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Abstract

Education materials for K-12 students often
consist of multiple modalities, such as text
and images, posing challenges for models
to fully understand nuanced information in
these materials. In this paper, we propose a
unified and efficient large multimodal model
UniEDU designed for various educational ap-
plications, including knowledge recommenda-
tion, knowledge tracing, time cost prediction,
and user answer prediction, all within a sin-
gle model. Unlike conventional task-specific
models, UniEDU offers a unified solution that
excels across multiple educational tasks while
maintaining strong generalization capabilities.
Its adaptability makes it well-suited for real-
world deployment in diverse learning environ-
ments. Furthermore, UniEDU is optimized for
industry-scale deployment by significantly re-
ducing computational overhead—achieving ap-
proximately a 3x increase in efficiency—while
maintaining competitive performance with min-
imal degradation compared to fully fine-tuned
models. This work represents a significant step
toward creating versatile Al systems tailored to
the evolving demands of education.

1 Introduction

The incorporation of artificial intelligence (Al) sig-
nificantly enhances the quality of K-12 education
by enabling more personalized learning experi-
ences, improving student engagement (Chen and
Leitch, 2024; Adetayo et al., 2024), and providing
educators with valuable insights to tailor instruc-
tion to individual needs (Bhowmik et al., 2024;
Zheng et al., 2025). For example, knowledge rec-
ommendation systems leverage Al to suggest rele-
vant learning materials based on students’ past per-
formance and preferences (Wang et al., 2024b; Chu
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et al., 2025), while knowledge tracing techniques
track students’ understanding over time, allowing
for real-time adjustments to learning paths (Li et al.,
2024; Shen et al., 2024; Yang et al., 2024b).

Despite these advancements, previous research
has primarily focused on plain text modality, while
real-world K-12 scenarios often involve multi-
modal data, such as text and images in question
stems. Furthermore, the significant differences be-
tween tasks pose a challenge in designing a uni-
fied model that can effectively handle diverse input
types. However, since user profiles remain con-
sistent across tasks, a unified approach could fa-
cilitate seamless knowledge transfer among them.
For example, while knowledge recommendation is
typically framed as a ranking problem and knowl-
edge tracing as a binary classification task, both
rely on a shared understanding of student learning
behaviors and knowledge states. These disparities
underscore the need for a unified model capable
of handling the complexities of multimodal scenar-
ios and supporting diverse task types within the
context of educational Al assistance.

Large Multimodal Models (LMMs) (Liu et al.,
2023b,a; Chen et al., 2024) emerge as a promis-
ing solution due to their proficiency in handling
multimodal data. Furthermore, by leveraging the
flexibility of natural language, LMMs can reframe
tasks in a generative format and tailor input descrip-
tions to effectively support a wide range of distinct
tasks. However, the computational cost of pro-
cessing long input contexts remains a significant
challenge. Since user interaction histories often
span extended periods—up to 300 interactions in
our study, with a maximum length reaching 45,000
tokens—retaining all interactions would substan-
tially increase token costs, thereby escalating both
training and inference expenses. A detailed anal-
ysis of these computational costs is provided in
Section 3.4. While directly truncating such data
may risk losing important information, educational
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user profiles are largely constructed from interac-
tion histories, which makes them more amenable
to compression. Unlike other domains that may
require precise memory of all events, educational
contexts often tolerate approximate representations,
as not all historical details are equally critical for
capturing learning behaviors and knowledge states
(Rendle and Zhang, 2023; Purificato et al., 2024;
Chu et al., 2024).

To address these challenges and accommodate
the unique demands of educational settings, we pro-
pose UniEDU—a unified large multimodal model
optimized for efficient deployment in educational
assistant systems. UniEDU compresses student
interaction histories into a compact set of tokens
for efficient feature extraction and reformulates
diverse real-world educational tasks within a gen-
erative framework. Comprehensive experiments
demonstrate that UniEDU achieves strong perfor-
mance across real-world tasks, outperforming task-
specific models while delivering approximately a
300% improvement in computational efficiency.

2 Related Work

To provide students with support tailored to their
abilities and preferences, it is essential to develop
an effective Al assistant for K-12 learning. At the
outset of Al integration in education, improving
e-learning quality was a primary focus (Murtaza
et al., 2022; Rahayu et al., 2022; Xu et al., 2025b),
with techniques such as recommendation systems
for personalized learning and adaptive learning plat-
forms playing a central role in tailoring educational
content to individual student needs (Zaiane, 2002;
Ali et al., 2022). While these systems are effective,
most are designed for specific tasks, such as knowl-
edge tracing (Li et al., 2024; Shen et al., 2024),
and lack generalization across diverse educational
contexts.

With the development of LLMs (OpenAl, 2022,
2023; Dubey et al., 2024; Yang et al., 2024a), which
leverage superior understanding and generation
capabilities, e-learning assistants have made sig-
nificant strides in expanding their generalization.
These assistants can now serve both as teaching
assistants (Xu et al., 2024; Guo et al., 2024; Abu-
Rasheed et al., 2024; Xu et al., 2025a) and student
support (Park et al., 2024; Liu et al., 2024; Scarlatos
et al., 2025; Yan et al., 2024), reducing teachers’
workloads while offering personalized responses
tailored to each student’s needs. However, since
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Figure 1: The architecture of UniEDU. The profile en-
coder processes history interactions with multimodal
information, while the language model integrates com-
pressed history interactions and task instructions to gen-
erate the output.

LLMs are typically trained on general-domain data,
they often struggle to adapt to the multimodal in-
puts and long-context scenarios common in modern
e-learning environments. This highlights the need
for a unified model capable of effectively handling
these complexities.

3 Methodology

3.1 Model Architecture

UniEDU comprises two main modules: the Pro-
file Encoder and the Language Model. As illus-
trated in Figure 1, the Profile Encoder is for ex-
tracting features from the user’s interaction history,
while the Language Model is used to generate
task-specific responses.

The Profile Encoder is designed for compress-
ing the user’s interaction history into a com-
pact representation that the Language Model
can efficiently process. Formally, let S =
{X1,Xs,..., X, } represent a sequence of user in-
teractions, where each interaction X; is defined
as X; = {qi, ai, ki, ¢;, t; }. These components are
chosen for their relevance to downstream tasks and
are representative of common inputs in real-world
educational systems (See Section 4.1). Each com-
ponent of X is characterized as follows: g; denotes
the question stem, a; represents the user’s response,
k; corresponds to the knowledge concept associ-
ated with the question, ¢; indicates the correctness
of the user’s response, and ¢; denotes the time taken
by the user to complete the interaction. ¢; could be
multimodal, encompassing both visual information
(e.g., figures associated with the question) and tex-
tual content. Please refer to Appendix A.2 for the
demonstration of interaction history. Given the se-

1008



Variable | Definition
a number of attention heads
b batch size
d hidden dimension size
l number of transformer layers
s sequence length
t tensor parallel size
v vocabulary size

Table 1: Definitions of the variables.

quence S, the Profile Encoder compresses it into
a feature matrix of shape |S| x m x h, where |S|
is the sequence length, m is a hyperparameter that
determines the number of tokens used to represent
each interaction, and h is the hidden state dimen-
sion expected by the language model. To ensure
compatibility, we apply a Projector—a linear layer
that projects the encoder output to the hidden size
of the Language Model.

By processing S through the Profile En-
coder and Projector, we obtain |S| x m com-
pressed profile embeddings, denoted as H, =
{h1, ..., hyyys) - These embeddings, together with
the uncompressed task instruction embeddings H;,
are then processed by the Language Model, which
generates responses for different tasks.

3.2 Training Objective

To enable multi-task learning, UniEDU is trained
to generate task-specific outputs conditioned on the
user’s interaction history and task instructions. In
particular, given a sequence of user interactions S
and a task instruction Xjp, the model generates the
corresponding target output X;. The training pro-
cess employs the standard auto-regressive training
objective, formally defined as:

| Xl

P(Xt | 8, Xing) = [ [ po(@i | S, Xinse, Xt,<i), (1)

1=1

where 0 represents the trainable parameters, and
Xinst and X ; denote the instruction tokens and
the generated target tokens preceding the current
prediction token z;, respectively. In Section 4, we
discuss the education tasks we considered in detail.

3.3 VRAM Computation

In this section, we provide a detailed analysis of
why UniEDU is VRAM-efficient for both train-
ing and inference. We compare UniEDU’s VRAM
requirements with general fine-tuning demands, fo-
cusing on two key components: parameters-loaded

VRAM ( VRAM,q4q ) and activation memory (
VRAM ,ctivation )- In Table 1, we list all the defi-
nitions of the variables used in this section.
Assuming both model parameters and activa-
tions are stored in a 16-bit floating point format,
each element requires 2 bytes of storage. During
the training stage, in addition to Spede for model
loading, additional memory is required for stor-
ing optimizer states and gradients. Specifically,
the Adam optimizer maintains two sets of moment
estimates—first-order (mean of past gradients) and
second-order (variance of past gradients)—for each
model parameter, effectively doubling the memory
required for optimization. As a result, the optimizer
states require 2.5,,,04¢;- Additionally, gradient stor-
age requires Sp,odel- Thus, the total VRAM for
loading the parameters in the training stage is:

VRAM;;(:ZT =4 X 25modet = 8Smodel- 2)

During inference, the only VRAM requirement
is for loading the model itself, as no optimizer
states or gradient storage are needed. Therefore,
the VRAM required for inference is given by:

VRAMME, — 28, 0401. 3)

Following the VRAM computation from
NVIDIA, the activation memory required for Trans-
former is given by:
sbdl (

VRAMactivation—blocks =

as
= (34+ 57) W

d

In addition to activations within Transformer
blocks, there are activation memory requirements
before and after these blocks. The token and po-
sition embeddings before the first block require:

VRAMactivation-embedding = 4bsd. (5)

After passing through the Transformer blocks,
the output tensors are typically stored in float32,
even if the model was loaded at lower precision, as
it often casts outputs to float32 by default (Smirnov,
2023). During training, probabilities that are the
same size as the output tensor also need to be stored,
contributing additional memory overhead. This
results in the following VRAM usage:

8bsv,
4bswv,

training

VRAMactiuation—output = { (6)

inference

To further optimize VRAM consumption, we
employ Flash Attention (Dao et al., 2022), which re-
duces attention memory complexity from quadratic
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VRAMactivation

Model Size VRAMy4rq VRAM; o101
Embedding  Blocks  Output
Training
Qwen2-VL-2B 2B 14.9GB 0.3GB 61.3GB  50.9GB 127.4GB
Qwen2-VL-7B 7B 52.2GB 0.3GB 143.0GB 50.9GB 246.4GB
UniEDU-5B 5B 37.3GB 1.8MB 1.1GB 0.4GB 38.8GB
Inference
Qwen2-VL-2B 2B 3.7GB 0.1GB 22GB  25.5GB 31.5GB
Qwen2-VL-7B 7B 13GB 0.3GB 5.1GB  25.5GB 43.9GB
UniEDU-5B 5B 9.3GB 1.8MB 25MB 0.2GB 9.5GB

Table 2: VRAM Usage Comparison Across Different Models. The results assume b = 1 and ¢t = 1, with other
parameters set according to their respective models. For UniEDU, s = 300 due to compression, while for the other
models, s = 45, 000, representing the maximum number of history interaction tokens. For clarity, token counts for
task instructions are omitted, resulting in slight discrepancies in real VRAM usage.

to linear with respect to the sequence length. Given
that the sequence length in our setting (up to 45K)
is significantly larger than the number of attention
heads a, the activation memory in the training stage
can be approximated as:

VRAMactivation & 34@ +(4d +8v)bs.  (7)

For inference, the activation memory cost de-

pends on the maximum single activation mem-

ory in blocks (i.e., the activation memory of each

layer), as intermediate parameters for updates are
not stored. Therefore, the inference cost is:

VRAMactivation ~ 34# + 4bswv. (8)

3.4 Efficiency Analysis

In Table 2, we present the VRAM requirements
for Qwen2-VL-2B and 7B (Wang et al., 2024a),
as well as our UniEDU. Due to the long context
required for recommendation tasks (up to 45K to-
kens in our dataset) and the large vocabulary size
of modern LLMs, activation memory consumes
a substantial amount of VRAM, leading to high
computational costs during both training and in-
ference. However, after compression, UniEDU
significantly reduces VRAM usage compared to
traditional models, achieving over a 3x reduction
even relative to the smaller Qwen2-VL-2B in both
training and inference stages. This substantial de-
crease in memory consumption offers a significant
advantage for real-world deployment, enabling the
model to process larger batches and handle more
data within the same timeframe.

4 Experiments

4.1 Education Tasks

Our system primarily focuses on the subject of
mathematics. During training, we use the same user
interaction history across tasks while varying task
instructions to avoid data leakage. Below, we detail
the formulation of each task, with corresponding
training examples provided in Appendix A.2.

Knowledge Recommendation. This task aims to
recommend relevant knowledge concept based on
a user’s interaction history. In the educational assis-
tant context, the model identifies a student’s weak
areas and provides targeted recommendations, in-
cluding both foundational knowledge to address
weaknesses and advanced knowledge for further
development. For example, if a student consistently
struggles with questions involving quadratic equa-
tions, the model may recommend reviewing the fun-
damentals of factoring and completing the square.
Conversely, if the student performs well on basic
algebraic manipulation, the system might suggest
more advanced topics such as functions or inequal-
ities to support continued growth. Specifically, we
define the data format as a triplet (.5, Y, C'), where
S represents the user’s interaction history (as de-
tailed in Section 3), Y denotes the ground truth
knowledge concepts that reflect the student’s weak
areas, obtained from real-world exam history. C
comprises candidate knowledge concepts, includ-
ing both the ground truth concepts Y and distrac-
tors. To construct C', we sample K candidate con-
cepts, where K € {5, 10, 25,50}, including one
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ground truth and K — 1 distractors. The model
needs to rank the candidate set C based on its mod-
eling of the student’s ability. Task performance is
measured using Precision@1, where a prediction is
considered correct only if the ground truth concept
is ranked first among the K candidates.
Knowledge Tracing. This task aims to predict
whether a student can correctly answer a given
question. The model must capture the user’s pro-
file, identifying both strengths and weaknesses, to
make an accurate prediction. Specifically, given
a sequence of the user’s interaction history .S and
a question @, the model is expected to predict a
binary outcome: [True] or [Falsel, where the
ground truth is derived from the student’s actual
answer. The performance of this task is evaluated
based on prediction accuracy.

Time Cost Prediction. The goal of this task is to
predict the time a student needs to solve a given
question. The task requires the model to under-
stand both the student’s learning path and the in-
herent difficulty of the task. Specifically, similar to
Knowledge Tracing, given a sequence of the user’s
interaction history S and a question @), the model
is expected to predict an integer value representing
the time required, with the ground truth derived
from the student’s actual time spent. We evalu-
ate the model’s performance using Mean Absolute
Error (MAE).

User Answer Prediction. The User Answer Pre-
diction task aims to predict the user’s possible an-
swer to a given question based on their interaction
history and learning profile. If the model thinks
that the student can successfully answer the ques-
tion, it needs to predict the correct answer (Liu
et al., 2022). However, if the student is unlikely
to succeed, the model needs to predict an answer
that aligns with the student’s profile, reflecting a
potentially incorrect response. This task requires
the model to capture the student’s strengths, weak-
nesses, and learning paths to generate realistic an-
swers. Specifically, given a sequence of the user’s
interaction history S and a question @), the model
predicts the most probable answer, with the ground
truth being the student’s actual response. We use
exact match (EM) to evaluate the performance.

4.2 Implementation Details

Datasets. We collect our dataset from real student
exercise data on a widely used e-learning platform
and construct the training data for each task. The
statistics of the dataset are shown in Table 3. Each
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Figure 2: Performance comparison of seven models on
the Knowledge Recommendation task.

# of students 13,239
# of knowledge 8,247

# of questions 235,687
# of interactions 3,892,084

Table 3: Dataset statistics.

student’s history sequence exceeding 300 interac-
tions is truncated into multiple segments. As a
result, although we processed 13,239 students, the
total number of sequences exceeds this count.

Baselines. To assess UniEDU’s effectiveness, we
compare it against two representative baselines
for each task. Specifically, for knowledge rec-
ommendation, we evaluate two widely adopted
models: SASRec (Kang and McAuley, 2018) and
Bert4Rec (Sun et al., 2019). For the knowledge
tracing task, we consider extraKT (Li et al., 2024)
and reKT (Shen et al., 2024). For time cost predic-
tion, we utilize N-BEATS (Oreshkin et al., 2020)
and Prophet (Meta, 2023). For user answer pre-
diction, a generative task requiring the model to
produce responses in natural language, we employ
Qwen2-VL-2B and Qwen2-VL-7B (Wang et al.,
2024a). Additionally, these two models, without
fine-tuning, are included as baselines for the three
aforementioned tasks.

All experiments are conducted using the same
training and test sets. The maximum length of
interaction history is 300, with a maximum token
cost of 45,000, based on the Qwen tokenizer. For
baseline models that require indexing specific users
and items, we follow their official guidelines to
complete this process.

Backbone Models. We fine-tune UniEDU on
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Figure 3: Performance comparison of UniEDU and baseline models on Knowledge Tracing, Time Cost Prediction,

and User Answer Prediction.

the four tasks outlined in Section 4.1. For each
task, we use 24,504 sequences for training, with
5% of the data randomly selected as a validation set,
and 2,784 sequences for testing. For UniEDU, we
fix the encoder model as Qwen2-VL-2B and vary
the language model size by using Qwen2.5-0.5B,
Qwen2.5-1.5B, and Qwen2.5-3B. These configu-
rations form UniEDU-2.5B, UniEDU-3.5B, and
UniEDU-5B, enabling us to assess the impact of
model size on performance.

4.3 Results

We compare the performance of baselines and
UniEDU with various parameter sizes on four tasks.
The results are reported in Figure 2 and Figure 3.

First, UniEDU demonstrates strong perfor-
mance across four tasks. Except for knowledge
tracing, UniEDU outperforms task-specific mod-
els in Knowledge Recommendation, Time Cost
Prediction, and User Answer Prediction. Notably,
it achieves performance gains of approximately
30% and 20% over the best baselines in knowl-
edge recommendation and time cost prediction,
respectively. While UniEDU performs competi-
tively in knowledge tracing, it slightly lags behind
specialized models like extraKT and reKT, which
are better suited for simpler discriminative tasks.
However, these models struggle with unseen items,
whereas UniEDU handles them effectively through
natural language descriptions.

Second, model size significantly affects gener-
ative tasks but has limited impact on discrimina-
tive ones. For Knowledge Tracing and Time Cost
Prediction, performance remains relatively stable
across model sizes. In contrast, for Knowledge Rec-
ommendation and User Answer Prediction, larger
models like UniEDU-5B show clear advantages
over smaller variants. This suggests that tasks re-
quiring longer or more complex generation benefit
more from increased language model capacity.
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2
Time Cost Prediction User Answer Prediction

Figure 4: Performance of UniEDU-5B with different
numbers of compression tokens. The red dashed line
indicates Qwen2-VL-2B with full fine-tuning.

4.4 Analysis of Compression Tokens

To evaluate the impact of compression ratio on
performance, we vary the number of compression
tokens (i.e., m, as defined in Section 3.1) to 1, 2, 3,
meaning each history interaction X; is compressed
into 1, 2, 3 hidden states. We conduct this analysis
on UniEDU-5B and use Qwen2-VL-2B as an upper
bound, excluding the 7B variant due to its high
computational cost.

Results in Figure 4 show that increasing the
number of compression tokens slightly degrades
performance in Knowledge Recommendation and
Knowledge Tracing, likely due to noise from ex-
cessive historical context. In contrast, User An-
swer Prediction benefits from additional context,
as it requires modeling both historical interactions
and candidate questions. Overall, our compres-
sion approach provides substantial efficiency gains
with minimal performance loss, except in the more
complex generative setting of User Answer Predic-
tion. Furthermore, compared to the fully fine-tuned
model, our compression technique achieves sig-
nificant improvements in training and inference
efficiency with minimal performance degradation,
except for the User Answer Prediction task.
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5 Conclusion

In this paper, we propose UniEDU, a unified gen-
erative model for education that effectively han-
dles various multimodal tasks while being compu-
tationally efficient. Unlike task-specific models,
UniEDU not only achieves better performance but
also generalizes well across different educational
challenges, making it suitable for real-world de-
ployment. Extensive experiments validate its effec-
tiveness, showing that compared to fully fine-tuned
models, UniEDU reduces computation costs by
approximately 300% while incurring minor per-
formance drops. Overall, UniEDU represents a
promising step toward integrating LMMs into in-
dustrial education applications, offering a scalable
and efficient approach to personalized learning.

Limitations

While UniEDU shows strong performance and ef-
ficiency across multiple educational tasks, several
limitations remain. First, its generalizability be-
yond mathematics to other subjects and task types
(e.g., essay grading) has not been explored. Sec-
ond, the compression strategy, though effective for
reducing VRAM, introduces minor performance
drops in complex generative tasks, with trade-offs
between efficiency and fidelity requiring further
study. Third, the interaction-history-based profile
modeling may overlook latent learner traits like
motivation or learning style; incorporating richer
signals could improve personalization.

Broader Impact Statement

UniEDU has the potential to significantly improve
personalized learning by providing targeted knowl-
edge recommendations based on students’ interac-
tion histories. This can enhance student engage-
ment, support educators in curriculum design, and
scale Al-driven education to a wider audience. Fur-
thermore, our computationally efficient design in
UniEDU makes it accessible to institutions and
companies with limited computational resources,
while maintaining competitive performance with
minimal trade-offs.

However, training large models on student data
poses potential risks to student privacy. To mitigate
these concerns, our dataset is constructed from real
student interactions, but all personally identifiable
information is strictly anonymized. Only interac-
tion data relevant to learning behaviors is retained,
while sensitive details such as names, user IDs, and

other personal attributes are carefully masked to
ensure privacy and compliance with ethical data
usage standards.
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A Appendix

A.1 VRAM Calculation

In the NVIDIA paper (Korthikanti et al., 2023), the
hidden size is increased to 4k and then reduced
back to h across layers. This varies in models like
Qwen2-VL-7B, where the hidden size is 1,576, and
the intermediate size is 8,960. For consistency, we
adopt the evaluation strategy provided by NVIDIA,
which may introduce a minor discrepancy in the
real memory costs for models with different con-
figurations.

A.2 Example Demonstration

We provide examples of the four tasks mentioned
in Section 4.1. Let S = {X1,Xy,...,X,} de-
note a sequence of user interactions, where each
interaction is defined as X; = {q¢;,ai, ki, c;i, t;},
consisting of the question g;, the user’s response
a;, associated knowledge k;, response correctness
¢;, and response time ¢;. The question ¢; may be

multimodal, incorporating both textual content and
visual elements (e.g., figures).
Interaction History:

Interaction 1:

Question: The difference between 4.6
and 3.26 is ___ less than their sum.
User’s Response: ["6.52"]

Correct: True

Response Time: 61s

Knowledge Concept: Three-step word
problems with decimal addition and
subtraction

Interaction 2:

Question: Shape A is translated
by ___ units to get Shape B.
Image: <image>

User Answer: ["down", "5"]
Correct: True

Response Time: 22s
Knowledge Concept: Identifying the
direction and distance of translation

Interaction 3:

Question: Xiao Pang’s electricity
usage in the first quarter was: 105
kWh, 150 kWh, and 99 kWh. The average
monthly electricity usage in the
first quarter is ___ kWh.

User Answer: ["118"]

Correct: True

Response Time: 71s
Knowledge Concept:
average basic level

Calculating

Interaction n:

Question: Teacher Hu rode a bicycle
to the library and crossed a 1500-

meter bridge. On the way there, it
took 300 seconds to cross the bridge,
and on the way back, it took 200
seconds. Then the average speed over
the round trip on the bridge is
meters/second.

User Answer: ["6"]

Correct: True

Response Time: 69s

Knowledge Concept: Calculating
average speed round trip

Knowledge Recommendation:

Based on the user’s past problem-
solving history, select 1 knowledge
concept from the following list that
the user is likely to make mistakes
on.

Candidate Knowledge Concepts:
Properties of opposite numbers,
absolute values, and reciprocals-
evaluating algebraic expressions,
Solving average problems using
equations, Decomposition and
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composition of numbers within 10 (
including @), Midpoint of a line
segment-identifying relationships
involving sum, difference, and
multiples, Applications of ratio-
given the total, Figures obtained by
rotation followed by translation,
Translation of figures in coordinate
systems, Calculations of the form (\
alpha + \beta)/2, Applications of
linear equations-relationships
between points on a number line,
Calculating averages-pie chart
interpretation, Finding the value
represented by a point given the
distance between two points,
Simplified decimal addition and
subtraction, Weighted averages-
weights in percentage form,
Identifying rotated figures-pattern
problems, Weighted averages-weights
in ratio form, Corresponding elements
of congruent triangles-methods of
geometric transformation, Translation
drawing on a grid, Translating the
rectangular coordinate system,
Applications of common factors-
finding the number in each group,
Word problems with two-digit divisors
-constant total amount

Knowledge Tracing:

\

Based on the user’s past problem-
solving history, determine whether
the following question can be
answered correctly.

Question: Based on the picture,
two complete equations: ___ (
separate with a comma)

Knowledge Concept: Addition and
subtraction within 10

Image: <image>

write

Ti

me Cost Prediction

~
Based on the user’s past problem-

solving history, estimate how long
the user will take to answer the
following question (in seconds).
Question: The area of the figure
below is ___ square meters.
Knowledge Concept: Area units
comparing sizes

Image: <image>

User Answer Prediction:

Image:<image>
.

Based on the user’s past problem-
solving history, predict the answer
the user is likely to give for the
following question.

Question: Look at the picture and
write the equation. The complete
equation is ___

Knowledge Concept: Advanced addition
with carrying-adding to 7

Hyperparameter Value
Encoder Layers 28
Encoder Heads 12
Encoder Hidden Size 1536
Projector Hidden Size 1536->2048
Language Model Layers 36
Language Model Heads 16
Language Model Hidden Size 2048
Max History Window 300

# Compression Tokens 1/2/3
Optimizer AdamW
Learning Rate 2.0e-6
Scheduler Cosine
Batch Size per GPU 4
Training Steps 6000

Table 4: Hyperparameter setting for UniEDU-5B.

A.3 Training Details

In Table 4, we introduce the hyperparameter con-
figuration used to train UniEDU-5B.
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