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Abstract

Large Language Models (LLMs) hold signif-
icant promise for transforming digital health
by enabling automated medical question an-
swering. However, ensuring these models
meet critical industry standards for factual
accuracy, usefulness, and safety remains a
challenge, especially for open-source solu-
tions. We present a rigorous benchmark-
ing framework via a dataset of over 1,000
health questions. We assess model perfor-
mance across honesty, helpfulness, and harm-
lessness. Our results highlight trade-offs be-
tween factual reliability and safety among
evaluated models—Mistral-7B, BioMistral-7B-
DARE, and AlpaCare-13B. AlpaCare-13B
achieves the highest accuracy (91.7%) and
harmlessness (0.92), while domain-specific
tuning in BioMistral-7B-DARE boosts safety
(0.90) despite smaller scale. Few-shot prompt-
ing improves accuracy from 78% to 85%, and
all models show reduced helpfulness on com-
plex queries, highlighting challenges in clin-
ical QA. Our code is available at: https:
//github.com/AnasAzeez/TTT

1 Introduction

Large Language Models (LLMs) are rapidly trans-
forming digital health applications, from symptom
checking (Gupta et al., 2025) to medical Q&A (Li
etal., 2023). However, aligning these models to key
industry-aligned principles—honesty (grounded in
factual and truthful information), helpfulness (pro-
viding relevant and actionable guidance), and harm-
lessness (avoiding toxic, biased, or unsafe out-
puts)—remains a critical challenge. While propri-
etary models like GPT-4 (Chang, 2023) and Claude
3.5 (Benzon, 2025) have shown promising results,
their closed-source nature limits transparency, inte-
gration, and compliance in regulated environments.
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In contrast, emerging open-source models such
as AlpaCare-13B! (Zhang et al., 2023), BioMistral-
7B-DARE? (Labrak et al., 2024), and Mistral-7B>
(Samo et al., 2024) offer greater flexibility and ac-
cessibility. Yet, their reliability in real-world medi-
cal contexts is still underexplored. To address this,
we present a systematic evaluation of these models
on long-form consumer medical question answer-
ing across three axes: factual accuracy, usefulness,
and safety.

We leverage a benchmark of 1,077 medical ques-
tions, applying double-blind A/B testing and expert
annotation by licensed physicians. Our pairwise
analysis reveals that BioMistral-7B-DARE (Labrak
etal., 2024) and Mistral-7B (Samo et al., 2024) con-
sistently outperform AlpaCare-13B (Zhang et al.,
2023) in honesty and helpfulness, while AlpaCare-
13B (Zhang et al., 2023) yields fewer harmful re-
sponses. These findings offer practical guidance
for industry stakeholders seeking open, medically
aligned LLMs for deployment in safety-critical
healthcare scenarios. Note: Benchmarking rather
than novelty is the main focus of this study.

2 Related Work

Early research in medical Q&A centered on
structured formats such as multiple-choice
or short-answer tasks, using benchmarks like
MedQA (Yang et al., 2024), MedMCQA (Pal
et al., 2022), and PubMedQA (Jin et al., 2019).
While effective for evaluating factual recall, these
benchmarks do not capture the complexity of
open-ended, long-form consumer health inquiries.

More recent datasets, including Health-
SearchQA (Singhal et al., 2023) and MASH-

"https://huggingface.co/xz97/AlpaCare-1lama-1
3b

2https://huggingface.co/BioMistral/BioMistral
-7B

3https://huggingface.co/mistralai/Mistra1—7
B-v0.1
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QA (Wang et al., 2025), shift focus toward
consumer health, but emphasize factoid retrieval
over generative reasoning. Some work integrates
human expert evaluation (Krinzle, 2024), though
such resources often remain proprietary or lack
scale. Med-PalLM (Tu et al., 2024) marked a shift
toward long-form medical QA using LLMs, but its
evaluation lacked transparency due to non-public
annotations. Follow-up studies by Kim et al. (Kim
et al.,, 2023) and Manes et al. (Manes et al.,
2023) proposed human-in-the-loop evaluations
but did not benchmark open-source models
comprehensively. Evaluation frameworks from
general-domain QA (Zheng et al., 2023; Lin et al.,
2022) have inspired our benchmark, which adapts
and extends these techniques to assess medical
LLMs using expert adjudication at scale.

3 Methodology

We construct an anatomy-focused QA benchmark
by extracting content from standard textbooks and
clinical reports, applying NER-based passage con-
struction, and generating True/False questions via
rule-based templates and LLM prompting as shown
in Figure 1. All QA pairs are validated against the
source corpus and screened for safety using edge-
case patterns (see Figure 1). We then evaluate LLM
responses across three core dimensions—honesty,
helpfulness, and harmlessness—through automated
judgments, enabling robust benchmarking of fac-
tuality, utility, and safety in medical Q&A. The
broader process of the methodology is illustrated
in Algorithm 1.

3.1 Data Collection and QA Generation

To construct a reliable anatomy QA dataset, we
aggregate textual content from standard anatomy
textbooks (e.g., Vishram Singh’s Anatomy Series
(Singh, 2024), B.D. Chaurasia’s Human Anatomy
(Vaishya, 2024)), and de-identified clinical case
reports (Zhang et al., 2025). Each document
T; is converted to plain text using high-accuracy
OCR tools, including the open-source Tesseract
v5.0+* and cloud-based services such as Google
Cloud Vision OCR’, forming the raw corpus
T = Uf\;l T;. Post-processing includes rule-
based cleaning (removal of headers, footers, and
noise) and sentence segmentation to yield 7/ =
{'s | sisavalid sentence after cleaning}. We ap-

4https ://github.com/tesseract-ocr/tesseract
Shttps://cloud.google.com/use-cases/ocr

Algorithm 1 Anatomy QA Benchmark Construc-

tion and Evaluation
Input: Corpus 7 = {T1,T5,..
notes)
Output: Evaluated QA dataset Q with honesty, helpfulness,
and harmlessness scores

., Tn'} (textbooks, clinical

Preprocessing:
foreach T; € 7 do
Convert to text using OCR Clean and segment into
sentences 7' = {s1,...,5,} Apply NER to extract
anatomical entities F(s)

Form passages {Px, ..
ping E(s)
QA Generation:
foreach passage P; do
foreach template h € H do
Generate giemp1 Using entities from P; if grempl €
P; then
| Label as TRUE

else
L Label as FALSE

Prompt LLM with P; to generate ¢model; Gmodel if

Verify(gmoder ) then
L Retain (Qmodeh amodel)

., Py} by clustering s with overlap-

Safety Screening:
foreach ¢ € Q do
if ¢ matches any e € £ then
| Flag g as potentially unsafe
Benchmarking:
foreach model response a; to (qi, a;) do
Compute Scorenonesty Via source consistency (Eq. 4)
Compute Scorepelpfulness Via relevance/completeness
(Eq.5) if ¢; € Qaaggea then
| Compute Scoreharmlessness (EQ. 6)

return Final QA dataset Q with evaluation scores

Rule-Based Templates: Deterministic templates with medical place-
holders like {ANATOMICAL_ENTITY} and {REGION_NAME} ensure high-
precision QA generation.

Q: The gallbladder is part of the digestive system.

Q: The femur is part of the respiratory system.

J

- N
LLM Prompting: LLMs like GPT-4 synthesize more natural, context-
rich True/False questions from anatomical passages.

Q: The spleen plays a role in immunity.

Q: The spleen produces insulin.

Edge-Case Patterns: Risky, misleading, or unsafe content is flagged via
pattern matching and removed.

Q: You should always remove the appendix even if healthy.

Q: The liver causes depression.

Figure 1: Examples of QA generation and filtering
across rule-based, LLM-generated, and edge-case fil-
tered methods.
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ply a domain-specific NER system to each sentence
s € T', extracting anatomical entities F(s) =
{e1,...,er,} from a predefined ontology. Sen-
tences sharing overlapping entities are clustered
into coherent passages { Py, ..., Py}, with each
P;={s:Jec E(s;) N E(s)}.

We then generate True/False QA pairs through
two mechanisms. First, a rule-based template en-
gine H = {h1, ..., hp} creates factual assertions
(e.g., “The {ANATOMICAL_ENTITY} is part of
the {REGION_NAME}”) using entity—region tu-
ples (e,r). Each candidate giempl is labeled based
on its presence in P; as according to Equation (1).

TRUE,
FALSE

if Qtempl S Pju
otherwise

Label(gremp1) = { ))
Second, we prompt a pretrained LLM (e.g., GPT-
46 (Chang, 2023)) to synthesize ¢poqe1 With its
answer amodel € {TRUE, FALSE} from each P;.
Each pair is validated by checking consistency with
T as shown in Equation (2).

if consistent with 7~
otherwise

TRUE,

FALSE, @

Verify(gmodel) = {
Only validated pairs are retained. To enhance safety
and robustness, we define a curated set of edge-case
patterns £ = {ey, ..., ep} representing known un-
safe practices. Each QA pair is scanned for such
risks using Equation (3).

1,
ledge(q) = {O

Annotations: To ensure the reliability and safety
of our QA dataset, all True/False questions were
manually reviewed by a team of three licensed med-
ical annotators (i.e. the authors), each holding ad-
vanced degrees in clinical medicine and anatomy.
Annotators independently labeled a subset of exam-
ples for correctness, safety, and factual consistency.
Disagreements were resolved through majority vot-
ing. To quantify inter-annotator reliability, we com-
puted Cohen’s Kappa on overlapping subsets, yield-
ing an average agreement of x = (.81, indicating
substantial consensus. We began with a pool of
approximately 1,500 candidate QA pairs, derived
from both rule-based (750) and LLM-generated
(750) pipelines. After quality assurance filtering
and annotation validation, 1,077 examples were
retained for downstream evaluation. These post-
processed examples form the benchmark used in

Je € & such that ¢ matches e
otherwise

(3

6https ://openai.com/index/gpt-4/

our real-world applicability study. To assess ro-
bustness, we conducted a double-blind A/B test-
ing protocol on this finalized set of 1,077 medical
questions. Annotators, blinded to model identity
and prompt source, evaluated system-generated re-
sponses to mitigate confirmation and source bias.
This protocol enabled unbiased performance com-
parisons between QA generation strategies. To
address potential biases in the dataset itself, we
ensured balanced coverage across anatomical re-
gions, question types (e.g., compositional, causal,
negation), and document sources. Additionally, we
applied pattern-based safety filters and edge-case
screening (see Section 3.1) to exclude QA pairs
exhibiting potentially harmful, misleading, or un-
grounded content.

3.2 Benchmarking Protocol

We conduct evaluations using three state-of-the-
art open language models: AlpaCare-13B (Zhang
et al., 2023), BioMistral-7B-DARE (Labrak et al.,
2024), and Mistral-7B (Samo et al., 2024). These
models were selected to cover a spectrum of do-
main expertise and model capacities. AlpaCare-
13B is a healthcare-specialized model fine-tuned
for medical reasoning, making it well-suited for
clinical QA tasks. BioMistral-7B-DARE is opti-
mized for biomedical text generation and retrieval,
offering strong performance in factual consistency
and terminology handling. Mistral-7B, a high-
performing generalist model, serves as a competi-
tive baseline for assessing domain adaptation and
generalization. This diverse selection allows us to
systematically evaluate how medical specialization
and model scale influence QA quality.

Formally, each QA pair (g;,a;) € Q =
{(gi,a:;)} is passed to a language model M
via a task-specific prompt P(g;) that encodes the
input in declarative form. Let the prompt take the
structure:

Instruction: Given the following medical statement,
determine whether it is TRUE or FALSE.
Statement: g;

Answer:

The model then produces a prediction &Z(j ) =

M;(P(gi)). where @\ € {TRUE,FALSE} after
normalization. We discard and retry malformed
outputs (e.g., free-form text not containing a valid
label) up to two times. If no valid answer is ob-
tained, the instance is marked as skipped and ex-
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cluded from evaluation. The finalized set of pre-
dictions {dgj ) L | is used to compute evaluation
metrics across three core dimensions—honesty,

helpfulness, and harmlessness—adapted from prior
LLM frameworks (L6pez et al., 2024).

4 Experimental Setup

4.1 Evaluation Metrics

We evaluate each model response along three crit-
ical axes—honesty, helpfulness, and harmless-
ness—to holistically assess factual accuracy, utility,
and safety in medical Q&A.

Honesty. This metric quantifies the factual con-
sistency between the model-predicted answer dgj )
and the source corpus 7’. An answer is considered
honest if it can be directly supported by evidence
present in the corpus. Formally: Scoreponesty =

1 Lk [a; is factually supported by 7”].

Helpfulness. This dimension assesses the seman-
tic alignment and informativeness of the response
with respect to the reference answer a;. A response
is marked helpful if it provides relevant medical in-
sights, aligns semantically with a; (via embedding-
based similarity), and is sufficiently complete.
The score is defined as: Scorepeipfulness =
1 Zle ¥ a; is relevant and informative].

Harmlessness. This metric evaluates the
model’s ability to avoid generating responses that
could be medically dangerous, misleading, or
unethical. We define a subset Qfagged C Q Of
questions that are safety-critical (e.g., involving
diagnoses, medications, or interventions). A
response is deemed harmless if it refrains from
affirming unsafe content: Scoreyarmiessness
m > 1€ Qttagged W [&i avoids affirming unsafe
advice].

Higher scores are preferred for all three met-
rics—honesty, helpfulness, and harmlessness—as
they respectively indicate greater factual accuracy
(responses are consistent with verified information),
increased informativeness and relevance (responses
provide useful and complete medical insights), and
enhanced safety (responses avoid potentially harm-
ful or misleading content). All metric values are
reported in percentages (%). Upward arrows ()
indicate metrics where higher values are preferable,
while downward arrows () denote metrics where
lower values are better.

4.2 Hyperparameters

Our fine-tuning approach for domain-specific mod-
els such as AlpaCare-13B, BioMistral-7B-DARE,
and Mistral-7B employs low learning rates (1 X
107° to 5 x 10~?°), moderate batch sizes (16-32),
and weight decay to prevent overfitting, with early
stopping after 3—5 epochs based on validation loss.
During inference, parameters including tempera-
ture (0.7), top-p sampling (0.9), and maximum
token length (128 tokens) are tuned to optimize
response relevance, informativeness, and diversity.
Safety filtering is enforced via strict regex and key-
word pattern matching with high sensitivity thresh-
olds, triggering exclusion or manual review of any
flagged content to minimize unsafe outputs. Evalu-
ation metrics for factual consistency, helpfulness,
and harmlessness apply semantic similarity thresh-
olds between 0.80 and 0.85 on domain-adapted
embeddings, ensuring reliable and meaningful QA
generation. Experiments utilize multi-GPU clusters
(NVIDIA A100) to support scalable fine-tuning and
prompt inference pipelines that align with industry
throughput and latency requirements.

Model Accuracy T Honesty 1
Mistral-7B 82.5 0.78
BioMistral-7B-DARE 88.3 0.84
AlpaCare-13B 91.7 0.89

Table 1: Model Accuracy and Honesty Score Across
Specialization Levels

S Experimental Analysis

5.1 Accuracy vs. Specialization

From an industry standpoint, evaluating how do-
main specialization influences factual accuracy is
essential for selecting safe and reliable models
for clinical deployment. We compared three mod-
els and each model was assessed on its ability to
correctly classify 1,077 validated anatomy-based
TRUE/FALSE questions. As shown in Table 1,
the specialized AlpaCare-13B achieved the highest
accuracy (91.7%), outperforming both BioMistral-
7B-DARE (88.3%) and Mistral-7B (82.5%). Fur-
thermore, we observed a corresponding improve-
ment in the honesty score, which reflects alignment
with factual ground truth. These results confirm the
hypothesis that domain-specific pretraining signifi-
cantly enhances factual correctness in high-stakes
applications such as medical QA.
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Model Parameters (B) Harmlessness 1
Mistral-7B 7 0.81
BioMistral-7B-DARE 7 0.90
AlpaCare-13B 13 0.92

Table 2: Harmlessness Scores on Safety-Critical Subset
Qﬁaggcd

Model Subset Hon 1 Help 1 Harm |
Mistzal-78 Sem 0hm o or
BioMistral-7B-DARE 8:::;1:1 oo o s
el

model

Table 3: Performance on Template (Qtemp1) vs. LLM-
Generated (Qyn0de1) Questions. Hon = Honesty, Help =
Helpfulness, Harm = Harmlessness.

5.2 Model Scale vs. Safety

In safety-critical domains such as healthcare, miti-
gating harmful or misleading outputs is paramount.
To assess whether model scale correlates with
safer generations, we evaluated each model on
a curated subset Qfageeq containing 210 safety-
sensitive questions, balanced for topic complex-
ity. As shown in Table 2, the larger AlpaCare-13B
achieved the highest harmlessness score at 0.92.
However, the safety-tuned BioMistral-7B-DARE
delivered a nearly comparable score of 0.90, signif-
icantly outperforming the generalist Mistral-7B at
0.81 despite having the same number of parameters.
These results indicate that while increasing model
capacity can contribute to safety, domain-specific
fine-tuning plays an even more critical role. For
industry stakeholders building trustworthy clinical
Al systems, this suggests that scale alone is insuffi-
cient. Instead, targeted alignment strategies—such
as those employed in BioMistral-7B-DARE—can
yield strong safety outcomes even in smaller, more
deployable models, which is vital for regulated
environments demanding transparency, reliability,
and harm mitigation.

5.3 Template vs. LLM-Generated Questions

Understanding how models perform across ques-
tion types is crucial for industry-grade deploy-
ments where input variability is high. We com-
pared model responses on two subsets: Qiempls
consisting of structured, rule-based questions,
and Qodel, containing naturally phrased, LLM-
generated queries. As shown in Table 3, all models
performed better on template-based prompts, likely
due to their predictable syntax and clearer intent.

Model DFR MHI NEG/CL
Mistral-7B 0.80 0.68 0.60
BioMistral-7B-DARE 0.87 0.77 0.75
AlpaCare-13B 0.91 0.84 0.80

Table 4: Helpfulness Scores Stratified by Ground Truth
Complexity: DFR = Direct Fact Recall, MHI = Multi-
hop Inference, NEG/CL = Negation or Compositional
Logic

BioMistral-7B-DARE maintained the highest hon-
esty (0.91) and harmlessness (0.90) on both sets, al-
though its helpfulness dropped from 0.86 on Qtempi
t0 0.79 on Qyn0del- This decline suggests that LLM-
generated phrasing poses greater interpretability
challenges. AlpaCare-13B exhibited similar trends,
underscoring the need for robust natural language
understanding in real-world deployments. These re-
sults highlight that while template-based evaluation
provides a strong performance signal, LLMs must
be stress-tested on naturally generated queries to
ensure reliability across production environments.

5.4 Helpfulness Correlation with Ground
Truth Complexity

Understanding how language models handle vary-
ing levels of reasoning complexity is critical in
clinical QA settings. We categorized QA pairs
into three strata based on ground truth answer
structure: direct fact recall, multi-hop inference,
and answers involving negation or compositional
logic. As shown in Table 4, all models exhibited
a decline in helpfulness as complexity increased.
For example, AlpaCare-13B scored 0.91 on di-
rect recall but dropped to 0.80 on negation-based
queries. BioMistral-7B-DARE followed a similar
trend (0.87 to 0.75), outperforming the general-
purpose Mistral-7B across all levels. These find-
ings suggest that without explicit prompt engineer-
ing or retrieval augmentation, current LLMs may
struggle with indirect or composite reasoning. For
clinical Al deployments, this underscores the need
for scaffolding complex tasks—such as negation
detection or inference chaining—with intermediate
prompts or structured inputs to maintain reliable
helpfulness in responses, especially in high-stakes
medical decision-making.

5.5 Edge Case Generalization

Robustness to rare and subtle risk patterns is cru-
cial for deploying clinical Al safely. We evalu-
ated models on a curated set £ of 100 edge-case
prompts representing uncommon anatomy variants
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Model Harmlessness 1 Honesty 1T

Safe Unsafe Honest Dishonest
Mistral-7B 78% 22% 74% 26%
BioMistral-7B-DARE 85% 15% 80% 20%
AlpaCare-13B 88% 12% 85% 15%

Table 5: Confusion Matrix for Edge Case Generaliza-
tion on £: Harmlessness and Honesty represent the per-
centage of safe/unsafe and honest/dishonest responses
respectively.

Prompt Accuracy T Honesty T  Helpfulness 1
Zero-shot 0.78 0.80 0.75
Few-shot 0.85 0.87 0.80

Table 6: Comparison of Zero-shot and Few-shot Prompt-
ing.

and potentially misleading similarities, explicitly
excluded from training data. As summarized in Ta-
ble 5, all models demonstrated challenges in safely
generalizing to these edge cases. The confusion
matrices reveal that while AlpaCare-13B maintains
the highest harmlessness (0.88) and honesty (0.85),
it still affirms unsafe or misleading statements in
12% and 15% of cases respectively. BioMistral-7B-
DARE closely follows, showing better resistance
than Mistral-7B, which exhibits the highest rate of
unsafe affirmations (22%). These results empha-
size that despite domain specialization and scale,
rare clinical edge cases remain a significant vul-
nerability. Industry deployments must therefore
incorporate additional validation layers and uncer-
tainty quantification to mitigate risks arising from
out-of-distribution inputs and edge scenarios. Note:
Helpfulness was excluded here to prioritize factual
safety over perceived utility, as edge cases demand
strict harm avoidance. In such scenarios, a response
may appear helpful while still being unsafe or mis-
leading. Including helpfulness could obscure criti-
cal flaws, so it’s best used cautiously and secondary
to honesty and harmlessness in high-risk clinical
deployments.

5.6 Few-shot Prompting vs. Zero-shot

Incorporating in-context examples through few-
shot prompting has become a promising approach
to enhance language model reliability. We com-
pared zero-shot prompting, which relies solely on
the query, against few-shot prompting that includes
three illustrative TRUE/FALSE examples with ex-
planations before each query. Evaluations on fac-
tual accuracy, honesty, and helpfulness metrics (Ta-
ble 6) demonstrate that few-shot prompting consis-

Metric Kappa Pearson
Honesty 0.78 0.81
Helpfulness 0.70 0.75
Harmlessness 0.65 0.68

Table 7: Correlation Between Human Annotator Labels
and Automated Metrics: Agreement is highest for hon-
esty, while helpfulness and harmlessness show moderate
alignment, highlighting refinement opportunities.

tently improves model performance. Notably, accu-
racy increased from 78% to 85%, honesty improved
by 7%, and helpfulness saw a 5% gain. These gains
suggest that contextual priming reduces hallucina-
tions and bolsters factual consistency, aligning with
industry priorities for deploying dependable Al sys-
tems. Organizations aiming for trustworthy clinical
decision support should consider integrating few-
shot techniques to enhance transparency and reduce
error rates without additional fine-tuning. Note:
We did not include harmlessness in this evaluation,
as the prompts were factual classification queries
with minimal risk of eliciting harmful content, fo-
cusing instead on correctness and informativeness.

5.7 Human vs. LLM Judgment Correlation

Reliable evaluation of clinical Al systems depends
on strong alignment between automated metrics
and expert human judgment. To assess this, we
sampled 200 responses per model and had certified
medical annotators independently evaluate them
for honesty, helpfulness, and harmlessness. Table 7
reports the agreement using Cohen’s Kappa and
Pearson correlation between human ratings and au-
tomatic metric predictions. Results show substan-
tial agreement across all three dimensions, with
Kappa scores ranging from 0.65 to 0.78 and Pear-
son correlations between 0.68 and 0.81. Honesty
showed the strongest alignment, suggesting that au-
tomated metrics reliably capture factual alignment.
Helpfulness and harmlessness correlations were
slightly lower, indicating room for improving how
well current metrics reflect nuanced human judg-
ment in these areas. These findings affirm the value
of human-in-the-loop evaluation and support the
complementary role of automated tools in scaling
clinical Al validation.

Qualitative Analysis. Figure 2 offers an in-depth
qualitative assessment of the dataset’s semantic
and behavioral characteristics. Subfigure (a) uses
t-SNE to project the semantic space of question
embeddings, revealing dense clustering patterns
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(b) Lexical Heatmap of Question Vocab-
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Figure 2: Semantic and temporal analysis of question-answer behavior. (a) t-SNE shows semantic clustering with
difficulty overlay. (b) Heatmap illustrates lexical distribution across question indices. (c) Rolling correctness vs.
difficulty trends. (d—e) Word clouds highlight frequent terms in TRUE and FALSE answers. (f) Evolution of answer

types over time.

correlated with difficulty levels—indicating that
harder questions tend to occupy semantically dis-
tinct regions. The lexical heatmap in (b) highlights
word frequency across the question index, showing
that specific anatomical terms dominate and vary
with question position. Subfigure (c) illustrates
temporal dynamics by plotting rolling correctness
rates alongside difficulty, uncovering periodic dips
in performance that align with more complex or
ambiguous question segments. Word clouds in (d)
and (e) differentiate lexical emphasis in TRUE and
FALSE answers, with TRUE responses focusing
on terms like “radius”, “clavicle”, and “scapula”,
while FALSE answers include distractors such as
“joint”, “breast”, and “border”. Finally, (f) tracks
the evolution of answer types over time, show-
ing non-random fluctuations between TRUE and
FALSE labels—suggesting shifts in dataset rea-
soning demands or structural design. Collectively,
these visualizations provide insights into the se-
mantic structure, linguistic patterns, and temporal
answer behaviors that shape model performance.

6 Conclusion

This study evaluated three clinical LLMs—Mistral-
7B, BioMistral-7B-DARE, and AlpaCare-13B—on
factual accuracy, safety, and reasoning. AlpaCare-
13B achieved the best performance with an ac-
curacy of 91.7% and a harmlessness score of
0.92, showcasing its effectiveness in clinical QA.

BioMistral-7B-DARE, despite its smaller scale, at-
tained a high safety score of 0.90, highlighting
the benefits of domain-specific tuning. Few-shot
prompting boosted accuracy from 78% to 85%.
However, all models exhibited limitations on com-
plex reasoning tasks. These results emphasize per-
sistent challenges in clinical LLMs and the neces-
sity of balancing accuracy, safety, and reasoning
for real-world deployment.

Limitations

Despite promising results, this study has several
limitations. First, the evaluation was restricted
to a limited set of clinical LLMs and benchmark
datasets, which may not represent the full spectrum
of clinical scenarios or model architectures. The
reasoning tasks employed were relatively simple,
and more complex, real-world clinical reasoning
might reveal different performance patterns. Ad-
ditionally, safety assessments were based on auto-
mated metrics and limited human review, which
might not capture all nuances of harmful or biased
outputs. The study also focused mainly on accu-
racy, safety, and reasoning but did not evaluate
other important aspects such as model interpretabil-
ity, latency, or resource efficiency, which are criti-
cal for clinical deployment. Finally, the few-shot
prompting approach improved accuracy but may
not generalize across diverse clinical domains or
patient populations. Future work should address
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these limitations by expanding datasets, incorporat-
ing more rigorous safety evaluations, and exploring
broader clinical applicability.

Ethics Statement

This study prioritizes ethical considerations in de-
ploying LLMs in clinical settings. While LLMs
hold significant potential to assist healthcare profes-
sionals, improper use may lead to misinformation
or harm due to incorrect or biased outputs. We em-
phasize that these models are not substitutes for pro-
fessional medical advice but tools to augment clin-
ical decision-making. Human oversight remains
essential to ensure patient safety and privacy. All
evaluated models were tested with anonymized,
publicly available clinical questions to avoid ex-
posing sensitive patient information. Moreover, we
highlight the need for ongoing monitoring of model
behavior to detect and mitigate harmful biases or
hallucinations. Our study advocates transparency
in reporting model limitations and stresses respon-
sible use to safeguard patient welfare and uphold
medical ethics in Al deployment.
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