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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems leverage Large Language Models (LLMs)
to generate accurate and reliable responses
that are grounded in retrieved context. How-
ever, LLMs often generate inconsistent outputs
for semantically equivalent inputs, a problem
compounded by the scarcity of consistency-
focused training data and the limitations of cur-
rent fine-tuning techniques in enhancing out-
put consistency. We propose a new approach
combining systematic synthetic data genera-
tion, triplet loss for better embeddings, and a
novel layer-wise model merging approach. Us-
ing consistency-aware weights derived from
intermediate layer activations, our method ef-
fectively integrates knowledge from special-
ized models. Experimental results how that our
merged model significantly enhances output
consistency, achieving a 47.5% improvement
in response similarity over the baseline, thus
offering a practical solution for increasing the
reliability of an industrial RAG system.

1 Introduction

LLMs have demonstrated remarkable capabilities
in natural language understanding and generation,
enabling breakthroughs across a broad spectrum
of applications such as question answering and
summarization. RAG has emerged as a powerful
paradigm that combines the generative strength of
LLMs with external knowledge retrieval to enhance
factuality, reduce hallucination, and extend context
beyond model limitations (Lewis et al., 2020; Wu
et al., 2024).

Despite their potential, RAG systems often gen-
erate inconsistent responses, for minor and seman-
tically insignificant variations in the input query or
the prompt (Song and Zheng, 2024). This incon-
sistency manifests itself in various forms, includ-
ing contradictory responses, variability in factual
grounding, and fluctuations in the level of detail

or confidence expressed by the model. This unpre-
dictability not only undermines the reliability of
RAG systems but also poses challenges for their
adoption in high-stakes or knowledge-sensitive do-
mains such as finance, healthcare, and scientific
research. As shown in Figure 1, the mere presence
or absence of a question mark can dramatically al-
ter the response of a RAG based QA system. In an
industrial production deployment, there could sev-
eral such variations in how users query the system,
posing challenges in the adoption of RAG systems.

Users Query LLM’s responses
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Figure 1: Variability in LLM Responses from Subtle
Query Differences.
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In RAG systems, two key models work together:
the retriever and the generator. The retriever is
responsible for fetching relevant content based on
a user query or prompt, while the generator creates
a coherent and contextually appropriate answer by
leveraging both the query and the retrieved content.

Inconsistencies may arise during either the re-
trieval or the generation process, leading to varied
responses. However, our empirical observations
and Zuccon et al. (2016), Abdallah et al. (2025)
indicate that generators are more sensitive and less
consistent than retrievers to minor variations in
queries. While retrievers tend to be consistent,
even in the face of minor, semantically insignif-
icant variations in the input query (e.g., different
phrasings of the same question), generators exhibit
higher variability (Cao et al., 2025). Small changes
in phrasing or query structure can lead to different
answers being generated, even when the retrieved
content remains the same. This difference in behav-
ior highlights the challenges faced by generative
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models in maintaining consistency, especially in
tasks where precise and coherent responses are re-
quired.

In this work, we focus on characterizing, measur-
ing, and mitigating such inconsistency. Our main
contributions are as follows:

1. We characterize different types of query varia-
tions that lead to inconsistent responses in an
industrial RAG system.

2. We identify metrics and demonstrate inconsis-
tency in the question answering task.

3. We develop novel layer-wise merging ap-
proach to reduce inconsistency without re-
gressing on accuracy.

2 Related Work

We review the literature to establish a clear un-
derstanding of what constitutes consistency, how
it is measured, and strategies to improve consis-
tency in context of LLMs. A widely accepted con-
cept, as proposed by Patwardhan et al. (2024), de-
fines consistency as the semantic equivalence of
two responses generated by the same LLM when
prompted with identical or semantically similar
queries multiple times.

Evaluating and improving LLM consistency re-
mains challenging due to a lack of targeted bench-
marks and datasets, prompting research into spe-
cialized evaluation methods. Elazar et al. (2021)
contributed a valuable resource for factual con-
sistency measurement in pre-trained LLMs and
a novel consistency loss to enhance performance
even on new data. To explore prompt sensitivity,
Raj et al. (2025b) introduced PromptSET, Qiang
et al. (2024) applied perturbations to highlight
the difficulties in predicting how minor prompt
changes affect LLMs. For evaluation, Zhao et al.
(2024) propose an automated consistency assess-
ment tool using a custom data set. Addressing in-
consistency in natural-language explanations, Chen
et al. (2025a) developed EC-finetuning, that trains
on synthetic data to increase consistency.

To address the need for reliable LLM output
in NLG, especially under semantically equivalent
inputs, Raj et al. (2023) proposed a framework
to measure semantic consistency via output agree-
ment, showing strong correlation with human judg-
ments across domains. Complementing this, Wu
et al. (2025) introduced a logit-based ensemble
method aligned with human perceptions through a

user study. Lee et al. (2025) examined LLM con-
sistency as automated evaluators, focusing on their
reliability in scoring identical items.

Recent work has focused on actively improv-
ing LLM consistency. Raj et al. (2025a) used
multi-step prompting and synthetic data for seman-
tic alignment. Sathe et al. (2025) enhanced self-
consistency via multiple input tokenizations. Wang
et al. (2023) improved reasoning by sampling di-
verse outputs and selecting by voting.

3 Methodology

In this section, we describe our methodology
for improving the consistency of LLM responses,
specifically within the context of a RAG system.

We observe that the retriever in our RAG system
provides accurate context, but minor variations in
the query often lead to inconsistent response from
the generator. This work focuses on improving gen-
erator consistency under such variations, assuming
stable retrieval quality. Addressing retrieval incon-
sistency is left for future work.

Our work aims to improve the RAG generator’s
consistency. By analyzing human-annotated data,
we constructed diverse synthetic datasets to train
multiple individual generator models. To achieve
higher response consistency, we developed a novel
consistency-focused, layer-wise model merging ap-
proach, building upon DARE-TIES (Yu et al., 2024;
Yadav et al., 2023). This strategy allowed us to ef-
fectively combine knowledge from individual mod-
els trained on diverse synthetic data.

3.1 Synthetic Data Generation

A direct approach to improving LLM consistency
is to train on all possible input variations. How-
ever, this is impractical due to the vast number of
potential variations and limited data availability -
especially in domains like healthcare, where data
is fragmented and complex, and finance, where
privacy regulations constrain access.

Given these limitations, synthetic data provides
a practical way to improve consistency when real
data is scarce. While prior work has documented a
broad range of general query variations - such as
typos, synonyms, keyboard proximity errors, and
paraphrases (Zhang et al., 2025; Wu et al., 2025) -
it does not capture several nuanced variations ob-
served in large-scale industrial RAG systems. Our
analysis of production queries shows that a small
set of key variations accounts for most input diver-
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Table 1: Illustrative Query Variations Leading to Different Answers.

Variation Type [ Query

[ Query’

Variation - How do/to
at end of project
Ivs. we
Singular vs. plural
Article omissions

how do we manage customer feedback

can we drive to a grocery store
delivering packages for shipment
how to add a contact to a phone book

how to manage customer feedback at
end of project

can I drive to a grocery store
delivering package for shipment

how to add contacts to phone books

sity, often involving subtle rephrasings (e.g., “how
to we manage an account” vs. “how to manage an
account”) rather than simple surface-level errors.
Table 1 lists these variation types with representa-
tive examples. Characterizing and accounting for
such variations is critical to improving system ro-
bustness and building user trust in real-world RAG
applications.

Based on the analysis of our dataset, we’ve iden-
tified three main types of query variations:

How to/do variations: These queries often in-
volve rephrasing questions about methods or ac-
tions. We used regular expression rules to system-
atically create additional queries of this nature.

Singular/Plural/Article variations: This cate-
gory covers changes in noun quantity (e.g., “apple”
vs. “apples”) and the use of articles (e.g., “a”, “an”,
“the”). To synthesize more of these variations, we
randomly interchanged singular and plural forms
and substituted or modified articles.

Semantic variations: These are changes in
wording that maintain the same core meaning but
use different vocabulary or phrasing. For seman-
tic variations, we leveraged a pretrained LLM
(Llama-3.1-70B-Instruct) to paraphrase our queries
(Grattafiori et al., 2024).

We used these synthetic queries to run our IR
system, capturing updated contexts for our RAG
system. This process generated enriched training
and test datasets with a wide array of input vari-
ations. Rather than training/fine-tuning a single
LLM with all the real-world and synthetic data, we
opted to train/fine-tune multiple specialized mod-
els, each focusing on a different category of input
variations. This approach allows each model to ex-
cel at the specific underlying tasks associated with
its particular query type.

3.2 Triplet Loss Training

Unlike traditional LLM fine-tuning that relies
solely on cross-entropy loss, we incorporate triplet
loss during our fine-tuning phase.

Triplet Loss (Schroff et al., 2015a) is a widely
used loss function in metric learning, used in tasks

such as face recognition and semantic search, to
learn embeddings that pull similar items closer
while pushing dissimilar ones apart. The core idea
of Triplet Loss is to train on triplets of data points:
an anchor A, a positive P that is similar to the
anchor, and a negative N that is dissimilar. The
objective is to ensure that the distance between A
and P is smaller than that between A and N. The
triplet Loss function is formulated as:

L(A, P,N) = max(0, d(f(A), /(P))
— d(f(A), F(N)) + )

More details of triplet loss can be found in (Schroff
et al., 2015b; Reimers and Gurevych, 2019).

In our implementation, triplets were constructed
by first choosing an anchor query (A). We then
selected its corresponding positive () and negative
(IN) data points by randomly sampling from its top
10 and bottom 10 nearest neighbors, respectively,
within the feature space generated by a semantic
feature extractor.

The final loss function employed during our
training and fine-tuning process is a combination
of cross-entropy loss and triplet loss, defined as:

ey

L=LcE+a- £Tripleta (2

where « is a predefined weighting factor designed
to balance the contribution of triplet loss.

3.3 Model Merging

With a suite of specialized models, each trained on
distinct synthetic datasets, the challenge became
generating a single, consistent response without
sacrificing accuracy. While conventional ensemble
approaches for multiple pre-trained or fine-tuned
LLMs involve parallel execution and output combi-
nation, they incur significant computational costs
and inference latency (Chen et al., 2025b).

To address these limitations, model merging of-
fers a solution by consolidating knowledge from
multiple pre-trained or fine-tuned models into a
single consolidated model. These techniques range
from simple averaging to complex algorithms that
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align features and selectively transfer knowledge.
Here, we introduce a novel model merging ap-
proach, building on the DARE-TIES merge method
(Yu et al., 2024; Yadav et al., 2023), with the main
goal of substantially boosting the consistency of
the unified model’s responses.

DARE-TIES merging is a sophisticated model
merging algorithm designed to overcome the limita-
tions of simple weight averaging, especially when
combining fine-tuned models that originate from a
common pre-trained base model but have diverged
during training on different tasks or datasets. It
operates on the principle of merging the Af, =
0F, —0p that fine-tuned models apply to a common
pre-trained model, rather than directly merging the
absolute weights, where 0p is the base model’s pa-
rameters and 0, denotes the parameters of the k-th
fine-tuned model. By applying sparsification, sign
matching and inverse-scaling on the A8y, DARE-
TIES yields the merged model’s parameters by:

N

emerged = 0P + Z A'gk (3)
k=1

To improve consistency with semantically iden-
tical inputs, we analyzed the consistency of each
LLM layer, then assigned dynamic weights in Equa-
tion 3 for merging.

To accomplish this, we first formed a develop-
ment set Sy, of 1" diverse data points. Then, for
each model k and each layer [, we extracted the
activations oz,(gl) € RP*T from development set
Sgev,» Where D represents the output feature di-
mension of layer [. For sequential outputs, we
used max-pooling to extract these activations. This
process enabled us to compute a similarity matrix
E,(cl) € RT*T for the activations of each data point
at every layer of model k.

Ideally, a model exhibiting high consistency with
semantically identical inputs should produce simi-
lar activations within a single layer. Conversely,
if inputs are semantically distinct, their activa-
tions should diverge significantly. Therefore, a
consistent model would ideally yield similar sim-
ilarity matrices E,(f) across different layers when
presented with the same set of inputs.

Leveraging this intuition, we can quantify a
model’s consistency by comparing the E,(Cl) from
different layers. Our approach begins by using
a semantic feature extractor (specifically, a sen-
tence transformer) to obtain features for each query

in our development set, Sge,,. From these fea-
tures, we computed a reference similarity ma-
trix X2,. Subsequently, we quantified the discrep-
ancy between each layer’s similarity matrix Z,(Cl)
and this reference using the absolute difference:

) = \Eg) — ¥, |. Hence, for a specific layer [
across our various LLMs, we obtain a set of dis-
tance values, DM() = [dgl), dg), e ,dg\l,)]. To con-
vert these distances into weights that indicate a
layer’s contribution to consistency, we apply an
inverted non-linear normalization approach. First,
we computed the inverted distance for each layer’s
distance d,(cl) by subtracting it from the maximum
distance observed for that layer across all models:

dﬁj) = max(DM®)) — dg)

Next, these inverted distances are normalized to
obtain r,gl):

(1
() _ dy

"k N )
Z] ldj

Finally, we apply a sigmoid function to these nor-
malized inverted distances to derive the final weight

(@)

wy,” for layer [ of model :
w]gl) =o(a- T,(cl) +0b) 4)

Here, o(-) denotes the sigmoid function, and a and
b are predefined scaling and offset parameters.

Based on the derived consistency-oriented layer
weights w,(cl) for each model k£, we modified Equa-
tion 3 to incorporate these weights into the layer-

wise model merging process:

N

Z VN (5)

k=1

oW

merged

The final merged LLM is constructed by apply-
ing Equation 5 in a layer-wise manner.

We outline the algorithm for model merging:
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Algorithm 1 Consistency-Aware Model Merging

1: Input: Base model 0p, fine-tuned models
{05, |, dev set Sye,
2: Output: Merged model Opyerged

3: Compute reference similarity matrix 3, using
a sentence encoder on Sge,
4: for each model £ and layer [ do

5: Extract activations and compute similarity
matrix EI(CZ)

6: Compute distance d,(cl) = |E,(€l) - %,

7: end for

8: for each layer [ do

9: Normalize distances d,il) to weights w,gl)

using inverted scaling and sigmoid

10 Merge: Qgirged = 95:[») + 2% wz(f) : (ng -
!
0})
11: end for

12: return Operged

4 [Experiments

Our experimental setup utilized a QA engine built
on a RAG architecture. For the evaluation of
our consistency improvement method, the retriever
component was held constant, and the generator
component underwent fine-tuning.

4.1 Datasets

To fine-tune and evaluate our LLM generator, we
used 2,738 representative queries and their re-
trieved contexts that resemble a production IR sys-
tem. Domain experts annotated the expected an-
swers, and the data was split into 1,421 training
and 1,317 test samples.

To get more varied inputs for training our model,
we applied the methods detailed in Section 3.1 to
create three distinct types of synthetic data. Our
synthetic training dataset included 150 “how to/do”
variation queries, 1,421 paraphrased queries, and
952 singular/plural/article variation queries. We
submit all query variations to the IR system to
retrieve their corresponding contexts, which are
then used to construct the final inputs.

Alongside the 1,317 test samples to measure ac-
curacy, we created a test set to evaluate consistency
using our data synthesis methods (Section 3.1).
This produced 1,579 variations-176 “how to/do”,
912 paraphrases, and 491 singular/plural/article
changes-paired with original queries and expected
answers for consistency testing.

4.2 Metrics

To assess the overall accuracy of the results of our
RAG system, we employed the ROUGE-L (Lin,
2004) and BLEU metrics with up to 4-grams (Pap-
ineni et al., 2002), comparing the LL.M-generated
responses against the references provided.

To quantify the consistency of LLM response
across input variations, we utilized three metrics:
exact string match (EM), response similarity (RS)
and Bert similarity (BS) measures. Given an origi-
nal query @) and its variant ', with S and S’ rep-
resenting the respective LLM responses, the exact
string match is formally defined as:

EM(S,S) — S=29"

For Response Similarity (RS), we determine se-
mantic equivalence by thresholding the ROUGE
score between the LLM’s responses S and S”:

RS(S,S") <= Rouge(S,5") > T,

where T' represents an empirically determined
threshold used to ascertain whether two responses
are considered semantically identical.

Furthermore, we define Bert Similarity (BS) be-
tween two LLMs responses S and S’ to quantify
the semantic similarity of them, as:

BS(S,5’) < Bert(S,5").

4.3 Model Training and Merging

Our experimental setup involved several distinct
fine-tuning stages for the Llama-3.1-8B-Instruct
model (Grattafiori et al., 2024) and Gemma-3-12B-
Instruct model (Team et al., 2025).

We started by fine-tuning a baseline Llama-3.1-
8B-Instruct and Gemma-3-12B-Instruct models for
two epochs, using the original 1,421 training sam-
ples and only a cross-entropy loss function.

To investigate how triplet loss could boost LLM
consistency, all subsequent fine-tuning experiments
combined both cross-entropy loss and triplet loss,
keeping the hyperparameters consistent with our
initial baseline setup.

Following this, we fine-tuned five distinct Llama-
3.1-8B-Instruct LLMs. One was fine-tuned on our
base training set exclusively. The other three were
fine-tuned on this base set, each augmented with
a specific synthetic data type: 176 “how to/do”
variations, 912 paraphrased samples, or 491 singu-
lar/plural/article variations (more details on this in
Section 3.2). The final model was fine-tuned using
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Table 2: Comparison of Overall Accuracy and Consistency Metrics.

Llama-3.1-8B-Instruct based LLMs Gemma-3-12B-Instruct based LLMs
ROUGE [ BLEU H EM [ RS [ BS ROUGE [ BLEU H EM [ RS [ BS
B 0.5123 0.2928 || 0.1051 | 0.2799 | 0.9246 0.4692 | 0.2338 || 0.0678 | 0.2609 | 0.9227
B + SFT 0.5208 0.3125 || 0.1482 | 0.3325 | 0.9266 0.5266 | 0.3297 || 0.2242 | 0.4009 | 0.9323
B + SFT + TL 0.5460 | 0.3460 || 0.1822 | 0.3530 | 0.9276 0.5206 | 0.3194 || 0.2331 | 0.4041 | 0.9337
B + SFT + TL + HTD 0.5493 | 0.3495 || 0.2250 | 0.3867 | 0.9264 0.5276 | 0.3255 || 0.2483 | 0.4364 | 0.9351
B+ SFT+TL+SEM | 0.5330 | 0.3339 || 0.2366 | 0.3965 | 0.9281 0.4966 | 0.3042 || 0.2673 | 0.4262 | 0.9314
B + SFT + TL + SPA 0.5364 | 0.3370 || 0.2111 | 0.3692 | 0.9262 0.5130 | 0.3170 || 0.2603 | 0.4231 | 0.9332
B + SFT + TL + ALL 0.5198 0.3230 || 0.2510 | 0.3986 | 0.9289 0.4879 | 0.2974 || 0.3382 | 0.4731 | 0.9357
Merged 0.5379 | 0.3380 || 0.2521 | 0.4129 | 0.9292 0.5356 | 0.3416 || 0.2932 | 0.4674 | 0.9373

Abbreviations: B = Baseline (Llama-3.1-8B-Instruct or Gemma-3-12B-Instruct), SFT = Supervised Fine-tuned, TL = Triplet-
loss, HTD = “How to/do” variation, SEM = Semantic variation, SPA = Singular/Plural/Article variation, ALL = All training

data, Merged = Merged model.

all available training data combined. Finally, we
merged these three individually fine-tuned LLMs
using the methodology described in Section 3.3.
We repeated the same fine-tuning and merging
steps for the Gemma-3-12B-Instruct LLMs to en-
sure consistent evaluation across model’s architec-
tures.

All fine-tuned models, including the Llama-3.1-
8B-Instruct and Gemma-3-12B-Instruct baselines,
were comprehensively evaluated in two dedicated
test sets designed to assess both accuracy and con-
sistency measures, as described in Section 4.1. We
present complete experimental results in Table 2.

4.4 Results

In Table 1, we present four types of query vari-
ations that lead to response inconsistency. Ta-
ble 2 quantitatively shows that the baseline model
(Llama-3.1-8B-Instruct) achieves moderate overlap
with human references (ROUGE: 0.5123, BLEU:
0.2928) but demonstrates the lowest consistency
(EM: 0.1051, RS: 0.2799, BS: 0.9246). This
demonstrates the model often fails to generate
consistent responses to semantically equivalent
queries.

The fine-tuned model, as shown in Table 2,
demonstrates a modest improvement over the base-
line, w.r.t accuracy and consistency. While it yields
somewhat better text overlap and initial gains in
consistency, its performance, particularly in EM,
RS and BS, suggests that general fine-tuning pro-
vides only limited progress towards truly consistent
response for varied inputs.

Incorporating triplet loss significantly boosts per-
formance across all metrics, as seen by comparing
the triplet-loss model to the fine-tuned model in
Table 2. The triplet-loss model achieved higher
ROUGE (0.5460) and BLEU (0.3460) scores, in-
dicating better content and lexical alignment. The

model shows improvement in consistency, the EM
score dramatically improved by 73.4% to 0.1822
(from 0.1051), while RS score saw a substantial
26.1% increase to 0.3530 (from 0.2799). These
results underscore the effectiveness of integrating
triplet loss in fine-tuning strategies for LLMs, lead-
ing to significantly more robust and consistent re-
sponse generation.

As shown in the Table 2, individual variation
models—specifically the How to/Do,Semantic,
and  Singular/Plural/Article  variation mod-
els—consistently outperform the baseline in both
accuracy and consistency. This demonstrates
the effectiveness of specialized fine-tuning with
synthetically generated data

Surprisingly, models fine-tuned on individual
synthetic datasets outperformed the combined-data
model in accuracy. However, the combined model
achieved higher consistency, suggesting that merg-
ing diverse variation types may introduce conflict-
ing signals or biases that impact accuracy.

The merged model consistently delivers the most
robust and balanced performance across all metrics,
with notable strength in response consistency. In
terms of consistency metrics, the merged model
achieves the highest scores for both EM at 0.2521,
RS at 0.4129 and BS at 0.9292. This performance
significantly surpasses all other models. For EM,
it represents an impressive 139.87% improvement
over the baseline model and still leads the next best
model (“B + SFT + TL + ALL” model at 0.2510)
by approximately 0.44%. Similarly, its RS score
isa 47.52% improvement over the baseline and
approximately 3.59% higher than the second best
model. This indicates that the merging strategy
is highly effective in ensuring LLM responses are
more reliably identical or semantically equivalent
even when faced with varied inputs.
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Regarding accuracy-based metrics, while the
merged model’s ROUGE score (0.5379) and BLEU
score (0.3380) are marginally lower than the top
performer (the “B + SFT + TL + HTD” with
ROUGE 0.5493 and BLEU 0.3495), they are still
very good and highly competitive. This demon-
strates that the merging process successfully en-
hances consistency without a significant trade-off
in overall accuracy or fluency. The merged model
effectively combines the strengths of its constituent
specialized models, making it the most well-
rounded and high-performing solution for both ac-
curate and consistent RAG system responses.

Table 2 also reports accuracy and consistency
metrics for Gemma-3-12B-Instruct models. Over-
all, the trend of model improvements closely mir-
rors that of the Llama-3.1-8B-Instruct experiments:
baseline models exhibit moderate ROUGE and
BLEU scores with the lowest consistency (EM:
0.0678, RS: 0.2609, BS: 0.9227), fine-tuning im-
proves both accuracy and consistency, incorporat-
ing triplet loss further boosts response reliability,
and models fine-tuned on individual synthetic vari-
ations outperform the baseline in both accuracy
and consistency. For Gemma, the “B + SFT + TL
+ ALL” model achieves the highest consistency
metrics (EM: 0.3382, RS: 0.4731), similar to the
trend observed for Llama, where combined-data
models also prioritize consistency over raw accu-
racy. The merging strategy consistently delivers
the most robust and balanced performance across
all metrics.

Key differences are notable, however. The
Gemma baseline shows lower initial accuracy and
EM than the Llama baseline, suggesting a larger
model does not automatically guarantee consistent
responses. The merged Gemma model attains the
highest ROUGE (0.5356), BLEU (0.3416), and BS
(0.9373), slightly outperforming Llama’s merged
model on accuracy and semantic similarity, though
EM is slightly lower than Gemma’s “B + SFT +
TL + ALL” model, indicating a minor trade-off in
exact match consistency.

Overall, while the pattern of improvement, base-
line — fine-tuned — triplet-loss — specialized vari-
ation — merged, is consistent across both model
families, the larger Gemma-3-12B-Instruct bene-
fits more from combined data fine-tuning, achiev-
ing higher accuracy and semantic similarity, while
the merging strategy ensures robust and balanced
performance similar to both Llama and Gemma
models.

5 Conclusion

In this work, we identify four types of semantically
insignificant query variations that cause inconsis-
tent LLM responses. We quantify response simi-
larity and show that baseline models and standard
fine-tuning exhibit low consistency. To address
this, we propose a novel approach combining syn-
thetic data generation, Triplet Loss training, and
layer-wise model merging guided by consistency-
oriented weights.

Our experiments show the merged model sig-
nificantly outperforms baselines and specialized
models, achieving superior Exact Match and Re-
sponse Similarity scores, thus demonstrating en-
hanced consistency while maintaining strong ac-
curacy. This work presents a compelling pathway
towards more trustworthy LLMs and opens avenues
for future research, including adaptive merging, ex-
panded consistency definitions, and the application
of this method to diverse public datasets. We also
plan to construct and publicly release benchmarks
that mimic the identified query variations to further
evaluate and demonstrate the effectiveness of our
approach. Additional future directions include ad-
dressing inconsistency cases arising from retrievers,
which were beyond the scope of this study.

6 Limitations

While the proposed work has been evaluated on in-
dustrial data, there is scope to create public bench-
mark and evaluate the method. We will explore
creating creating benchmarks for evaluating consis-
tency in responses due to variations in the query.

The work is limited to variations in the query
where the retrievers results don’t significantly
change. This can explored as future direction for
research.

Finally, we experimented with 2 Large Language
Models with optimal settings for fine-tuning. There
is scope to explore additional hyper parameter con-
figurations.
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