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Abstract

For an e-commerce domain, the address is the
single most important piece of data for ensur-
ing accurate and reliable deliveries. In this
two-part study, we first outline the construction
of a language model to assist customers with
address standardization and in the latter part,
we detail a novel Pareto-ensemble multi-task
prediction algorithm that derives critical in-
sights from addresses to minimize operational
losses arising from a given geographical area.
Finally, we demonstrate the potential benefits
of the proposed address intelligence system for
a large e-commerce domain through large scale
experiments on a commercial system.

1 Introduction

A physical address is an important touch point be-
tween an e-commerce domain and its customers.
While a majority of the customers enter valid ad-
dresses, a fraction of them enter incomplete or
incorrect addresses that precludes the address from
being locatable. In an emerging market like India,
an incomplete or incorrect address may stem from
lack of knowledge of one’s own address (addresses
in some rural regions may not be fully mapped),
limited knowledge of the English language, unfa-
miliarity with using a smart phone, and also intent
on the part of customer to mask their identity to
facilitate filing of multiple fraudulent claims (e.g.,
claiming a lost or damaged product).

An automated system that helps customers enter
complete, structured addresses can mitigate deliv-
ery problems and significantly improve the overall
customer delivery experience.

Beyond their primary role in enabling successful
deliveries, addresses also serve as valuable indi-
cators of potential operational risks. These risks
include package loss or damage, and fraudulent
activities such as receiving or returning counterfeit
items. Such issues may arise from either local-
ized logistics problems or deliberate misconduct

by bad actors. By identifying geographical areas
prone to these problems, preventive measures can
be implemented to minimize operational losses.

This paper presents a two-part study addressing
these distinct but interconnected challenges. The
first part focuses on developing a robust address
validation system, while the second part leverages
validated addresses to predict operational losses.
Given these objectives, the major contributions of
our work are:

1. We develop a comprehensive address valida-
tion framework incorporating:

* a real-time address completion system
comprising of a novel geographical atten-
tion mechanism to mitigate hallucinated
address completions.

* a spell correction routine to correct for
egregious spelling mistakes in customer
entered address text.

 anovel address standardization algorithm
to re-structure address terms to comply
with a natural hierarchy (e.g., house num-
ber—street name —locality)

2. Given an address, we detail the construction
of a novel multi-task algorithm for predicting
the geographical likelihood of various opera-
tional defects that can help improve the logistic
efficiency and drive operational cost savings.

3. We conduct large scale experiments of the
proposed system on real-world data from an
e-commerce domain.

We delve into each of these contributions in later
sections, with the rest of the paper being organized
as follows: Section 2 details the related work in
this domain. In Section 3, we detail the proposed
approach for a real-time address validation system.
Section 4 details a novel multi-task Pareto optimal
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transformer (MTPOT) network model for opera-
tional loss prediction. The experimental evaluation
of the address intelligence framework is detailed
in Section 5, which includes a discussion on the
compute requirements and business impact. Finally,
we outline the conclusions and future work in sec-
tion 6. The address data used in this study is fully
disassociated from customer identities, ensuring
that the model cannot link any address to a specific
individual. Furthermore, there is no possibility of
reverse-engineering the addresses to re-identify or
trace them back to any customer.

2 Related Work

While a few end-to-end address intelligence sys-
tems have been documented in published literature
(Briggs, 2008) (Pipel7, 2024), these reports lack
detailed descriptions of their underlying method-
ologies. This absence of technical specifics makes
it difficult to draw meaningful comparisons with
our proposed system. The majority of existing
research has instead focused on addressing specific
components of the problem, such as address stan-
dardization (Giachetta et al., 2012) (Kii¢iik Matci
and Avdan, 2018), matching (Shan et al., 2020)
(Lin et al., 2020), named-entity-recognition (Sahay
et al., 2023), and geocoding (Zhang et al., 2023)
(Yin, 2025). However, these component-specific
approaches have several limitations: 1) They primar-
ily focus on deriving secondary address attributes
rather than addressing real-time address validation,
2) they heavily depend on labeled training data
(e.g., geocodes, named entity labels, etc), which is
both resource-intensive and challenging to obtain
at scale and 3) their scope has been largely limited
to structured addresses from developed markets,
leaving the unique challenges of unstructured ad-
dresses in emerging markets largely unexplored.
Our research specifically addresses these gaps by
developing a comprehensive solution that works
with unstructured addresses and incorporates novel
standardization approaches not previously consid-
ered in the literature.

Turning to the second aspect of our
study—geographical risk prediction—existing re-
search has predominantly focused on geographical
crime prediction and hotspot analysis (Yarlagadda,
2024) (Wang et al., 2020). While recent studies
(Swamy et al., 2024) have explored operational
loss prediction in e-commerce, they have largely
relied on order-level tabular features, overlooking

the valuable insights embedded in geographical risk
patterns.

Multi-task learning (MTL), first introduced by
Caruana (Caruana, 1997), has emerged as a pow-
erful paradigm that leverages shared information
across related tasks to improve overall model per-
formance. This approach has shown remarkable
success across various domains, including com-
puter vision (Gao et al., 2019) and text classification
(Schuster et al., 2023). Existing MTL approaches
typically fall into two categories: loss scalariza-
tion methods (Liu et al., 2019) (Misra et al., 2016)
nd Pareto-based optimization techniques (Sener
and Koltun, 2018) (Lin et al., 2019). While loss
scalarization methods struggle with the challenge
of determining appropriate task weights, Pareto-
based solutions like MGDA (Désidéri, 2009) often
converge to arbitrary points on the Pareto front.

Our research addresses these limitations by de-
veloping a novel Pareto-based multi-task approach
that comprehensively explores the solution space
while maintaining focus on operational risk pre-
diction. When compared with strong baselines,
our approach achieves state-of-the-art performance
in predicting e-commerce operational losses while
capturing the complex interrelationships between
different risk factors.

3 Address Validation

Accurate address validation is crucial for successful
e-commerce operations, directly impacting delivery
success rates and logistical planning. Our compre-
hensive address validation system consists of three
key components: address auto-completion, spell
correction, and sequence standardization. Each
component plays a vital role in transforming raw,
potentially erroneous address inputs into standard-
ized formats. The system is trained on a robust
dataset of millions of successfully delivered ad-
dresses, represented as a set A = [ X, X, ..., X;n].
Each address X; is structured as a sequence of to-
kens [x1,x2,...,X,], where tokens may represent
elements such as street names, building numbers,
postal codes, or locality information. Our address
corpus encompasses approximately 2K unique to-
kens per zip code, all mapped to a standardized
vocabulary (V). This extensive training dataset
ensures our system can handle diverse address for-
mats and regional variations while maintaining high
accuracy.

In the following subsections, we provide a de-
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tailed examination of each component’s architec-
ture, methodology, and specific role in the address
validation pipeline.

3.1 Address Completion

For the address completion task, we implement a 6-
layer, 8-head transformer decoder architecture that
generates contextually relevant completions from
partial address inputs. The model employs Word-
Piece tokenization, with its vocabulary derived
from our address corpus to capture address-specific
patterns and components. During inference, the
model auto-regressively generates address tokens,
with each prediction conditioned on both the par-
tial input and previously generated sequence. We
use beam search with width £ = 5 to maintain
diverse, high-probability completion candidates.
To enhance prediction quality, we incorporate geo-
graphical constraints through a modified attention
mechanism. For each token x; in the input sequence,
we compute attention scores that take into account
both semantic and geographical relationships. The
geographical attention score ozf] “? between tokens
x; and x; is computed as:
geo exp(s,-j +/lCij)

U Yo exp(sik +Acix)

) T
where s;; = W is the standard scaled

k
dot-product attention score, and c;; is the co-
occurrence frequency of tokens in the same postal
region:

count(x;,x;,r)

Cij = log( €)

+
count(x;,r) - count(x;,r)
The parameter A controls the influence of geo-
graphical constraints, and € is a small smoothing
constant. The final attention output 4; for token x;
is computed as:

n
_ geo
hl' = Za/l.j WvXj)
J=1

where W,, Wi, W, are the query, key, and value
projection matrices respectively. This mechanism
effectively increases attention weights between to-
kens that frequently co-occur within the same postal
regions, leading to more geographically consistent
address completions.

The model is fine-tuned on our vast address
corpus using teacher forcing and a binary cross-
entropy loss function.

3.2 Spell Correction

Customer entered address misspellings can make it
challenging for delivery agents to locate the address
leading to delays and increased operational costs.
We address this challenge through a modified noisy
channel model (Jurafsky and Martin, 2025) that
handles both spelling and white-space errors in
real-time as exemplified by the entered address
Adobetower prestge platinatechpark outerring road
and the corrected address Adobe tower prestige
platina tech park outer ring road. The details of
our methodology are presented in Appendix A.

3.3 Address Sequence Standardization

We address the problem of standardizing inconsis-
tently ordered address inputs through a transformer-
based sequence reordering approach. Given an
input address sequence X = [xi,X2,...,X,], our
model computes pairwise ordering preferences be-
tween tokens and constructs a permutation matrix
to generate the standardized sequence.

The architecture consists of a transformer en-
coder to generate contextual token embeddings,
followed by a pairwise scoring mechanism:

Sij = vT tanh(Wy, [hi; b)) (1)

where §;; represents whether token i should pre-
cede token j. These scores are aggregated into
position preferences and converted to a permuta-
tion matrix using Sinkhorn normalization. The
final reordered address is produced by applying
this permutation to the input sequence. (See Ap-
pendix B for the complete model architecture and
mathematical details.)

For example, our model transforms the un-
structured address ”Whitefield Kannamangala 999
Sobha Amethyst Bangalore” into the standardized
form 7999 Sobha Amethyst Kannamangala White-
field Bangalore”, correctly placing the house num-
ber first, followed by property name, locality, and
city.

The integrated address validation pipeline com-
bines auto-completion, spell correction, and se-
quence standardization to transform inconsistent ad-
dress inputs into standardized, delivery-optimized
formats for e-commerce systems. While ensur-
ing accurate validation is critical, this processed
address information can also serve downstream
applications, such as predicting operational losses
from geographical hotspots which we explore in
the next section.
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Figure 1: Schematic depicting e-commerce operational defects.

4 Multi-task Operational Loss Prediction

Logistics operations for e-commerce domains in-
volve shipping millions of orders and processing
returns through an intricate network of warehouses
to and from the customer doorstep. As depicted
schematically in Figure 1, while a large majority of
the logistics operation is carried out seamlessly, a
small fraction could result in defects/losses primar-
ily stemming from:

D1: packages being reported as lost or stolen,

D2: damage claim for items deemed non-
returnable (e.g., grocery items), and

D3: fake items being returned in-lieu of the genuine
item that was shipped out.

The reasons for these defects could be due to
supply-chain inefficiencies (e.g., improper han-
dling) or fraudulent activity at any point across
the supply-chain up till the end-customer.

While the exact reason for these defects might
be more nuanced, the geographical location to
which these packages are shipped could provide a
strong indicator as to the likelihood of the defect.
It is therefore prudent to use the final delivery
location to predict the propensity of these defects
and trigger appropriate remedial actions to prevent
these operational losses.

These defects are expected to share strong syner-
gistic relationships for several reasons:

1. Common supply-chain vulnerabilities: Ar-
eas with poor last-mile delivery infrastructure
or inadequate security measures are likely to
experience higher rates of all three defects due
to increased opportunities for theft, damage,
and fraudulent activities.

2. Coordinated fraudulent behavior: Bad ac-
tors often exploit multiple defect types simul-
taneously - for example, falsely claiming pack-
ages as lost (D1) and also engaging in return
fraud (D3).

3. Geographical risk factors: Certain locations
may have environmental or socioeconomic
characteristics that contribute to multiple de-
fect types, such as areas with higher crime
rates or challenging delivery conditions.

Given these complex interactions between de-
fects, we expect the defect labels to share a high
degree of synergistic relationship. A well-designed
modeling architecture that can harness these syn-
ergies could potentially lead to significant perfor-
mance gain as opposed to training separate models
for each of these defect types. To this end, we de-
velop a novel multi-task pareto optimal transformer
(MTPOT) model for predicting the likelihood of the
three major defect types basis an input address text.
In the next subsection we detail the architecture of
the proposed MTPOT model.

4.1 Multi-task Pareto Optimal Transformer

MTPOT)
Consider a problem with M binary loss objectives:
L=1[l,l,....Im] ()

A common approach towards multi-task construc-
tion is to define a scalarization loss as [ = Zf‘;’  wil;
where w; is the chosen weight for the i’" loss.
Choosing these weights is however non-trivial and
may require significant domain expertise. In a more
generalized setting, the objective is to generate a
common parametric representation ¢ and define the
minimization problem as:

mginL(H) :mgl’lll(e),lz(e),....,lM(Q) (3)

Eq (8) can be optimized by finding a descent direc-
tion for the parameter 6, at each iteration, such that
each of the objectives is simultaneously minimized
i.e

L5 < 1:(9%). Vi € [1, M] @)

When no such descent direction can be found, the
solution is said to be Pareto stationary. A necessary
condition for a solution to be Pareto stationary is
(Peitz and Dellnitz, 2017) :

M

M
ZaiVli(H)IO,di >0 =1 ;M3 ) ai=1
i=1 i=1

&)
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Figure 2: Architecture showing the Pareto layer followed by
task-specific layers and ensemble prediction.

Such a solution is not unique and the set of all Pareto
stationary solutions constitutes what is known as a
Pareto front.

The intuitive basis for our approach is to leverage
task synergies by systematically exploring solu-
tions along the Pareto front through efficient weight
space sampling, and then extending these solu-
tions towards task-specific predictions. This allows
us to capture shared representations while main-
taining task-specific specialization. The overall
MTPOT architecture, which is a framework and
model-agnostic, is illustrated in Figure 2 with the
key modelling steps described in Appendix C.

5 Results
5.1 Address Validation

We tested our address validation framework using
offline historical data as well through end-user
studies. The details of the experimentation are
presented in the following subsections.

5.1.1 Address Auto-completion

We trained our model on 1M addresses using the
architecture from Section 3.1, with AdamW opti-
mizer (Ir = 5¢7) for 5 epochs. Inference employs
beam search (width = 3). Our model achieved

BLEU-1 of 0.67, BLEU-2 of 0.61, and a Sugges-
tion Acceptance Rate (SAR) of 71.9% (percentage
of users selecting one of the top three completions).
The model delivered a P90 latency of 30ms on an
NVIDIA T4 GPU.

Ablation Study: Removing our geographical at-
tention mechanism caused BLEU-2 to decrease
from 0.61 to 0.53 and SAR from 71.9% to 67.3%.
This confirms geographical attention is essential for
maintaining local coherence, preventing the model
from suggesting geographically inconsistent but
syntactically valid completions.

5.1.2 Address Spell-correction & Sequence
Standardization

The spell-correction module achieved 96% correc-
tion accuracy in a manual audit of 10k randomly
sampled addresses containing errors and serves as a
pre-processing step. The sequence standardization
module, trained using NER techniques on prop-
erly formatted addresses with randomly permuted
components, achieved 91% accuracy in restoring
addresses to their standard format (house number
— street name — locality — city). Standardized
addresses are computed at creation time and stored
as canonical inputs for a/l downstream systems (not
limited to MTPOT), where they enable reliable key-
point mappings (e.g., building and locality name)
that are critical for delivery-zone mapping.

Impact on MTPOT. Address normalization is
a core component of our representation pipeline
across systems. We quantify its downstream ef-
fect on MTPOT via an ablation in which we
train/evaluate with and without standardization.
Removing address standardization degrades AUC-
ROC by approximately 70—120 basis points (bps)
across the three tasks (Table 1), underscoring the
importance of this step.

Table 1: Ablation: Impact of address standardization on
MTPOT (AUC-ROC)

Task Standardization = W/O Standardization
DIl 61.39+1.62 60.66+1.15
D2 71.31+1.50 70.08+1.42
D3 51.61+1.42 50.89+1.31

5.2 MTPOT Evaluation and Impact

To evaluate MTPOT, we used training data from
July 2024, with each delivery address assigned bi-
nary labels for D1, D2, and D3 tasks based on en-
countered loss-types. We tested on the subsequent
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month’s data to assess out-of-time performance.
These defects are infrequent (<5% incidence rate),
with D3 having the largest label imbalance.

We compared MTPOT against scalarization-
based multi-task models like DistilBERT, XLM-
RoBERTa, BERT, and others using the ROC-AUC
metric (Table 2). All models were fine-tuned on
the same data with optimal task weights. MTPOT
demonstrated superior performance, particularly
for the D2 task, leveraging shared label synergies
to better target coordinated fraud. All experiments
were repeated 10 times to ensure reliability.

Table 2: ROC-AUC for models

Model D1 D2 D3

DistilBERT ~ 57.95£1.03  50.05+0.53  50.39+0.36
XLM-R 56.74x1.24  52.37+0.74  51.39+0.10
BERT 58.78+0.32  52.61+0.33  49.51x1.37
ELECTRA  56.13#6.21  51.98+1.17  50.42+0.78
BART 59.03+0.34  52.57+0.49  52.54+1.95
DeBERTa 57.95+¢1.03  50.05+0.53  50.39+0.36
RoBERTa 59.30+1.72  67.17x1.96  49.84+2.15
MTPOT 61.39+1.62 71.31+1.50 51.61+1.42

Our address validation system has significantly
improved delivery accuracy through real-time ad-
dress completion and standardization. The MTPOT
geographic risk prediction model identifies poten-
tial operational issues before they occur, enabling
preventive measures. Operating at full e-commerce
scale, this system has generated annual cost sav-
ings in the millions by streamlining deliveries and
minimizing logistics errors.

MTPOT’s Pareto architecture identifies opera-
tional hotspots by calculating average attention
weights for address tokens within geographical
zones. As shown in the transformed visualization
in Figure 3, these hotspots provide logistics ex-
perts with actionable insights to resolve significant
operational challenges.

6 Conclusion

This paper introduces an end-to-end address intel-
ligence framework with three key innovations: a
geographical attention mechanism that contextual-
izes address completion by incorporating spatial
constraints, an address standardization algorithm
that restructures address sequences while preserv-
ing their natural hierarchy, and the Multi-task Pareto
Optimal Transformer (MTPOT) architecture that
efficiently discovers synergies between multiple
operational objectives through systematic explo-
ration of the Pareto front. Beyond its immediate

LS

o

» ¢

Latitude

¥
2

Longitude

Figure 3: Hotspots identified through attention-based attribu-
tion for operational defects.

application in e-commerce logistics, this frame-
work demonstrates how transformer architectures
can be effectively adapted for specialized domains
while maintaining interpretability, opening avenues
for similar applications in other fields requiring
multi-objective optimization of textual data.

References

Linda L. Briggs. 2008. Aaa drives up data quality with
address validation. Business Intelligence Journal,
13(2). Case study of AAA Missouri’s large-scale
address validation system for policy processing and
data quality management.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28:41-75.

Jean-Antoine Désidéri. 2009. Multiple-gradient descent
algorithm (MGDA). Research Report RR-6953, IN-
RIA.

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L.
Yuille. 2019. Nddr-cnn: Layerwise feature fusing in
multi-task cnns by neural discriminative dimension-
ality reduction. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 3200-3209.

Roberto Giachetta, Tibor Gregorics, Zoltan Istenes, and
Sandor Sike. 2012. Address standardization. Zoltan
Csornyei (Ed.), page 46.

Daniel Jurafsky and James H. Martin. 2025. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition with Language Models,
3rd edition. Online manuscript released January 12,
2025.

Dilek Kiiciik Matci and Ugur Avdan. 2018. Address
standardization using the natural language process
for improving geocoding results. Computers, Envi-
ronment and Urban Systems, 70.

1031



Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang,
and Sam Kwong. 2019. Pareto multi-task learning.
Advances in Neural Information Processing Systems,
32:12037-12047.

Yue Lin, Mengjun Kang, Yuyang Wu, Qingyun Du,
and Tao Liu. 2020. A deep learning architecture for
semantic address matching. International Journal of
Geographical Information Science, 34:559-576.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487—4496.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for multi-
task learning. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3994-4003.

Sebastian Peitz and Michael Dellnitz. 2017. Gradient-
based multiobjective optimization with uncertainties.
In Studies in Computational Intelligence, pages 159—
182. Springer.

Pipel7. 2024. Address verification systems: How to
create a seamless path to accurate deliveries. https:
//pipel7.com/blog/address-verification-s
ystems/. Overview of address verification systems,
their implementation, and benefits for e-commerce
checkout and delivery accuracy.

Rishav Sahay, Anoop Saladi, and Prateek Sircar. 2023.
Multi-task student teacher based unsupervised do-
main adaptation fornbsp;address parsing. page
186-197, Berlin, Heidelberg. Springer-Verlag.

Florian Schuster et al. 2023. Getml: Pareto-based
feature learning for machine learning applications.
arXiv preprint arXiv:XXXX. XXXXX.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn-
ing as multi-objective optimization. Advances in
Neural Information Processing Systems, 31:527-538.

Shuangli Shan, Zhixu Li, Qiang Yang, An Liu, Lei
Zhao, Guanfeng Liu, and Zhigang Chen. 2020. Geo-
graphical address representation learning for address
matching. World Wide Web, 23(3):2005-2022.

Gokul Swamy, Anoop Saladi, Arunita Das, and Shobhit
Niranjan. 2024. Pembot: Pareto-ensembled multi-
task boosted trees. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, page 5752-5761, New York,
NY, USA. Association for Computing Machinery.

Tian Wang, Matthew S. Gerber, and Daniel E. Brown.
2020. A systematic review on spatial crime forecast-
ing. PLoS ONE, 15(5):¢0232392.

Sai Bharath Yarlagadda. 2024. Crime data prediction
based on geographical location using machine learn-
ing. Master’s thesis, California State University, San

Bernardino. Available at ScholarWorks, California
State University, San Bernardino.

Zhengcong Yin. 2025. Toward building next-generation
geocoding systems: a systematic review. arXiv
preprint arXiv:2503.18888.

Chen Zhang, Biao He, Renzhong Guo, and Ding Ma.
2023. A graph-based approach for representing ad-
dresses in geocoding. Computers, Environment and
Urban Systems, 100:101937.

1032


https://tdwi.org/~/media/tdwi/tdwi/article%20content/2008/06/bij_v13n2_cs_aaa%20pdf.ashx
https://tdwi.org/~/media/tdwi/tdwi/article%20content/2008/06/bij_v13n2_cs_aaa%20pdf.ashx
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/CVPR.2019.00332
https://doi.org/10.1109/CVPR.2019.00332
https://doi.org/10.1109/CVPR.2019.00332
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1016/j.compenvurbsys.2018.01.009
https://doi.org/10.1016/j.compenvurbsys.2018.01.009
https://doi.org/10.1016/j.compenvurbsys.2018.01.009
https://doi.org/10.1080/13658816.2019.1681431
https://doi.org/10.1080/13658816.2019.1681431
https://doi.org/10.1007/978-3-319-64063-1_7
https://doi.org/10.1007/978-3-319-64063-1_7
https://pipe17.com/blog/address-verification-systems/
https://pipe17.com/blog/address-verification-systems/
https://doi.org/10.1007/978-3-031-33383-5_15
https://doi.org/10.1007/978-3-031-33383-5_15
https://doi.org/10.1007/978-3-031-33383-5_15
https://doi.org/10.1007/s11280-020-00782-2
https://doi.org/10.1007/s11280-020-00782-2
https://doi.org/10.1145/3637528.3671619
https://doi.org/10.1145/3637528.3671619

A Spell Correction

For a given address term (x;), potential corrections
from vocabulary set V are evaluated using:

argmaxyey Pe(xilw)P(w) (6)

The channel model P.(x;|w) combines Leven-
shtein edit distance (d) and phonetic distance (d):

Pc(xilw) = exp(=(di +d2)) (N

The language model P;(w) incorporates con-
textual information using skip-grams, making it
invariant to address term ordering:

Pl(w) _ Z /lj [ C(W,xl)

xj€S j#i Clxj) +e

®)

where 4; is the TF-IDF weight of term x;, and
C(w,x;), C(x;) are empirical skip-gram counts.

To handle non-standard white-space usage (e.g.,
”Adobetower” — “Adobe tower”), we treat white-
space as an additional character and allow single
insertion/deletion operations. A corrected sequence
R is accepted if its probability exceeds the input
sequence probability by threshold ¢.

B Address Standardization Model
B.1 Model Architecture Details

Our address standardization model transforms in-
consistently ordered address sequences into a stan-
dard format using the following detailed approach:
Given an input address sequence X =
[x1,x2, ..., x,], we utilize a 6-layer, 8-head trans-
former encoder to obtain contextual embeddings:

H =[hi, hy, ..., h,] € R4 )

For each pair of tokens (i, j), we compute a score
S;; that represents whether token i should precede
token j in the standardized sequence:

Sij =vT tanh(Wy, [ 13 hj]) (10)

where [; ] denotes concatenation, W), € R?*?¢ and
v € R? are learnable parameters.

B.2 Position Score Computation

The model learns to output S;; > Sj; if token i
should precede token j in the standardized for-
mat. These pairwise preferences are converted into
position scores:
1 n
Mij == 3 [Lsyosi Lk Hlsgmsy L] (D)
=

where M;; represents the propensity of token i to
be assigned to position j and 1 is the indicator
function.

B.3 Permutation Generation and Training

These scores are converted into a valid permutation
matrix using Sinkhorn normalization:

P = Sinkhorn(M /7, Njer) (12)

where 7 is a temperature parameter and Nj, is the

number of normalization iterations. The reordered

sequence is obtained through matrix multiplication:

X=P-X (13)

The model is trained using supervised pairs

of (unstructured, structured) addresses with cross-
entropy loss:

L= _zn:znlyijlog(Pij)

i=1 j=1

(14)

where Y;; € {0, 1} is the ground truth permutation
matrix.

C MTPOT Modelling Steps

1. Weight Selection via Latin Hypercube Sam-
pling: We generate a set of weight vec-
tors /| j = 1’V using Latin hypercube sam-
pling in the M-dimensional simplex (where
Zf\fl a{ = l,a{ > 0). Latin hypercube sam-
pling (LHS) is a statistical method for generat-
ing near-random samples that provides better
coverage of the sample space compared to
pure random sampling. The key idea is to di-
vide the sampling space into equal probability
intervals along each dimension and sample
exactly once from each interval. Specifically,
for our M-dimensional weight space:

(a) We divide each dimension into N,
equally sized intervals

(b) For each dimension i, we randomly sam-
ple one value from each interval, giving
us N, samples

(c) These samples are then randomly
paired across dimensions to create M-
dimensional points

This stratification ensures that each interval
along each dimension has exactly one sample,
giving a probability of NL for each interval.
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To ensure the sampled weights lie on the prob-
ability simplex (i.e., sum to 1 and are non-
negative), we project the LHS samples onto
the simplex through normalization.

. Pareto Layer Training: For each sampled
weight vector @/, we train a single-head single-
layer transformer model (referred to as the
Pareto layer) using the scalarized loss:

M
1% = Z al1:(6) (15)
i=1

At convergence, this solution satisfies /%' ~ 0
which implies Y™, a;vI;(6) ~ 0, which is
the very condition for Pareto stationarity as
outlined in Eq (13).

. Task-Specific Model Extension

After training, we freeze the Pareto layer
weights and append task-specific learnable
layers for each individual task. Let T(il ; repre-
sent the output of the task-specific model for
the i task using the Pareto layer trained with
weight vector o/ .

. Ensemble Prediction
The final prediction for each task is obtained by
ensembling the predictions across all sampled
weight configurations:

No
pred' = ZT;J. li=1..m (16)
=
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