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Abstract

This paper presents an audio chatbot system de-
signed to handle a wide range of audio-related
queries by integrating multiple specialized au-
dio processing models. The proposed system
uses an intent classifier, trained on a diverse
audio query dataset, to route queries about au-
dio content to expert models such as Automatic
Speech Recognition (ASR), Speaker Diariza-
tion, Music Identification, and Text-to-Audio
generation. A novel audio intent classification
dataset is developed for building the intent clas-
sifier. A 3.8 B LLM model then takes inputs
from an Audio Context Detection (ACD) mod-
ule extracting audio event information from the
audio and post processes text domain outputs
from the expert models to compute the final
response to the user. We evaluated the system
on custom audio tasks and MMAU sound set
benchmarks. The custom datasets were moti-
vated by target use cases not covered in industry
benchmarks. We proposed ACD-timestamp-
QA (Question Answering) as well as ACD-
temporal-QA datasets to evaluate timestamp
and temporal reasoning questions, respectively.
First, we determined that a BERT based In-
tent Classifier outperforms LLM-fewshot in-
tent classifier in routing queries. Experiments
further show that our approach significantly
improves accuracy on some custom tasks com-
pared to state-of-the-art Large Audio Language
Models and outperforms models in the 7B pa-
rameter size range on the sound testset of the
MMAU benchmark, thereby offering an attrac-
tive option for on device deployment.

1 Introduction
The rapid advancement of LLMs has significantly
transformed the capabilities of chatbot systems,
particularly in handling text-based queries (Kumar
et al., 2023). However, the domain of audio content
related queries remains relatively underexplored,
with existing chatbots often limited to specific au-
dio tasks (Microsoft, 2015; Google, 2010; AWS,

2017; Chu et al., 2023; Tang et al., 2023). There
is an increasing demand for intelligent systems ca-
pable of processing and understanding audio data
in various contexts (Zhao et al., 2019). Whether
it is recognizing music tracks, transcribing spoken
language, or identifying speakers in a conversation,
the ability to accurately interpret audio inputs is
crucial for enhancing user interaction and satisfac-
tion. Traditional chatbots like LUIS (Microsoft,
2015), DialogFlow (Google, 2010) and Lex (AWS,
2017) , which primarily focus on speech or text,
fail to meet these needs, highlighting the necessity
for a more comprehensive approach. Even the lat-
est multimodal LLMs are targeted towards specific
speech and general audio related tasks (Tang et al.,
2023; Chu et al., 2023; Gong et al., 2023; Wu et al.,
2023) fail to answer diverse audio queries.

This paper1 introduces a novel chatbot system
designed to address a broad spectrum of audio-
related queries by integrating multiple specialized
audio processing models. Our goal is to create
a versatile and robust solution that surpasses the
limitations of current systems. To this end, we
first developed an intent classifier that effectively
routes user queries to the appropriate audio expert
models. This classifier was trained on a diverse
dataset of audio-related questions, ensuring it can
handle a wide range of queries with high accuracy.
By leveraging advanced models such as Automatic
Speech Recognition (ASR) (Malik et al., 2021),
Speaker Diarization (Park et al., 2022) , Music
Identification (Chaouch et al., 2020), and Text to
Audio generation (Huang et al., 2023), our system
can process and respond to complex audio queries
that require a combination of one or more of these
expert models. Moreover, our system incorporates
language models to provide coherent and contex-
tually relevant responses. These models integrate

1This work was previously made available as a preprint on
arXiv:2412.03980.
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text outputs from the audio expert models with ad-
ditional context from the Audio Context Detection
(ACD) model (Kong et al., 2020), which predicts
audio events present in an audio along with their
timestamps. This integration is particularly benefi-
cial for handling multifaceted queries that require
a deep understanding of the audio context.

To our knowledge, we are the first to propose a
comprehensive solution for audio-related queries
by integrating specialized audio processing and ad-
vanced language models. In addition we introduce
a novel audio intent dataset for training a BERT
based query intent classifier and assess system per-
formance on two new benchmark datasets for tem-
poral reasoning tasks beyond what is covered in
MMAU sound set.

2 Related Works / Background
2.1 Large Audio Language Models

Recent studies have explored the integration of
speech signals into large language models (LLMs),
enabling them to directly process and understand
general audio inputs. SALMONN (Tang et al.,
2023) is a speech audio language music open neu-
ral network that integrates a pre-trained text-based
LLM with speech and audio encoders into a single
multimodal model, achieving competitive perfor-
mance on various speech and audio tasks. Similarly,
the Qwen-Audio (Chu et al., 2023) model scales
up pre-training to cover over 30 tasks and vari-
ous audio types, enhancing interaction capabilities
with Qwen-Audio-Chat for multi-turn dialogues.
The LTU (Listen, Think, and Understand) model
(Gong et al., 2023) introduces a new approach by
combining audio perception with reasoning abil-
ities, trained on the OpenAQA-5M dataset to ex-
hibit strong performance on classification and cap-
tioning tasks, as well as emerging audio reasoning
and comprehension abilities. GAMA, a general
purpose Large Audio-Language Model (LALM)
(Ghosh et al., 2024) , integrates multiple audio rep-
resentations and fine-tunes on a large-scale audio-
language dataset, augmented with complex reason-
ing abilities through instruction-tuning with a syn-
thetically generated CompA-R (Instruction-Tuning
for Complex Audio Reasoning) dataset, demon-
strating advanced audio understanding and reason-
ing capabilities.

Another approach to integrating speech signals
into LLMs is the use of decoder-only architec-
tures, such as Speech-LLaMA (Wu et al., 2023).
This model leverages a decoder-only architecture

to map compressed acoustic features to the contin-
uous semantic space of the LLM, demonstrating a
significant improvement over strong baselines on
multilingual speech-to-text translation tasks. Fur-
thermore, LauraGPT (Du et al., 2023) is a unified
audio-and-text GPT-based LLM that can process
both audio and text inputs and generate outputs
in either modalities.These advances in audio-text
integration demonstrate the potential of LLMs in
handling audio-related tasks.

2.2 Chatbot Systems
Our work builds upon the recent advances in large
language models (LLMs) and their applications in
various domains, particularly in the area of multi-
modal reasoning and action. Recent studies have
shown that multimodal LLMs can be used for var-
ious audio and vision tasks, such as audio gen-
eration and editing (Liang et al., 2024), speech
recognition (Huang et al., 2024), and image gener-
ation (Surís et al., 2023). Additionally, the concept
of generalist agents, which aim to combine basic
skills to solve complex tasks (Ge et al., 2024), has
been explored in the context of LLMs. Further-
more, the use of LLMs to execute computer tasks
guided by natural language (Kim et al., 2024) has
been demonstrated, and open-source AGI platforms
that integrate LLMs with domain-specific expert
models to solve complex tasks (Deng et al., 2024)
have been proposed. However, these works do not
specifically address the challenge of handling di-
verse audio-related queries, which is the focus of
our paper.

2.3 Intent classification
Intent classification entails identifying the main
objective or intent of a particular text. There are
several datasets used for this task. Specifically,
SNIPS (Coucke et al., 2018) dataset covers vari-
ous domains like music, weather, and booking ser-
vices, while ATIS (Hemphill et al., 1990) is focused
on the air travel domain. The Banking dataset
(Casanueva et al., 2020) is specific to banking and
finance, and the Massive dataset (FitzGerald et al.,
2022) spans multiple languages and domains. The
SLURP dataset (Bastianelli et al., 2020) is a large
and diverse multi-domain dataset for end-to-end
spoken language understanding, featuring around
audio recordings annotated with scenarios and ac-
tions. Studies (Larson et al., 2019) have shown
that transformer based BERT based models give
the best performance. Recently LLM based ap-
proaches (Benayas et al., 2024; Parikh et al., 2023;
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Figure 1: Proposed chatbot system

Loukas et al., 2023) have also been proposed which
involves various methods of few shot prompting.

2.4 Expert Audio Models
A variety of expert models have been deployed for
specialized audio tasks and we narrow the descrip-
tion here to a few models explored and aligned
with the use cases targeted in this work. Whis-
per (Radford et al., 2023) is utilized for Automatic
Speech Recognition (ASR), while the ACRCloud
API (ACRCloud, 2024) is applied for music iden-
tification and recommendation tasks. Pyannote
(Bredin, 2023) is used for speaker diarization, and
the VoiceFilter model (Wang et al., 2018) is im-
plemented for personalized speech separation and
removal. Additionally, the Audio Question An-
swering (AQA)-LLM (Sridhar et al., 2024) is de-
ployed for answering general audio event-related
questions. The Audio Context Detection(ACD)
model is based on CNN10 PANN (Kong et al.,
2020; Mahfuz et al., 2023) pretrained for audio tag-
ging. The detected audio events and timestamps
are determined after applying thresholds on the
frame-level probabilities of the model output.

3 Proposed Method
The proposed chatbot is illustrated by Figure 1 and
is based on determining the intent contained in
audio related text queries to then route them to the
appropriate audio models. The User Interface (UI)
captures audio input and user queries, then displays
the responses in natural language. Its individual
modules are described in the following sections.

3.1 Intent Classifier

Class Training Count Test Count Total Count

Audio/Text to Audio 1909 478 2387
LLM 1893 473 2366
Music recommendation 917 230 1147
ASR whisper 778 194 972
Music identification 643 161 804
Speaker ID, Diarization, counting 602 150 752
Source separation/removal 243 61 304
Unsupported 2343 586 2929

Total 10328 2333 12661

Table 1: Proposed Dataset for audio intent classification

To build an intent classifier for handling au-
dio queries, we conducted a survey to collect a
diverse set of questions related to audio. These
questions were then classified to create a robust
dataset, which was used to train the intent classifier.
Our question crowd sourced dataset was acquired
through a survey involving 150 participants. This
approach was chosen to ensure the data reflects real-
life questions people may ask, rather than relying
on potentially less authentic open-source datasets.
Notably, there are no open-source human generated
datasets available for audio intent classifications
that cover the queries for the wide range of expert
models mentioned in the previous section, mak-
ing our dataset unique. Sample queries for each
class in the intent classification dataset is shown
in Appendix A.The dataset is divided into training
and test sets, as detailed in Table 1, with a total of
12,661 entries, including 10,328 for training and
2,333 for testing. Table 2 shows a comparison with
other intent classification datasets.
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Dataset # Training # Testing # Intents
SNIPS 13084 1400 7
ATIS 4455 1373 17
Banking 10003 3080 77
Massive 11514 3974 60
SLURP 11514 2974 18
Audio-Intent (Ours) 10382 2333 8

Table 2: Intent Classification Datasets

The intent classes include Audio/Text to Audio,
LLM, Music recommendation, ASR whisper, Mu-
sic identification, Speaker ID, Diarization, count-
ing, Source separation/removal, and Unsupported
(to classify unsupported tasks). We evaluated the
performance of two models: a Bert-based intent
classifier and a LLM-Fewshot intent classifier. We
use modern-BERT (Warner et al., 2024) for our
expertiments as it shows better performance than
the orginal versions for various NLP tasks. Even
though using LLMs for intent classification can be
resource-intensive for relatively simple tasks and
may not be suitable for real world applications. we
evaluated a fewshot classification approach using
the Phi-3.5 model (Abdin et al., 2024) to ensure a
comprehensive evaluation.

The evaluation metrics include Precision, Re-
call, and F1-score for each class. Table 3 presents
the detailed performance metrics for both mod-
els. The results show that the Bert-based intent
classifier gives better results over all these metrics
when compared to the fewshot LLM intent classi-
fier. Hence, we use the Bert-based intent classifier
which is also much smaller than the LLM intent
classifier in the proposed system. LLM based in-
tent classifiers (Benayas et al., 2024; Parikh et al.,
2023; Loukas et al., 2023) that use various methods
of prompting and fine-tuning that can give better
performance than the few-shot approach was pro-
posed. Since the focus of this paper is to develop a
system that can be deployed on edge devices, we
constrain ourselves to smaller models like BERT
instead of using LLMs for the same task. Using
LLMs for intent classification is costly in terms of
efficiency and inference speed.

3.2 Expert models
The trained BERT intent classifier next routes
queries to expert audio task models. Our system
incorporates several such models.The Automatic
Speech Recognition (ASR) model, exemplified by
Whisper (Radford et al., 2023), converts spoken
language into text, enabling the system to under-
stand and process verbal queries. The Speaker Di-

arization model, such as Pyannote (Bredin, 2023),
identifies and segments different speakers in an
audio file, which is particularly useful in multi-
speaker environments. For music-related queries,
the Music Identification model, like ACRcloud
(ACRCloud, 2024), recognizes and provides infor-
mation about music tracks. Additionally, the Text
to Audio model generates audio content from text
inputs, facilitating the creation of audio responses
(Huang et al., 2023). The Audio Question Answer-
ing Large Language Model (AQA-LLM) (Sridhar
et al., 2024) is designed to answer questions re-
lated to audio events, while the VoiceFilter model
(Wang et al., 2018) handles target source separa-
tion and removal tasks. Details of the expert model
complexities and the deployment can be found in
Appendix D and E.

3.3 Response generation with RAG based
LLM

In the final stage, an LLM combines answers from
the expert models with chat history and additional
inputs from the Audio Context Detection (ACD)
model and the AQA-LLM. The chat history con-
sists of the all the conversation happened till the
previous turn. We limit the chat history to the last
10 turns since the context length since we have
seen degradation of the model performance as the
input tokens increases. We chose Phi-3.5 LLM
because of its competitive performance on various
NLP benchmarks and a 3.8-B parameter model can
be deployed on edge devices like mobile phones
after further optimizations (Abdin et al., 2024).

The Audio Context Detection (ACD) model
(Kong et al., 2020; Mahfuz et al., 2023) provides
meta data containing detailed event and timestamp
information. This model enhances the understand-
ing of the audio environment, allowing the system
to generate more accurate and contextually appro-
priate responses, particularly for queries that re-
quire precise timestamp-related information.

To ensure robustness and user satisfaction, our
system includes a fallback mechanism. When the
expert models are unable to address a query, the
AQA-LLM model generates generic answers. This
fallback mechanism ensures that the system can
handle a wide range of queries, maintaining a high
level of user satisfaction even in scenarios where
specific expert models may not have the required
information. Some examples generated by the pro-
posed chatbot can be found in Figure 2.
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Class Name Bert-based Intent Classifier Phi 3.5 - Fewshot Intent Classifier

Precision Recall F1-score Precision Recall F1-score

Music identification 0.98 1.00 0.99 0.63 0.84 0.72
Music recommendation 0.80 0.91 0.85 0.88 0.61 0.72
ASR whisper 0.86 0.86 0.86 0.36 0.54 0.43
Speaker ID, Diarization, counting 0.97 0.87 0.92 0.72 0.68 0.70
Audio/Text to Audio 0.95 1.00 0.97 0.86 0.37 0.52
Source separation/removal 0.98 0.74 0.84 0.20 0.89 0.32
LLM 0.87 0.88 0.88 0.09 0.09 0.09
Unsupported 0.84 0.83 0.85 0.18 0.17 0.18

Overall accuracy 0.90 0.37

Table 3: Performance metrics for Bert-based and LLM-Fewshot intent classifiers.

4 Experimental validation
4.1 Custom audio benchmark task datasets

The two proposed temporal benchmark datasets
have two primary applications. Firstly, these
datasets are valuable for evaluating Retrieval
Augmented Generation (RAG) based approaches,
where audio information is represented in text for-
mat and text-only LLMs are used to answer audio
queries (Sakshi et al., 2024). This is facilitated
by providing the ground truth ACD metadata in
text format along with the QA pairs. Secondly,
these datasets are used to directly assess explicit
timestamp retrieval and temporal understanding ca-
pabilities required for audio scene understanding in
security and monitoring applications for example
(Sridhar et al., 2024).

An essential category of questions in our au-
dio chatbot system pertains to timestamp inquiries
based on ACD metadata or speaker diarization. To
address this, we developed the ACD-timestamp-
QA dataset, which comprises 960 entries gener-
ated using GPT-4 data augmentation techniques
(Gong et al., 2023) to create QA pairs from ground
truth audio events data about timestamp informa-
tion. We used two different representations for the
ACD metadata. The first representation is an ex-
plicit string format, where the event name, start
time, and duration are provided in natural language
sentences. The second representation uses JSON
entries, which include the audio event name, start
time, end time, duration, and the order of the event,
with end time, duration, and order explicitly in-
serted. Our experiments, detailed in the subsequent
section, demonstrate that the JSON format with ad-
ditional explicit information significantly enhances
performance compared to the string format. We
also developed the ACD-temporal-QA benchmark

to evaluate the temporal audio skills of our ap-
proach. Using the GPT-4 model, we generated
1,500 temporal QA pairs from the ground audio
events of the Audioset dataset (Gemmeke et al.,
2017) as proposed in (Gong et al., 2023). These
questions encompass queries about the chronolog-
ical order of audio events. We present the results
of our experiments in the next section. The ACD-
temporal-QA dataset, on the other hand, consists of
QA pairs that demand reasoning about the chrono-
logical order and temporal nature of audio events,
with answers being either “yes” or “no.”

We utilized the timestamp dataset to derive better
representations for ACD metadata and employed
the temporal benchmark to evaluate zero-shot, few-
shot, and chain-of-thought (CoT) based methods.
We present the results of our experiments in sec-
tion 4.3.1. More details of the proposed custom
benchmark tasks can be found in Appendix B and
C.

4.2 MMAU sound set benchmark

Our datasets differ from the MMAU benchmark
(Sakshi et al., 2024) as they include ground truth au-
dio events and their timestamps as metadata, which
is crucial for assessing the performance of text-
only LLMs in temporal and timestamp reasoning.
While the MMAU benchmark also features tempo-
ral questions, they are multiple-choice and lack the
ground truth audio metadata. We use the MMAU
benchmark for comparison with other LALMs only.
Sample queries for these proposed datasets can be
found in Appendix B and C.

4.3 Results and Discussion
4.3.1 Phi+ACD configuration comparisons
We first evaluated the performance of different
models using various ACD metadata types on the

90



Model Name Metadata Type Accuracy %

AQA-LLM String format 74.27
AQA-LLM JSON format 80.21
Phi-3.5 String format 89.75
Phi-3.5 JSON format 96.35

Table 4: Accuracy of different models with various ACD
- Metadata types.

Method Additional Input Accuracy (%)

Zeroshot Ground truth 71.6
Zeroshot + CoT Ground truth 73.66
Fewshot + CoT Ground truth 65
Zeroshot ACD predictions 50.34
Zeroshot + CoT ACD predictions 48.54
Fewshot + CoT ACD predictions 46.12

Table 5: System configuration comparisons on custom
datasets

Model Size (Billion Parameters) Dataset Accuracy
Phi+ACD 3.8 ACD-temporal-QA 50.34
Qwen 8.4 ACD-temporal-QA 44.87
GAMA 7 ACD-temporal-QA 57.53

Phi+ACD 3.8 ACD-timestamp-QA 37.57
Qwen 8.4 ACD-timestamp-QA 30.66
GAMA 7 ACD-timestamp-QA 28.56

Table 6: Model Performance on Different Datasets

ACD-timestamps-QA dataset. Specifically, we
compared the AQA-LLM model and the Phi-3.5
model using both string format and JSON format
with extra information. The results, shown in Table
4, indicate that the JSON format with additional ex-
plicit information significantly improves accuracy.
Note that we used the ground truth ACD data as the
inputs while evaluating these models. The prompts
used for the experiments in Table 5 are presented
in Appendix F.

Table 5 presents the evaluation results of the Phi
model using different prompting methods (Kojima
et al., 2022) and additional inputs on the ACD-
temporal-QA dataset. The highest accuracy of
73.66% was achieved using the Zeroshot + CoT
method with ground truth audio events. CoT
method involves prompting the model to provide
explanations along with the answers. This indi-
cates that combining the Chain of Thought (CoT)
approach with zeroshot method significantly im-
proves performance when accurate audio event data
is available. In contrast, the Fewshot + CoT method
with ground truth audio events resulted in a lower
accuracy of 65%, suggesting that the Fewshot ap-

Name Size Accuracy (%)

Random Guess - 26.72
Most Frequent Choice - 27.02
Human (test-mini) - 86.31

Pengi 323M 6.1
Audio Flamingo Chat 2.2B 23.42

LTU 7B 22.52
LTU AS 7B 23.35
MusiLingo 7B 23.12
MuLLaMa 7B 40.84
M2UGen 7B 3.6
GAMA * 7B 41.44
GAMA-IT 7B 43.24

Qwen-Audio-Chat 8.4B 55.25
Qwen2-Audio 8.4B 7.5
Qwen2-Audio-Instruct * 8.4B 54.95
SALMONN 13B 41
Gemini Pro v1.5 - 56.75
GPT4o + weak cap. - 39.33
GPT4o + strong cap. - 57.35
Llama-3-Instruct + weak cap. 8B 34.23
Llama-3-Ins. + strong cap. 8B 50.75

Phi-3.5 + ACD (proposed approach) 3.8B 50.75

Table 7: Results on MMAU Sound Test Split. The en-
tries marked with * are reproduced by our experiments
and the other values are taken from MMAU paper (Sak-
shi et al., 2024) for comparison.

proach may not be as effective in this context. The
fewshot method has 2 example QA pairs in the
prompt. Detailed prompts for these approaches can
be found in Appendix F.

When using ACD predictions as additional in-
put, all methods showed a notable decrease in accu-
racy. The Zeroshot method achieved 50.34%, while
the Zeroshot + CoT and Fewshot + CoT methods
resulted in even lower accuracies of 48.54% and
46.12%, respectively. This decline highlights the
challenges of using predicted data, which may in-
troduce errors that negatively impact the model’s
performance. Overall, the results suggest that as-
suming the ACD model predictions are reliable,
Zeroshot + CoT is the best prompting method for
accurate answers and is henceforth referred to as
Phi+ACD in the following subsection.

4.3.2 Comparison with SOTA models

Table 6 presents the performance comparison be-
tween SOTA Large Audio Language Models, and
our proposed approach, Phi+ACD, across the two
proposed datasets: ACD-temporal-QA and ACD-
timestamp-QA. The 7B GAMA model (Ghosh
et al., 2024) achieved the highest accuracy on the
ACD-temporal-QA dataset with 57.53%, followed
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by the 3.8 B Phi+ACD at 50.34%, and Qwen
at 44.87%. On the ACD-timestamp-QA dataset,
Phi+ACD leads with 37.57% accuracy, while Qwen
(Chu et al., 2023) and GAMA scored 30.66% and
28.56%, respectively. These results indicate that
the GAMA model performs best on temporal ques-
tion answering tasks, while Phi+ACD shows better
performance on timestamp-related questions.

Table 7 summarizes the results of various mod-
els on the MMAU benchmark sound test split. The
entries marked with * are reproduced by our exper-
iments and the other values are taken from MMAU
paper (Sakshi et al., 2024) for comparison. Our Phi-
3.5 + ACD model achieved an accuracy of 50.75%
and hence outperforms many of the 7B param range
models and gives similar performance to the 8B
param range Llama-3Instruct + strong cap (Sak-
shi et al., 2024) . However it is outperformed by
much larger models such as GPT-4o + strong cap.
(57.35%) and Gemini Pro v1.5 (56.75%).

Human performance on the test-mini split is sig-
nificantly higher at 86.31%, highlighting the gap
between current models and human-level under-
standing. Among the models, Qwen-Audio-Chat
(55.25%) and Qwen-2-Audio-Instruct (54.95%)
also show strong performance, at the expense of
larger model sizes and requiring specialized instruc-
tion tuning.

4.3.3 Human evaluation
we conducted a human evaluation across 161 multi-
turn audio queries. Annotators categorized re-
sponses into error types and correctness. The sys-
tem produced 43 satisfactory answers, while 35
challenges were raised where users disagreed with
the system’s interpretation. The most frequent er-
ror was “Does not hear something” (29 instances),
followed by “Hears something not there” (24) and
“Flip flops from agreed facts” (21).

4.3.4 Qualitative examples
We also show two qualitative results from the chat-
bot in Figure 2 where our chatbot leverages various
expert models to answer diverse audio queries.

5 Conclusion
This paper introduces a comprehensive chatbot sys-
tem that integrates multiple specialized audio pro-
cessing models and advanced language models to
handle a wide range of audio-related queries. Our
approach demonstrates competitive performance
on custom and MMAU sound set benchmarks when

Figure 2: Qualitative examples generated by the pro-
posed chatbot

compared against similar sized (3-7B param) mod-
els, showcasing its effectiveness in addressing com-
plex audio queries with a tractable footprint. We
intend to conduct further system optimizations in
future work with the goal of deploying the mod-
els on devices with real time computational con-
straints.

6 Limitations

Misclassifying the intents by the intent classifier
can lead to generation of irrelevant responses by
the expert models, ultimately affecting the overall
user experience. To mitigate the consequences of
this limitation we will flag responses with low con-
fidence during intent classification or audio event
detection to alert users of potential inaccuracies.
Additionally, the general purpose AQA-LLM mod-
ule serves as a fallback option in case of intent
classification or ACD detection errors, ensuring
that users receive a relevant response. Our eval-
uation primarily focused on custom audio tasks
and the MMAU sound set benchmarks. However,
these metrics may not fully capture the system’s
performance across all potential use cases.
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A Intent classification dataset examples

A few sample questions for each class of the intent
classification dataset can be found in Figure 3.

B ACD-timestamp-QA dataset examples

Sample queries along with the ground truth ACD
metadata for the ACD-timestamp-QA are presented
in Figure 4.

C ACD-temporal-QA dataset examples

Sample queries along with the ground truth ACD
metadata for the ACD-temporal-QA are shown in
Figure 5.

D On-device and Cloud deployment

In future , based on resource availability, we pro-
pose to deploy the Whisper, ACD, Phi and Voice-
Filter models on-device and all other remaining
models in the cloud. Our approach of using various
expert models gives us the flexibility to adopt such
hybrid deployment framework.
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Figure 3: Sample queries from the proposed intent classification dataset

E Model complexities

We have customized the expert models with our
in-house training data and architectures, hence the
model complexity may vary from the open-source
implementations. The approximate number of pa-
rameters for the expert models we used is shown
in Table 8

Model Size
ACD 5.5M
ACR-cloud -
Pyannote 31M
VoiceFilter 6.8M
AQA-LLM 7B
Whisper 39M

Table 8: Model Sizes

F Prompts used for various methods

Prompts used for Zero-shot, Chain of Thought and
Few-shot methods can be found in Figure 6
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Figure 4: Sample queries from ACD-timestamp-QA dataset

Figure 5: Sample queries from ACD-temporal-QA dataset
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Figure 6: Prompts used for various methods
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