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Abstract

Video Temporal Grounding (VTG) aims to lo-
calize relevant temporal segments in videos
given natural language queries. Despite re-
cent progress with large vision-language mod-
els (LVLMs) and instruction-tuning, existing
approaches often suffer from limited tempo-
ral awareness and poor generalization. In this
work, we introduce a two-stage training frame-
work that integrates supervised fine-tuning
with reinforcement learning (RL) to improve
both the accuracy and robustness of VTG mod-
els. Our approach first leverages high-quality
curated cold start data for SFT initialization,
followed by difficulty-controlled RL to fur-
ther enhance temporal localization and reason-
ing abilities. Comprehensive experiments on
multiple VTG benchmarks demonstrate that
our method consistently outperforms existing
models, particularly in challenging and open-
domain scenarios. We conduct an in-depth
analysis of training strategies and dataset cura-
tion, highlighting the importance of both high-
quality cold start data and difficulty-controlled
RL. To facilitate further research and industrial
adoption, we release all intermediate datasets,
models, and code to the community.

1 Introduction

With the proliferation of social media platforms,
video content has become the most information-
rich and diverse medium for capturing and con-
veying daily experiences. As a result, efficiently
identifying specific moments within videos based
on user queries—a task known as Video Temporal
Grounding (VTG)—has emerged as a core capa-
bility for a range of industrial applications, from
intelligent video retrieval to workflow optimization
and automated event monitoring (Grauman et al.,
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2022; Hendricks et al., 2017a; Li et al., 2023a).
VTG enables practitioners to swiftly pinpoint rele-
vant segments in massive videos, significantly re-
ducing manual review workloads and empowering
real-time decision-making (Sultani et al., 2018).

Recent advances in large vision-language mod-
els (LVLMs) have led to the development of end-to-
end temporal grounding frameworks. Instruction-
tuned models such as TimeChat (Ren et al.,
2024), VTimeLLM (Huang et al., 2024a), and
LITA (Huang et al., 2024b) reformulate temporal
grounding as a text generation task, while mod-
els like Momentor (Qian et al., 2024) and VTG-
LLM (Guo et al., 2024) introduce specialized mod-
ules or vocabulary to improve temporal perception.
Despite notable progress, existing approaches are
still constrained by the inherent limitations of su-
pervised fine-tuning, struggling with precise tem-
poral awareness and generalization.

To address these challenges, we propose a novel
two-stage training framework that integrates super-
vised fine-tuning (SFT) with reinforcement learn-
ing (RL) to significantly improve the performance
and generalization of open-source models for VTG
tasks. Our framework first leverages high-quality
curated data to provide the model with a robust
coldstart initialization via SFT, followed by a
difficulty-controlled RL stage that further enhances
temporal grounding abilities and reasoning.

We conduct extensive experiments across mul-
tiple VTG benchmarks, systematically evaluat-
ing the contributions of each training stage. Our
findings highlight the critical importance of high-
quality cold-start data and controlled RL training,
providing actionable insights for practical deploy-
ment in real-world industrial scenarios. Further-
more, to facilitate future research and application,
we release all intermediate results and code as
Open-source resources.

The main contributions of this work are:
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between the baby and the man. The baby is held by the man, but the query asks for
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Figure 1: Overview of the proposed training pipeline for Video Temporal Grounding (VTG-R1). The
framework first performs supervised fine-tuning (SFT) with curated high-quality cold-start data to initialize the
base model, followed by reinforcement learning (RL) to further enhance temporal localization abilities.

* We introduce a two-stage training framework
that combines SFT and RL to advance open-
source LVLMs for video temporal grounding.

* We conduct comprehensive evaluations across
multiple benchmarks, validating the effective-
ness and scalability of our approach.

* We open-source all intermediate datasets,
models, and code to support further research
and industrial adoption.

2 Related Works

Video Temporal Grounding (VTG) aims to local-
ize relevant temporal segments within untrimmed
videos given natural language queries (Grauman
et al., 2022; Hendricks et al., 2017b; Li et al.,
2023a; Dai et al., 2023; Wang et al., 2022). Early
efforts, such as CTRL and MCN, introduced foun-
dational approaches that leveraged sliding win-
dows and dual-stream networks to generate candi-
date segments for text-video matching (Gao et al.,
2017; Hendricks et al., 2017a), which laid the
groundwork for subsequent advancements.

With the emergence of large vision-language
models (LVLMs), recent research has shifted
towards end-to-end VTG frameworks that
leverage instruction-tuning and textual gener-
ation. Models such as TimeChat (Ren et al.,

2024), VTimeLLM (Huang et al., 2024a), and
LITA (Huang et al., 2024b) reformulate temporal
grounding as a sequence generation task, while
Momentor (Qian et al., 2024) addresses temporal
quantization errors by introducing temporal-aware
modules. Other approaches, including Grounded-
VideoLLM and VTG-LLM (Wang et al., 2024;
Guo et al., 2024), expand model vocabularies to
facilitate the learning of temporal embeddings,
further improving grounding precision.

VTG technology has shown practical value in
diverse domains. In manufacturing, VTG supports
automated workflow analysis and anomaly detec-
tion to improve operational efficiency (Li et al.,
2021). For security surveillance, VTG enables
fast retrieval of critical events, supporting both
real-time monitoring and retrospective investiga-
tion (Sultani et al., 2018). In healthcare, VTG facil-
itates efficient identification of key procedures in
large-scale surgical videos, benefiting both clinical
analysis and education (Twinanda et al., 2017).

Despite these advances, the predominant re-
liance on supervised fine-tuning (SFT) often re-
stricts the model’s temporal awareness and gener-
alization capabilities, especially in open-domain
or challenging scenarios. To address these lim-
itations, we propose a two-stage training frame-
work that integrates supervised fine-tuning with
reinforcement learning, aiming to enhance both
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the accuracy and generalization of VTG models.
To support further research and application, we
release all intermediate data, models, and code as
open-source resources.

3 Datasets and Recipes

In this section, we present the detailed process
for constructing VT'G-R1 via a two-stage training
pipeline, encompassing data collection, curation,
and specific training procedures.

3.1 Data Collection and Curation

High-quality coldstart and RL datasets are essen-
tial for enhancing the temporal video grounding
capabilities of MLLMs. Here, we describe our ap-
proach to collecting source data and curating the
TVG-RL-18K dataset for RL training and the TVG-
Coldstart-13K dataset for SFT-based coldstart.

Data Collection. We aggregate data from vari-
ous public datasets, including those for moment
retrieval and query grounding tasks, carefully sam-
pling and balancing the proportion of each subset.
The distributions of the raw source data for TVG-
RL-18K and TVG-Coldstart-13K are categorized
and summarized in Table 1.

CoT Annotation and Data Filtering. To enable
effective supervised fine-tuning (SFT) cold-start,
we employ Gemini-2.5-Pro to generate chain-of-
thought (CoT) rationales for the source samples.
The prompt template used for CoT generation is
provided below and is consistently applied dur-
ing both the SFT and RL stages. We then fil-
ter the annotated samples according to their fi-
nal Intersection-over-Union (IoU) scores: samples
with IoU > ¢; are regarded as high-quality and
their CoT rationales are retained for cold-start,
forming the TVG-Coldstart-13K subset. In con-
trast, source samples with loU < ¢ are considered
low-quality—often due to excessive difficulty or
annotation errors—and are excluded from the RL
stage. The remaining samples constitute the TVG-
RL-18K subset.

3.2 Supervised Fine-Tuning (SFT) Stage

In the first stage of our training pipeline, we employ
supervised fine-tuning (SFT) to provide the model
with a high-quality initialization, referred to as the
cold start phase. This process equips the model
with robust multimodal alignment and structured
reasoning capabilities from the outset, laying a

solid foundation for the subsequent reinforcement
learning stage.

Prompt Template for TVG-R1

system You MUST reason based on the
temporal changes and visual evidence in
the video to determine the precise time pe-
riod related to the query. The reasoning
MUST reflect how the content evolves over
time, not general logic. The reasoning pro-
cess MUST BE enclosed within <think>
</think> tags. The specific time period
MUST BE in the format [start time, end
time] in seconds enclosed within <time>
</time> tags.

user {query / instance}

3.3 Reinforcement Learning (RL) Stage
3.3.1 Reward Modeling

The reward r; plays a crucial role in guiding the
model’s learning objective. To promote effective
temporal grounding with explicit reasoning, we
employ a composite reward function consisting
of two components: the IoU reward ry,u and the
reasoning format reward 7o

Timestamp-aware IoU Reward rgoy(-) In the
TVG task, the quality of a predicted temporal
segment [t t.| is primarily evaluated using the
Intersection-over-Union (IoU) metric, which mea-
sures the overlap between the predicted segment
and the ground-truth segment [¢/,¢.]. The IoU is
computed as:

P [ts,te] N [t5, 1]
BV Jtss te] UTEL, 8]

81 7e

where N and U denote the intersection and union
of the predicted and ground-truth intervals.

Reasoning Format Reward rgm(-) To explic-
itly encourage the model to generate responses
with structured reasoning, we introduce a format-
based reward r¢o;m, Which verifies whether the out-
put follows the expected reasoning format. Specifi-
cally, we require the model to enclose the reasoning
process within <think>...</think> tags and the
final answer within <answer>. . .</answer> tags.
The reward is defined as:

Tform = 1 {<think></think><answer>,</answer>}Coutput

where 1. denotes the indicator function.
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Task # Original Samples  Source Datasets

# Coldstart Samples  # RL Samples

HiREST (Zala et al., 2023) (1K),

Instance Grounding
(Moment Retrieval)

QuerYD (Oncescu et al., 2021) (10K),
40K TACoS (Gan et al., 2023) (10K), 10K 13K
DiDeMo (Anne Hendricks et al., 2017) (10K),

InternVid-VTime (Wang et al., 2023) (10K)

Query Grounding 16K

Grounded-VLLM (Wang et al., 2024) (16K) 3K 5K

Total 56K

13K 18K

Table 1: Statistics of the source datasets and filtered coldstart and RL datasets.

Final Reward r; The final reward r; is defined
as a weighted sum of the two components:

75 = AtloU * TtloU + Aform * Tform

where A\qou and Agorm are hyperparameters.

3.3.2 GRPO Training

We adopt Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) for reinforcement learn-
ing, which is a variant of Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017). Unlike
PPO, which relies on a learned critic, GRPO di-
rectly compares a group of candidate responses,
removing the need for a critic model and thereby
reducing computational overhead.

Given a query g, GRPO samples & distinct can-
didate responses o = {o1,...,0g} from the pol-
icy. Rewards for each response are assigned as de-
scribed in Sec. 3.3.1, yielding {r1,...,rg}. These
scores are then normalized within the group, and
the advantage of each response is defined as:

A; = i M, where
o
1 & 1 &
MZEZTj,oz EZ(TJ-—M)Q.
j=1 j=1

Here, A; denotes the normalized advantage of the i-
th response. GRPO encourages the model to assign
higher probabilities to relatively better responses
within the group. The final training objective also
includes a KL-divergence regularization term to
prevent the updated policy my from deviating signif-
icantly from a reference policy mr. The complete
objective is given by:

G
T\ 04
Lerpo = Eourm,  (p) [Z ol0) A

i=1 7T901d (OZ)

— 8- DxL (779 H 7Tref)] )

where [ is a regularization coefficient controlling
the divergence from the reference policy.

4 Experiment

4.1 Experimental Setups

Benchmarks and Evaluation Metrics We con-
duct comprehensive experiments on three bench-
marks to evaluate the effectiveness of our ap-
proach. Specifically, we report results on the ReX-
Time (Huang and et al., 2024), NExT-GQA (Li
et al., 2023b), and Charades-STA (Hendricks
et al., 2017c) datasets. For evaluation, we adopt
the R1@m metric for temporal video ground-
ing (TVG). R1@m denotes the percentage of in-
stances where the top-1 predicted segment achieves
an Intersection-over-Union (IoU) greater than a
threshold m, where m € 0.3,0.5,0.7. Addition-
ally, we report the mean IoU (mloU) across all
samples as an overall indicator of TVG accuracy.

Baselines We compare our approach with
several strong baselines, including instruction-
tuned temporal localization models such as
VTimeLLM (Huang et al., 2024a), TimeChat (Ren
et al., 2024), and VideoChat-TPO (Yan et al.,
2025), as well as general-purpose multimodal large
models like Qwen2.5-VL 7B and 32B (Bai et al.,
2025). For models marked with “thinking,” we
employ the TVG-R1 prompt template to guide tem-
poral grounding.

Training Details. All experiments are conducted
on 16 NVIDIA H100 (80GB) GPUs. For both train-
ing and inference, we limit the number of video
frames to 64, with each frame processed at a res-
olution of 128 x 28 x 28 pixels. The backbone
model is Qwen2.5-VL-7B (Bai et al., 2025). The
hyperparameters €; and e, are set to 0.8 and 0.4, re-
spectively. We first perform supervised fine-tuning
(SFT) on the TVG-Coldstart-13K dataset for one
epoch to obtain the TVG-cold start model. Next,
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Model NEXTGQA RexTime

R@0.3 R@(0.5 R@0.7 mloU | R@0.3 R@0.5 R@0.7 mloU
Qwen2.5-VL-7B thinking | 25.81 14.73 8.72 1774 | 12.16 7.17 2.71 10.17
Qwen2.5-VL-7B 31.60 18.06 7.46 20.87 | 10.31 6.08 3.04 8.10
Qwen2.5-VL-32B 37.96 22.26 9.98 25.35 | 16.83 9.99 5.10 13.02
VTimeLLM 37.90 20.20 9.71 2440 | 28.84 17.41 7.19 20.14
TimeChat 34.10 17.90 6.24 20.60 | 14.42 7.61 3.06 11.65
VideoChat-TPO 41.20 23.40 8.15 27.70 | 34.53 19.26 9.81 25.23
TVG-ColdStart 21.74 11.54 5.24 15.09 | 13.57 7.82 4.34 10.18
TVG-R1 41.65 20.78 10.01  29.25 | 41.04 24.54 11.07  28.20

Table 2: Performance comparison on NExXTGQA and RexTime benchmarks. It can be observed that VTG-R1
outperforms existing SFT-based methods trained with large-scale data.
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Figure 2: Comparison of RL training curves with high-quality cold start and without cold start. TVG-R1, with a
high-quality cold start, converges to higher scores, demonstrating the benefit of cold start in unlocking the model’s
potential and enhancing its reasoning abilities, as indicated by the increased response length during training.

we apply reinforcement learning (RL) on the TVG-
RL-18K dataset to obtain the final TVG-R1 model,
where the hyperparameter 3 in the KL divergence
term of the GRPO algorithm is set to 0.0. The max-
imum response length is set to 2048 tokens, and
the loss weights Agou and Agorm are set to 0.9 and
0.1, respectively. Due to computational resource
constraints, RL training is limited to 600 steps.
Additional details can be found in the Appendix.

4.2 Main Results

As shown in Tables 2 and 5, our experiments across
three different benchmarks demonstrate the effec-
tiveness of VTG-R1 on video temporal grounding
tasks. Two key observations can be drawn.

QOutstanding Performance of VI'G-R1: VTG-
R1 consistently outperforms previous models on
most benchmarks, highlighting the importance of
explicit reasoning in addressing video temporal
grounding challenges. These results further un-
derscore the impact of reinforcement learning in
boosting model performance.

Importance of Reinforcement Learning: The
SFT-based model, TVG-ColdStart, does not con-
sistently yield performance gains and even exhibits
a slight decrease after SFT, possibly due to overfit-
ting or limited generalization to unseen scenarios.
In contrast, after reinforcement learning, VIT'G-R1
achieves substantial improvements, strongly sug-
gesting that RL is essential for developing robust
reasoning capabilities that generalize effectively.

4.3 Analysis

To gain deeper insights into the impact of differ-
ent variants, we present experimental results under
additional configurations. Specifically, we analyze
variants associated with cold start process and RL
data selection.

Finding 1: High-Quality cold start data is cru-
cial. As shown in Fig. 2, we compare the RL
training curves of TVG-R1 and TVG-R1-Zero,
where TVG-R1-Zero refers to skipping the SFT
cold start and directly performing RL training. It

987



Model Filter NExTG. RexT. Charad. Model Filter NExTG. RexT. Charad.
TVG-Coldstart-13k Dataset TVG-RL-18k Dataset

Qwen2.5-VL-7B - 20.87 8.10 46.14 Qwen2.5-VL-7B - 20.87 8.10 46.14
TVG-ColdStart - 26.14 26.26 42.19 TVG-R1 X 27.88 2591 46.96
TVG-R1-U X 23.92 29.14 29.57 TVG-R1 v 30.41 26.38 48.78
TVG-R1 v 30.41 26.38 48.78 TVG-R1-Zero X 5.49 24.18 20.32
TVG-R1-Zero - 27.76 26.00 48.75 TVG-R1-Zero v 27.76 26.00 48.75

Table 3: Validation of the effectiveness of high-quality
cold start data. TVG-R1-U refers to performing the cold
start on unfiltered data. The results show that TVG-R1
outperforms TVG-R1-U, highlighting that high-quality
SFT data is more effective than increasing data quantity.

Table 4: Validation of the effectiveness of RL data. TVG-
R1-Zero refers to skipping the SFT cold start and directly
conducting RL training. The results show that RL data
filtering improves model performance, particularly in the
absence of cold start.

Model R@0.3 R@0.5 R@0.7 mloU Max Length NEXxTGQA RexTime Charades
Base 6898  48.18 2287 46.14 2048 30.41 26.38 48.78
Base thinking 3648  21.83 976  23.48 1024 21.80 25.71 41.38
VTimeLLM 553 343 147 346 512 24.09 2491 46.31
TimeChat 515 322 134 -

VideoChat-TPO  58.3 402 18.4 38.1 Table 6: Impact of cold start length on performance.
TVG-ColdStart ~ 4223 2938 1495 2891 IT}:’ :ﬁsugsr?iter R::j tri‘";;ngr Shriwrthit ];’"égeir iefs pro?ﬁe
TVG-R1 7075 5046 2392  46.73 cengths during cold start are mote beneficial for the

Table 5: Performance comparison on Charades dataset

can be observed that, in terms of both total rewards
during training and test set performance, TVG-
R1 converges to higher scores, suggesting that a
high-quality cold start helps unlock the model’s
potential in the RL phase. Furthermore, as illus-
trated in Fig. 2(b), the model initialized with a cold
start exhibits a higher response length at the out-
set, with a more pronounced increase throughout
training. This indicates that the cold start enhances
the model’s reasoning ability, enabling it to derive
correct answers through more detailed reasoning.

We further examine the impact of cold start re-
sponse length on model performance by limiting
the maximum output length of Gemini-2.5-Pro. We
re-annotate different cold start datasets, and the fi-
nal results after RL training are reported in Table 6.
The results indicate that longer response lengths
during the cold start phase are more beneficial for
model optimization.

Additionally, as shown in Table 3, we compare
TVG-R1 and TVG-R1-U, where TVG-R1-U de-
notes using the unfiltered 56K dataset for cold start
followed by RL. Note that all RL is performed
on the TVG-RL-18K dataset. The results show
that TVG-R1 significantly outperforms TVG-R1-
U, demonstrating that selecting high-quality cold
start data is more effective for learning robust rea-

model’s optimization.

soning abilities than simply increasing the quantity
of training data.

Finding 2: Controlling the difficulty of RL train-
ing data is necessary. As shown in Table 4, we
compare the results of RL training with and with-
out data filtering under both the TVG-R1 and TVG-
R1-Zero settings. Note that TVG-R1 is initialized
with the TVG-Coldstart-13K dataset. The results
indicate that, without cold start, models trained
on unfiltered data struggle to learn, whereas data
filtering leads to substantial performance improve-
ments. Moreover, for models initialized with cold
start, filtering the RL data further benefits model
optimization. These findings suggest that if the
training data is too challenging or confusing in the
early stages, the model may have difficulty learn-
ing and achieving convergence.

5 Conclusion

In this work, we present a novel two-stage training
framework for Video Temporal Grounding (VTG)
to enhance the capabilities of large vision-language
models. Extensive experiments on multiple bench-
marks demonstrate that high-quality cold-start data
and difficulty-controlled RL training are both cru-
cial for improving model performance and general-
ization. Our approach is shown to be scalable and
effective for real-world deployment.
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Limitations

While our proposed framework demonstrates sig-
nificant improvements for Video Temporal Ground-
ing (VTGQG), several limitations remain. First, the
approach relies heavily on high-quality, curated
cold-start data, which may be difficult to obtain in
certain domains or low-resource scenarios. Sec-
ond, the reinforcement learning stage introduces
considerable computational overhead, potentially
limiting accessibility for smaller organizations or
academic users with constrained resources. Fu-
ture work should explore ways to improve data
efficiency, optimize RL for resource-limited set-
tings, and broaden the applicability of this training
paradigm to more complex or diverse multimodal
tasks.
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A Implementation Details

A.1 Recipes

TVG-Coldstart Dataset We use gemini-2.5-pro-
preview-05-06 API for annotation and set the max
length to 8192. Samples with IoU larger than 0.8
are selected for coldstart.

Coldstart Stage We finetune the base model on
the TVG-Coldstart dataset. The finetuning is per-
formed on 8 H100 GPUs with batch size 8 for 1
epoch. The learning rate is set to 1e-6.

RL Stage We perform RL training base on Easy-
R1 (Zheng et al., 2025) implementations. The max-
imum response length is set to 2048. The batch
size is set to 128 and trained for 600 steps. The
number of GRPO samples G is set to 8.

A.2 Experiments

Evaluations are conducted using the official Video-
Mind (Liu et al., 2025) implementation. The maxi-
mum response length is set to 2048 tokens, and all
other inference hyperparameters are kept at their
default values as provided by the transformers
library.

B Qualitative Result

B.1 TVG-R1 Evaluation Cases

We provide qualitative cases for TVG-R1 in Fig. 3.
These comprehensive data document the reasoning
process and prediction results of temporal localiza-
tion models in video segment understanding and
localization tasks. Each data entry includes basic
video information, the query, the annotated time
span, the model’s step-by-step reasoning process,
and the predicted time span. The reasoning content
typically provides a detailed description of the se-
quence of key events and action nodes in the video,
helping the model clarify the start and end points of
the target segment. The prediction results are eval-
uated by comparing them with the ground-truth
spans using metrics such as IoU. This type of data
not only highlights the combination of multi-step
reasoning and temporal cues, but also reflects the
model’s localization capability in concrete cases,
providing a solid basis for performance evaluation
and analysis.

B.2 TVG-Coldstart Dataset Cases

We provide qualitative cases for TVG-Coldstart
Dataset in Fig. 4. These cold-start data samples

employ step-by-step reasoning to document the
model’s decision-making process for temporal lo-
calization tasks. The data cover the identification
of key actions and event nodes within video seg-
ments, clearly illustrating how the model analyzes
each segment and filters events to pinpoint the ex-
act time period required by the query. This type
of data emphasizes multi-step reasoning combined
with temporal cues, providing high-quality reason-
ing samples for the subsequent training and evalu-
ation of video understanding models.
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-@ Prompt: You FIRST think about the reasoning process in the mind and
! finally determine the precise time period (in seconds) related to the query.
1 Query: Person runs back.

@ Prompt: You FIRST think about the reasoning process in the mindand
finally determine the precise time period (in seconds) related to the query. ]
Query: Person starts undressing out of their outdoor clothes. !

@ Response: <think>Getting down on all fours, the person begins to crawl :
i forward, their movements slow and deliberate. After a moment, they pause, then @ Response: <think>Person starts opens the door, pauses for a moment,
i carefully turn around and start crawling backward. Suddenly, they push and then walks into the room. Person starts undressing from the moment he

E themselves up, rising cleanly to stand tall. Without hesitation, they break intoa ~ * E enters the room until he finishes removing his shirt.</think> E
i run back toward the room, their pace quickening as they go.</think> i . . 1
| <time>[21.4, 34.0]</time> :

| <time>[100,230]</time> b e N

(a) Case Study 1: Find the time period when the little girl (b) Case Study 2: Find the time period when the person takes
runs back. off his coat.

Figure 3: TVG-R1 Evaluation Cases.

’ \ T . . . . .

:@j,- Prompt: You FIRST think about the reasoning process in the mind and ! { <€) Prompt: You FIRST think about the reasoning process in the mind and
finally determine the precise time period (in seconds) related to the query.
Query: A boy in a burgundy shirt climbs the steps.

finally determine the precise time period (in seconds) related to the query.
. Query: A hand in a Korean newspaper writing in a cash register.

@ Response: <think>The user is asking for a specific action: a hand :
writing in a cash register.\n1. The video starts with a news anchor from 1
i 0:00.\n2. Around 0:06, a graphic of a hooded figure appears.\n3. Around 0:17, !
a graphic of a bank book with a question mark appears.\n4. At 0:28, the scene
i changes to a smartphone displaying a product listing.\n5. At 0:38, the scene
changes to a security camera footage.\n6. At 0:48, the scene changes to the

+ inside of a bank, with blurred people.\n7. From 0:51 to 0:54, a close-up shot
shows a hand (presumably a bank teller\'s) handling a bank book. It looks like
they are making entries or stamping something in the bank book, which )
resembles a cash register in function for recording transactions. The term ;
"Korean spaper” is likely a misinter ion by the user; the context is a
+ Korean news report, and the object being written in is a bank book, not a 1
newspaper, and it\'s not a cash register in the traditional sense, but the action is
similar to making an entry.\n8. The hand is clearly visible handling the bank
book and appearing to write or stamp in it during this time.\n\nBased on this, !
sand.\nTherefore, the relevant time period is when he is actively climbing the the relevant time period is when the hand is interacting with the bank book ina
second set of stairs.</think> way that could be interpreted as "writing in a cash register".</think> i
<time>[19.0, 25.0]</time> <time>[51.0, 54.0]</time>

@ Response: <think>1. The video starts with a boy in a burgundy shirt at
the top of a slide.\n2. From 0:00 to 0:02, the boy is sitting at the top of the
slide.\n3. At 0:02, a girl in a purple shirt starts climbing the stairs next to the
slide, and she is visible until 0:06.\n4. From 0:06 to 0:12, the boy slides down
the slide.\n5. At 0:12, the boy reaches the bottom of the slide.\n6. From 0:16 to
0:25, the boy runs around in the sand and then approaches a set of stairs.\n7. At
0:19, the boy, still in the burgundy shirt, starts to climb a different set of
stairs.\n8. The boy continues climbing these stairs until the end of the video at
0:25.\nThe query asks for the time period when the boy in the burgundy shirt
climbs the steps. This occurs after he slides down and runs in the

(a) Case Study 1: Find the time period the boy climbs the steps. (b) Case Study 2: Find the time period writing cash registers.

Figure 4: TVG-Coldstart Dataset Cases.
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