset which simulates
both OOC and in-context RAG prompts, from a
range of public datasets originally constructed for
various traditional NLP tasks. Furthermore, we
compare 2 types of grey-box discriminative models
– fine-tuned BERT-based classifiers and ensemble
meta-classifiers trained on numerical features de-
rived from text. Generative labelling with an LLM
annotator is employed where necessary to adapt
the training dataset for BERT-based classifier fine-
tuning. We show that while a large LLM can show
good agreement with human annotation in labelling
data for BERT classifier fine-tuning, our predictive
models outperform the same LLM in a zero-shot
setting on the enterprise OOC detection task, while
also surpassing other open-source detectors in most
cases. The results highlight the need for specialised
models for OOC detection in enterprise RAG.

2 Method

2.1 Problem formulation
We train a lightweight grey-box discriminator to de-
tect semantically OOC LLM-generated sentences
from a RAG system. Figure 1 illustrates exam-
ples of OOC and in-context sentences extracted
from RAG systems in the banking industry. In the
OOC example (left), the LLM fails to find the an-

swer within retrieved documents, and the generated
statement is inconsistent with the context. Whereas,
in-context statements are clearly grounded in the
documents regardless of whether their relevance to
the question is low (middle) or high (right).

We formulate the problem of semantic OOC
closely following the setup by Tang et al. (2024).
Any RAG prompt Prompt(D, x) to an LLM con-
tains an associated set of retrieved documents
D = {D1, ..., D|D|} and a question x, to which the
LLM responds with text that can be broken into an
unordered set of sentences c = {c1, ..., c|c|}. We
treat each sentence ci as an independent candidate
claim to be verified. To detect OOC candidates, we
define a discriminator

M(D, ci) ∈ {0, 1}
that classifies each candidate as out-of-context,
1, or in-context, 0, according to the set of re-
trieved documents D.

Certain model architectures (e.g. BERT) face
limitations on the amount of text that can be ac-
cepted by the model in one pass. This would re-
quire the set of documents D to be arbitrarily re-
split into J text chunks {D1, ..., DJ} of varying
sizes not more than the model-defined limit. In this
case, the overall discriminator can be defined as

minj M(Dj , ci) ∈ {0, 1}
implying that if and only if the claim ci is OOC
with respect to every text chunk Dj , then it can be
considered OOC overall.

2.2 Dataset curation
We construct a dataset by adapting publicly avail-
able datasets, sampling and preprocessing them
to simulate LLM-generated sentences and RAG-
retrieved contexts of various lengths. The goal is to
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Figure 2: Illustrated flow of the generative labelling process.

create a dataset with sentence-context pairs. This
curation only involves sentence tokenisation and
random sampling. Datasets belonging to summari-
sation (extractive and abstractive) and semantic
textual similarity tasks are selected for adaptation.

Summarisation task datasets. Originally each
row in the dataset is an abstract-article pair. Pre-
processing is done by randomly pairing abstracts
with unrelated articles to create OOC pairs, then
applying sentence tokenisation to the abstracts to
create one example for each abstract sentence. Both
extractive and abstractive summarisation datasets
are adapted, consisting of BBC (Greene and Cun-
ningham, 2006), CNN/Daily Mail (version 3.0.0)
(Nallapati et al., 2016), and PubMed (Cohan et al.,
2018) datasets.

Semantic textual similarity (STS) datasets.
Originally each row in the dataset is a pair of sen-
tences, with a label indicating if the pair of sen-
tences are similar. Preprocessing is done by insert-
ing random sentences from the datasets to one of
the sentences in the pair to simulate a long "con-
text". The original labels are mapped to our defi-
nitions to indicate if the pair is an OOC pair. The
adapted datasets consist of the Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005) and Stanford Natural Language Inference
(SNLI, version 1.0) (Bowman et al., 2015) datasets.

For MRPC, the semantically-equivalent indi-
cator is mapped to in-context if present and
out-of-context if absent. For SNLI, labels

provided by human annotators are originally in
the set {entailment, contradiction, neutral}.
We ignore sentence pairs labelled neutral and
those without unanimous agreement, while map-
ping the labels entailment to in-context and
contradiction to out-of-context.

In our eventual curated dataset, we ensure each
simulated sentence contains between 5-100 tokens,
and that each simulated context contains between
100-5000 tokens. We sample only from author-
provided training and test splits to form training
and holdout evaluation data respectively.

2.3 Generative labelling

Standard BERT models have a 512-token limit. In
this study, generative labelling is employed for data
used in fine-tuning to ensure compatibility with a
wide range of BERT model variants.

For sentence-context examples derived from
summarisation datasets and labelled as in-context
(≈34% of dataset), the LLM-"generated" sentence
is relevant to at least one part of the context, but the
exact position is unknown. As shown in Figure 2,
we utilise Llama-3.1-70B-Instruct (Grattafiori et al.,
2024) to label each sentence by prompting it to
return the positions of context sentences that are
relevant. With this output, we split the sentence-
context example into windows of tokenised sub-
sequences (i.e. sentence + context) that are each no
longer than 512 tokens, and label the sub-sequences
based on whether the sub-sequence contains a rele-
vant context sentence.
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2.4 Feature engineering

We incorporate classic machine translation met-
rics to compare response (candidate) and context
(reference) alongside semantic similarity features
derived from distance metrics computed using
encoder-only models. Preliminary analysis reveals
that the feature distributions for in-context LLM-
generated sentences differ significantly from those
of OOC sentences. This section provides a brief
overview of the implementation of these features,
with additional details in Section A.

Precision score. We calculate this feature as the
fraction of words in the response that also appear
in the context (Melamed et al., 2003). We apply the
precision score after text preprocessing and word
deduplication.

Unigram and bigram perplexities. We con-
struct a probability distribution (i.e. dictionary of
token frequencies) from the context’s unigram and
bigram tokens after text preprocessing, then calcu-
late sum negative log likelihood and normalise by
the respective number of candidate n-grams.

Maximum embedding similarity score. We
compute the maximum pairwise similarity between
embeddings of the response and each context sen-
tence using the pretrained bge-small-en-v1.5 model
(Xiao et al., 2024).

Maximum reranker relevance score. We com-
pute the maximum relevance score between the
response and each context sentence using the pre-
trained bge-reranker-base model.

2.5 Models

We train two meta-classifiers of LightGBM and
Random Forest architectures respectively. These
are selected due to their widespread adoption and
reliability in enterprise settings. In parallel, we
leverage the generative labelling technique to train
two BERT-based classifiers: deberta-v3-large1 ini-
tialised with default pretrained weights, and xlm-
roberta-large2 initialised from the bge-reranker-
large checkpoint, effectively fine-tuning a reranker
for OOC detection. Training details for all models
are found in Section B.

1huggingface.co/microsoft/deberta-v3-large
2huggingface.co/BAAI/bge-reranker-large

Training Evaluation
Type Dataset Rows % OOC Rows % OOC
Summ. BBC 10000 50.0 - -

CNN/Daily Mail 20000 50.0 - -
PubMed 20000 50.0 4000 50.0

STS MRPC 3904 32.1 1697 33.3
SNLI 20000 50.0 4000 50.0

Private ESG - - 386 44.6
CP - - 184 40.2

Total 73904 49.1 10267 46.9

Table 1: Dataset statistics for training and evaluation.
The number of examples and out-of-context proportion
is stated for each data subset.

3 Evaluation

3.1 Public data

We evaluate RAGulator models on an in-
distribution holdout split of our simulated RAG
dataset, comprising 9,697 rows sampled from the
PubMed, MRPC, and SNLI subsets.

3.2 Industry data

We also prepare an out-of-distribution collec-
tion of 570 RAG responses that are gathered and
hand-annotated for evaluation. This private dataset
includes 386 responses related to sustainability-
themed documents analysed by corporate banking
relationship managers ("ESG"), and 184 responses
associated with credit policy documents used by
bank officers in loan approval processes ("CP").
The examples illustrated in Figure 1 are adapted
from anonymised and truncated excerpts of this
private dataset to preserve confidentiality.

Table 1 reports the composition per-source and
the proportion of OOC labels in training and evalu-
ation datasets.

3.3 Model inference

When running inference with BERT-based clas-
sifiers, we predict on each of the tokenised sub-
sequences of the original sentence-context pair. We
then aggregate model predictions to obtain a sin-
gle prediction at the sentence level. We take the
minimum probability across all sub-sequences as
the overall OOC probability; as long as one of the
generated sub-sequences is in-context, we consider
the entire generated sentence as in-context.

For evaluation, we use Llama-3.1-70B-Instruct
hosted on four H100 GPUs for black-box meth-
ods, and transformer-based models for grey-box
methods hosted on one V100 GPU.
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Test - Overall Test - ESG Test - CP Speed
Framework/Model AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1 (sentences/s)
Zero-shot prompt (baseline) 89.3 91.0 88.7 81.7 85.5 78.9 75.7 82.8 68.4 3.03
RAGAS Faithfulness 93.7 92.9 90.6 82.0 85.5 81.8 86.9 78.8 82.7 0.08
SelfCheckGPT-Prompt - - - 64.3 69.6 63.2 78.1 78.5 74.1 0.41
AlignScore-large 92.3 91.7 84.0 82.5 77.4 75.6 80.9 68.9 72.8 9.99
MiniCheck-deberta-v3-large 91.4 87.4 84.1 84.8 81.0 78.0 84.2 83.5 74.5 9.45
Bespoke-MiniCheck-7B 95.8 95.4 89.0 86.9 83.8 79.3 89.8 87.3 81.4 9.82
RAGulator-Random-Forest 94.5 94.6 86.7 89.7 87.4 81.9 89.6 85.3 79.7 2.01
RAGulator-LightGBM 95.5 95.4 87.4 89.0 87.8 81.8 89.7 81.7 77.9 2.03
RAGulator-deberta-v3-large 98.2 98.3 93.5 87.0 84.6 77.6 90.1 86.5 80.3 19.08
RAGulator-xlm-roberta-large 97.1 97.2 91.1 86.2 83.7 77.6 88.4 86.3 78.6 26.09

Table 2: Results on overall evaluation dataset and private in-house ESG and CP subsets. The best and second-best
scores are shown in bold and underlined respectively. Cells marked with a dash indicate that the metric is not
applicable to the method with explanation in Section E.

Test - PubMed Test - MRPC Test - SNLI
Framework/Model AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1
Zero-shot prompt (baseline) 94.4 95.0 94.7 65.9 62.1 54.3 93.3 94.8 93.4
RAGAS Faithfulness 94.6 97.1 93.9 67.0 82.4 75.1 96.9 97.8 95.7
SelfCheckGPT-Prompt - - - - - - - - -
AlignScore-large 86.2 80.0 82.0 70.2 50.5 57.1 99.8 99.8 98.5
MiniCheck-deberta-v3-large 96.3 95.3 90.9 72.8 55.2 59.0 97.9 98.2 93.5
Bespoke-MiniCheck-7B 99.1 98.7 96.4 74.3 62.8 60.0 99.2 99.3 96.0
RAGulator-Random-Forest 99.4 99.2 97.6 76.0 65.3 59.7 94.5 94.8 87.3
RAGulator-LightGBM 99.4 99.0 97.4 76.5 65.2 60.2 94.8 95.4 87.3
RAGulator-deberta-v3-large 99.5 99.5 97.4 93.7 88.2 81.0 99.5 99.6 98.0
RAGulator-xlm-roberta-large 99.0 98.7 95.4 88.9 80.5 74.9 99.4 99.5 96.4

Table 3: Results on each public data subset (PubMed, MRPC, and SNLI). The best and second-best scores are
shown in bold and underlined respectively. Cells marked with a dash indicate that the metric is not applicable to the
method with explanation in Section E.

Prompting method Accuracy (%) κ (%)
0-shot 98.5 77.8
0-shot, CoT 98.3 78.6
5-shot 98.6 80.5
5-shot, CoT 98.7 83.6

Table 4: Measure of inter-rater agreement between hu-
man annotation and each Llama-3.1 prompting method.

4 Results

4.1 Generative vs. human labelling

We verify the effectiveness of generative labelling
by experimenting with several prompting methods
on a sample of 58 sentence-context pair examples
(20 BBC, 20 CNN/Daily Mail, 18 PubMed), com-
prising 2,696 context sentences. Table 4 shows the
inter-rater agreement between human annotation
and each Llama-3.1 annotator prompted with differ-
ent templates, such as few-shot prompting, chain-
of-thought prompting (CoT) (Kojima et al., 2022),
or both (Wei et al., 2022). Details on prompting
are found in Section C.

We find that the use of five-shot and CoT in-
creases the reliability of generative labelling com-
pared to human annotation, evidenced by the in-
crease in Cohen’s kappa (κ). Nevertheless, direct
zero-shot prompting is already in substantial agree-
ment with human observation. We adopt zero-shot
for generative labelling as this method is the fastest,
utilises the fewest tokens, and least likely to deviate
in terms of desired LLM output structure.

4.2 Model performance on evaluation datasets

Tables 2 and 3 present the evaluation results on
our private ESG and CP subsets, and on the public
subsets (PubMed, MRPC, and SNLI), respectively.
We report area-under-curve (AUC) scores as well
as F1 scores computed after threshold tuning.

Performance against baseline. We compare our
models with direct zero-shot prompting of Llama-
3.1 as a baseline. Details on prompting and ex-
tracted OOC probabilities that allow for the report-
ing of AUC scores are given in Section D. Across
the evaluation dataset, our models consistently out-
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perform the baseline in AUC metrics. The ob-
served performance gap is largest in the CP dataset,
with RAGulator-deberta-v3-large showing a 19%
increase in AUROC and a 17% increase in F1 score,
despite being significantly smaller than Llama-3.1.
BERT-based RAGulator models are at least 630%
faster than baseline, while the meta-classifiers are
up to 34% slower. However, the 70B LLM requires
significantly more VRAM compared to both meta-
classifiers, even with underlying models needed for
feature generation.

Performance against other detectors. We com-
pare our models with other black-box methods
and open-source grey-box detectors (details in Sec-
tion E). RAGulator models outperform evaluated
detectors in most metrics, with the exception of
Bespoke-MiniCheck-7B that has a slight edge in
the CP dataset. Despite scoring 0.9% lower in
AUPRC and 1.4% lower in F1 score, RAGulator-
deberta-v3-large exhibits overall competitive per-
formance as an encoder-only model with 5.6% of
the parameters and 194% of the speed. While RA-
GAS Faithfulness obtains the highest F1 score for
the CP dataset, its speed is more than 30 times
slower than baseline and is likely impractical for
inference in real-time or at scale. On the ESG
subset, the meta-classifiers surpass other detectors
across all metrics regardless of size, and are also
faster than black-box detectors.

5 Discussion

5.1 Model deployment in enterprise
Enterprise LLM usage patterns motivate the need
for OOC detectors that optimise the tradeoff be-
tween accuracy and efficiency for low-latency de-
ployment at scale. Our LLM cluster infrastruc-
ture receives over 2 million requests per month, to-
talling 2.2 billion input tokens and generating over
190 million output tokens. The most frequently
used application involving RAG sustains a peak
load of up to 100 requests per minute. To meet de-
mands, we deploy RAGulator-deberta-v3-large3,4

as a real-time guardrail for RAG requests in the en-
terprise, using a GPU-enabled serving framework
with load balancing and autoscaling capabilities,
enabling high availability and throughput. To fur-
ther maximise model utilisation and reduce latency,
we implement mini-batching and dynamic mapping

3Code available at github.com/ipoeyke/RAGulator
4Model weights available at huggingface.co/ipoeyke/

ragulator-deberta-v3-large

Figure 3: Illustrated setup for OOC detection with
a RAGulator BERT-based classifier in real-time
RAG workflows, where LLM-generated sentences are
streamed to the guardrail at sentence-level.

Figure 4: Illustrated setup for OOC detection with a
RAGulator meta-classifier in batch RAG workflows,
where the LLM-generated answer is sent to the guardrail
to mark OOC sentences for regeneration.

of sentence-context pairs aggregated across concur-
rent requests containing multiple inputs. Figure 3
illustrates this setup, which is most effective for
use cases that require real-time RAG responses,
such as in AI copilot applications. Sentences are
streamed to RAGulator with accompanying con-
text as soon as each sentence is fully generated,
and passed to the user-facing application only if it
is marked as in-context. By serving OOC detec-
tion with a small specialised model, the real-time
requirement is satisfied with low resource usage.

For RAGulator meta-classifiers, the most com-
putationally intensive step in both training and in-
ference is the calculation of embedding similarity
and reranker relevance scores during feature en-
gineering. These metrics are precomputed in the
context retrieval phase of the RAG pipeline, en-
abling reuse of the same embedding and reranking
models within the feature engineering process. By
aligning feature computation with existing GPU-
enabled retrieval infrastructure, no additional GPU
resource needs to be consumed by OOC detec-
tion. In practice, we deploy RAGulator-Random-
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Forest in batch workflows for enterprise RAG, asyn-
chronously using embedding and reranking ser-
vices that are already active. Figure 4 illustrates this
setup, which is most effective for use cases where
meta-classifiers outperform BERT-based models
and where real-time prediction is not required.

In both real-time and batch scenarios, sentences
marked as OOC can either be excluded from the
final answer, or trigger re-retrieval and sentence re-
generation steps as implemented in active retrieval
paradigms such as FLARE (Jiang et al., 2023).

5.2 Model evaluation in enterprise

We introduce an out-of-distribution evaluation
dataset not only to prevent data leakage, but also to
assess if a given OOC model is suitable for specific
use cases in the organisation. We ensure that these
goals are met by collecting private data from enter-
prise domains that differ from the training distribu-
tion, thereby avoiding overlap between training and
test sets. While public benchmarks are useful for
rapidly surveying the performance of open-source
OOC detection models, their results can diverge
from real-world behaviour in enterprise settings.
As such, model selection should be guided by the
specific requirements and measured performance
in the intended use case.

6 Conclusion

In this study, we demonstrate a low-resource
pipeline for data gathering and training of small
discriminative models to detect LLM-generated
texts that are semantically out-of-context. We show
that these models not only outperform zero-shot
detection and black-box judges powered by Llama-
3.1-70B-Instruct, a much larger generative LLM,
but also surpass several popular grey-box detec-
tors on enterprise data. RAGulator-deberta-v3-
large achieves an optimal balance between perfor-
mance and efficiency, is over 6 times faster than
zero-shot prompting, and does not require addi-
tional text preprocessing or feature engineering.
Although emerging work has focused on LLM-
as-a-judge methods or on fine-tuning of genera-
tive LLMs to achieve state-of-the-art performance,
speed and resource limits are concerns when con-
sidering to deploy such pipelines (Parthasarathy
et al., 2024). For enterprises bound by strict data
security rules and resource constraints, our work
presents a favourable alternative for the training
and serving of on-premise OOC detection.

Limitations

We frame OOC detection as a binary classification
problem, without distinguishing between common
fine-grained subtypes such as entity, relation, in-
vented, or subjective OOC occurrences (Mishra
et al., 2024). A popular direction in recent work
is to use strong LLMs (e.g. GPT-4) to generate
high-quality candidates semantically similar to the
retrieved context that contain OOC subtypes. This
includes error insertion, answer perturbation, and
new claim generation, reducing the need for human
annotation (Ravi et al., 2024; Tang et al., 2024;
Mishra et al., 2024; Li et al., 2023; Tang et al.,
2025). While effective, these pipelines and subse-
quent fine-tuning are often infeasible in closed or
resource-constrained environments. Our method
instead applies random substitutions and insertions
to construct sentence-context pairs with binary la-
bels, offering scalability and adaptability across
domains, though potentially introducing a larger
semantic gap than LLM-curated datasets. Future
work may quantify this “simulation gap” and assess
subtype-specific performance to better understand
the trade-off between realism and scalability.

Our approach assumes sentence-level indepen-
dence, limiting the ability to model inter-sentence
dependencies. However, this design reflects enter-
prise requirements, where a single OOC sentence
can invalidate an entire response. We further apply
context splitting for BERT-based models, which
may cause losses in semantic information if mul-
tiple chunks are needed to fully support a single
sentence. Despite this limitation, RAGulator mod-
els perform comparably or better than black-box
methods with much longer context windows, in-
cluding Bespoke-MiniCheck-7B (32,768 tokens)
and zero-shot prompting of Llama-3.1 (128,000
tokens). Given that contexts in our dataset do not
exceed 5,000 tokens, these methods should avoid
semantic losses, suggesting that sentence-level de-
tection and context splitting remain appropriate for
enterprise OOC detection. Future work may de-
velop resource-efficient models that capture inter-
sentence and inter-chunk relationships for real-time
deployment.
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A Notes on feature engineering

Retrieved context can contain noise due to reasons
such as suboptimal parsing of reference documents,
presence of formatting characters, and inconsistent
grammatical or lexical structure. Thus, we apply
text preprocessing to both response and context
before generating classical features. Preprocess-
ing steps include lowercase conversion, removal
of most punctuation symbols, stemming, and stop-
word removal. For semantic features, we use the
raw response-context pair that BERT-based models
expect as input.

Similarity and relevance scores are aggregated
by maximum. As long as the candidate is relevant
to one context sentence, the candidate should be
considered grounded in context, therefore captur-
ing the extent to which the candidate is supported.

B Model training hyperparameters

Table 5 shows the hyperparameter search space
used to tune the LightGBM and Random Forest
meta-classifiers, while Table 6 shows the relevant
hyperparameters for the training of BERT classi-
fiers. During BERT fine-tuning, we observed that
the validation performance no longer increases af-
ter 3 epochs.

C Llama-3.1 for generative labelling

Figure 5 shows the prompt template for zero-shot
generative labelling of training examples. To elicit
zero-shot chain-of-thought, we use the technique
described by Kojima et al. (2022), adding the fol-
lowing line to the instruction while leaving all else
unchanged:

Let’s think step-by-step. After
presenting your thought process,
list down the supporting context
sentences by writing "The answer
is:" followed by the list.

Figure 6 shows the prompt template for five-shot
generative labelling, and Figure 7 shows the prompt
template that elicits chain-of-thought for five-shot
prompting, following the technique described by
Wei et al. (2022).

D Direct prompting of Llama-3.1 for
OOC detection

To perform OOC detection with Llama-3.1, we
directly prompt it to return a binary prediction –

1 for OOC and 0 otherwise. Figure 8 shows the
template used.

To obtain an OOC prediction probability
P (OOC), we extract the log-probabilities (log-
probs) of the “0” or “1” token choices in the first
output token and calculate softmax of the "1" token
based on these 2 choices only:

P (OOC) = exp(log(P (y=”1”)))
exp(log(P (y=”0”)))+exp(log(P (y=”1”)))

where log(P (y = ”1”)) is the logprob of predict-
ing the "1" token and log(P (y = ”0”)) is the log-
prob of predicting the "0" token.

E Comparison to other black-box
frameworks and grey-box models

E.1 Black-box frameworks
We evaluate the following black-box frameworks:

RAGAS Faithfulness5: we consider only the
Faithfulness metric as its definition is similar to
the OOC definition, except for the generalisation to
include sentences containing multiple claims. We
use release version 0.2.15.

SelfCheckGPT-Prompt6: this SelfCheckGPT
variant relies on an LLM judge to assess con-
sistency between stochastically-generated answer
samples. For each ESG and CP data point, we
use the original question to sample 3 responses
from Llama-3.1-70B-Instruct at a temperature of
1.0. The in-distribution holdout split does not apply
to SelfCheckGPT, as the concept of a "question"
does not exist in the dataset curation process; there-
fore, results on the overall evaluation dataset are
not applicable. We do not include the sampling pro-
cess in our measurement of inference speed. We
use release version 0.1.7.

E.2 Grey-box models
We evaluate the following grey-box models:

AlignScore-large7: this model is a finetune of
deberta-v3-large, and can be directly compared to
RAGulator. We use the authors’ original imple-
mentation of AlignScore as retrieved from GitHub
(commit hash beginning with a0936d5).

MiniCheck-deberta-v3-large8: this model is
a finetune of deberta-v3-large, and can be directly
compared to RAGulator. We use the authors’ origi-
nal implementation of MiniCheck as retrieved from
GitHub (commit hash beginning with c655973).

5github.com/explodinggradients/ragas
6github.com/potsawee/selfcheckgpt
7github.com/yuh-zha/AlignScore
8github.com/Liyan06/MiniCheck
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Bespoke-MiniCheck-7B8: this model is a fine-
tune of the InternLM2 chat model (internlm2_5-7b-
chat) consisting of 7.74 billion parameters. We use
the authors’ original implementation of MiniCheck,
including the vLLM framework dependency, as re-
trieved from GitHub (commit hash beginning with
c655973).
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Hyperparameter LightGBM Random Forest
max_depth [2,4,-1] [1,2,3,4,5]
n_estimators [60,100,200] [100,325,550,775,1000]
num_leaves [4,10,31] -
subsample [0.8,1.0] -

Table 5: Grid search values for hyperparameter tuning of meta-classifiers.

Hyperparameter Value
Batch size 16
Epochs 3
Learning rate (base model) 5× 10−6

Learning rate (classification head) 2× 10−5

Warmup steps 10% of total training steps

Table 6: Hyperparameter values used for training of BERT classifiers.

### Instruction ###
You are a professional proofreader with an eye for detail. Given a candidate sentence
and a numbered list of context sentences, your job is to identify which context
sentences support the claim in the candidate sentence. A context sentence supports
the claim in the candidate sentence if it is an exact match, or close to an exact
match. You also know that there must be at least one supporting context sentence.
Return the supporting context sentence identified by its index only. If there are
multiple supporting context sentences, delimit the indexes by comma.

### Candidate sentence ###
<This is the candidate sentence>

### Context sentences ###
0. """<This is the first context sentence>"""
1. """<This is the second context sentence>"""
...

### Response ###

Figure 5: Zero-shot prompt template for generative labelling.
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### Instruction ###
You are a professional proofreader with an eye for detail. Given a candidate sentence
and a numbered list of context sentences, your job is to identify which context
sentences support the claim in the candidate sentence. A context sentence supports
the claim in the candidate sentence if it is an exact match, or close to an exact
match. You also know that there must be at least one supporting context sentence.
Return the supporting context sentence identified by its index only. If there are
multiple supporting context sentences, delimit the indexes by comma. A few examples
of the task will be given, followed by the actual task.

# Example 1 #
### Candidate sentence ###
Washington, D.C. is the capital of the US.

### Context sentences ###
0. """Washington, D.C., formally the District of Columbia, is the capital city and
federal district of the United States."""
1. """The city is on the Potomac River, across from Virginia."""
2. """The city was founded in 1791, and the 6th Congress held the first session
in the unfinished Capitol Building in 1800 after the capital moved from Philadephia."""

### Response ###
[0]

<Examples 2-5>

# Actual task #
### Candidate sentence ###
<This is the candidate sentence>

### Context sentences ###
0. """<This is the first context sentence>"""
1. """<This is the second context sentence>"""
...

### Response ###

Figure 6: Five-shot prompt template for generative labelling.
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### Instruction ###
You are a professional proofreader with an eye for detail. Given a candidate
sentence and a numbered list of context sentences, your job is to identify which
context sentences support the claim in the candidate sentence. A context sentence
supports the claim in the candidate sentence if it is an exact match, or close to
an exact match. You also know that there must be at least one supporting context
sentence. Let’s think step by step. After presenting your thought process, list down
the supporting context sentences by writing "The answer is:" followed by the list.
Return the supporting context sentence identified by its index only. If there are
multiple supporting context sentences, delimit the indexes by comma. A few examples
of the task will be given, followed by the actual task.

# Example 1 #
### Candidate sentence ###
Washington, D.C. is the capital of the US.

### Context sentences ###
0. """Washington, D.C., formally the District of Columbia, is the capital city and
federal district of the United States."""
1. """The city is on the Potomac River, across from Virginia."""
2. """The city was founded in 1791, and the 6th Congress held the first session
in the unfinished Capitol Building in 1800 after the capital moved from Philadephia."""

### Response ###
To identify the supporting context sentences, I will analyse each context sentence
to see if it matches or closely matches the claim in the candidate sentence. The
candidate sentence claims that "Washington, D.C. is the capital of the US." Context
sentence 0 states that "Washington, D.C., formally the District of Columbia, is
the capital city and federal district of the United States." This sentence is an
exact match, as it also states that Washington, D.C. is the capital of the United
States. Context sentence 1 mentions the location of the city, but does not mention
its status as the capital. Context sentence 2 mentions the history of the city and
the capital moving from Philadelphia, but does not explicitly state that Washington,
D.C. is the current capital. The answer is: [0]

<Examples 2-5>

# Actual task #
### Candidate sentence ###
<This is the candidate sentence>

### Context sentences ###
0. """<This is the first context sentence>"""
1. """<This is the second context sentence>"""
...

### Response ###

Figure 7: Five-shot chain-of-thought prompt template for generative labelling.
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### Instruction ###
Given a candidate sentence and a reference text, your job is to identify if the
reference text supports the claim in the candidate sentence. The reference text
supports the claim in the candidate sentence if it is an exact match. The reference
text may also support the claim if the claim is grounded in, or entails, the
reference text. Respond with the final prediction only: 0 if the claim is supported,
1 if the claim is not supported.

### Candidate sentence ###
<This is the candidate sentence>

### Reference text ###
<This is the reference text>

### Response ###

Figure 8: Zero-shot prompt template for OOC detection using Llama-3.1-70B-Instruct.
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