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Abstract

We introduce a novel, training free cascade
for auto-prompting Large Language Mod-
els (LLMs) to assess product quality in e-
commerce. Our system requires no training la-
bels or model fine-tuning, instead automatically
generating and refining prompts for evaluating
attribute quality across tens of thousands of
product category–attribute pairs. Starting from
a seed of human-crafted prompts, the cascade
progressively optimizes instructions to meet
catalog-specific requirements. This approach
bridges the gap between general language un-
derstanding and domain-specific knowledge at
scale in complex industrial catalogs. Our ex-
tensive empirical evaluations shows the auto-
prompt cascade improves precision and recall
by 8–10% over traditional chain-of-thought
prompting. Notably, it achieves these gains
while reducing domain expert effort from 5.1
hours to 3 minutes per attribute - a 99% re-
duction. Additionally, the cascade generalizes
effectively across five languages and multiple
quality assessment tasks, consistently maintain-
ing performance gains.

1 Introduction

Product catalogs are the cornerstone of e-
commerce, where the accuracy of product informa-
tion directly impacts user experience and business
outcomes (Amsl et al., 2023; Lv and Liu, 2022;
Sadinle et al., 2022). Each product is defined by
unstructured attributes (free-text like titles or de-
scriptions) and structured attributes (feature-value
pairs like color or size) (Nikolakopoulos et al.,
2023). A fundamental challenge in maintaining
catalog quality is ensuring the alignment between
these two attribute types, as inconsistencies fre-
quently arise from discrepancies between seller de-
scriptions and how attributes are formally modeled
(Schmidts et al., 2020). This complexity is twofold:
First, inherent semantic ambiguities make verifi-
cation difficult. For example, identifying the base

Figure 1: Auto-prompt LLM cascade for quality mea-
surement. The cascade takes metadata and manually cre-
ated few-shot examples to iteratively generate prompts,
subsequently used to classify the attribute value.

material of a walking stick from the description,
wood construction with a steel spike and rubber tip,
requires disambiguating material of each compo-
nent. Second, attribute values often rely on implicit
sequential reasoning, such as inferring that a prod-
uct talks about pet food or human food, and using
this inference to predict if valid age is puppies or
young adult. For additional examples see: §C.4.

These alignments and nuances vary for each
product category-structured attribute (PC-SA) pair,
which exhibits distinct characteristics and seman-
tic interpretations. Here PC is a group of similar
products (e.g., speakers or shirts), and SA is a struc-
tured attribute (e.g., color or material). While Large
Language Models (LLMs) offer strong reasoning
capabilities (Zubiaga, 2024; Hadi et al., 2023; Min
et al., 2023; Huang et al., 2024; Li et al., 2023),
steering them for such a specialized task with ten’s
of thousands of implicit nuances remains a com-
plex challenge. This is further compounded by
misalignment of LLM’s general knowledge with
specialized terminology and quality expectations of
e-commerce stores. Single, general-purpose solu-
tions (zero-shot or few-shot) struggle to effectively
capture these variations (Jiang et al., 2024b). A
promising direction is to steer the LLM to deter-
mine correct values through domain-aware, case-
specific instructions for each PC-SA pair. This is
a manual task suitable for subject matter experts
and estimated to require over 3,000 human-days
for over 12,000 PC-SA pairs.
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Previous attempts to address these challenges
have shown promise but faced limitations. For in-
stance, MetaBridge (Wang et al., 2020) combines
meta-learning with latent variable modeling to ver-
ify attributes but requires an exceedingly large num-
ber of labeled training samples for each PC-SA, ren-
dering it practically infeasible at the scale of tens of
thousands of PC-SA. On the other hand, zero-shot
Chain-of-Thought (CoT) approaches have helped
in simpler tasks (Wei et al., 2022; Kojima et al.,
2022; Zhang et al., 2022b; Wang et al., 2022), but
they lack the granularity to handle the thousands of
heterogeneous relationships between PCs and SAs,
which are needed to ensure domain-specific termi-
nology, contextual nuances, and the hierarchical
nature of product taxonomies.

To address these challenges, we introduce an
innovative LLM cascade for large scale product
quality assessment without any training labels or
model fine-tuning (Fig. 1). Our approach steers
off-the-shelf LLMs by iteratively generating and re-
fining tens of thousands of prompts for two catalog
quality tasks: correctness and applicability (§4.1).
A core component of the prompts are tailored PC-
SA instructions which steer the LLM in making
product quality assessments. Bootstrapping from a
small set of human-authored examples, the cascade
creates instructions for each SA across multiple
PCs (e.g., material-sofas, material-screws). The
cascade iteratively refines these instructions by in-
corporating detailed metadata, such as PC and SA
definitions, valid-values etc. In the remainder of
the paper, we use the terms prompt and instruction
interchangeably.

The contributions of this paper are three fold. (1)
We introduce a novel, training-free LLM cascade
that automatically generates and refines prompts
for e-commerce quality assessment, requiring no
labeled data or model fine-tuning. (2) We demon-
strate that our approach improves precision and
recall by 8–10% over the baseline across tens of
thousands of diverse PC-SA pairs, while reducing
human prompting effort by 99%. (3) We estab-
lish that our method generalizes effectively across
multiple quality tasks, foundational LLMs, and lan-
guages, all without the need for task or language
specific training labels.

2 Related work

Prompt engineering: In-context learning through
hand-crafted prompts have been shown to improve

LLM performance. Approaches like Chain-of-
Thought prompting (Wei et al., 2022; Ma et al.,
2023) and few-shot learning (Brown et al., 2020;
Radford et al., 2019) enhance LLM reasoning,
though they rely on manual engineering and offer
limiting scalability to write thousands of prompts.
Our work builds on these by automating prompt
generation at scale to create tens of thousands of
domain-specific prompts while retaining benefits
of structured prompt design offered by both.

Automated prompt generation: Automated
prompt generation has shown promise in improv-
ing prompts, however, most methods focus on
general-purpose tasks (Zhou et al., 2022; Opsahl-
Ong et al., 2024) rather than domain-specific im-
provements. Approaches like reinforcement learn-
ing (Deng et al., 2022) and evolutionary algorithms
(Guo et al., 2023) optimize prompts based on feed-
back; while clustering and failure-driven rules help
select optimal prompts from synthetic candidates
(Do et al., 2024; Gao et al., 2025). PRISM (He
et al., 2024) and PromptGen (Zhang et al., 2022a)
use iterative approaches for in-context learning.
However, these techniques require labeled devel-
opment sets or error feedback for optimization,
whereas our method generates domain-specific
prompts directly from knowledge hierarchies with-
out such supervision.

Recently, hybrid approaches combining prompt
engineering and fine-tuning have shown promis-
ing results, for example integrating prompt tuning
with Bayesian regression (Wang et al., 2025), fine-
tuning (Soylu et al., 2024) and reinforcement learn-
ing (Byun et al., 2024; Kong et al., 2024). However,
unlike ours, these approaches require training la-
bels for optimizing both models and prompts which
is prohibitive at the scale of tens of thousands of
PC-SA’s.

LLMs for e-commerce: LLMs have shown ben-
efit in several e-commerce applications such as,
improving recommendation systems (Maragheh
et al., 2023), knowledge graph completion (Chen
et al., 2023), search (Rokon et al., 2024), product
discovery (Wang et al., 2024), product matching
(Herrero-Vidal et al., 2024), categorization (Cheng
et al., 2024; Kathiriya et al., 2023), and attribute ex-
traction (Baumann et al., 2024). However, no prior
work has investigated using LLMs for assessing
product quality.
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Figure 2: Example of auto prompting cascade for in-
struction generation of PC denoted as pa and attribute as
sb across two iterations. Iteration 1 utilizes M manually
created global PC-SA instructions and is repeated for M
PC definitions to generate M PC-SA instructions for the
sb attribute that are used by iteration 2 to combine these
examples with the definition for pa and sb to produce
the PC-SA instruction for pa - sb.

3 Method

3.1 Problem formulation
Let A be the universe of products, where each
product a ∈ A is characterized by a tuple
(pa, {sai}

|S|
i=1, ua), where pa ∈ P is the PC, sai ∈

S denotes the i-th structured attribute in the set
of structured attributes (SAs) for product a, and
ua ∈ U denotes the unstructured attributes (UAs)
for product a. By dropping subscript a for simplic-
ity, we define the task of quality assessment of SA
si for a given product a as learning the classifica-
tion function

f : P × S × U → R× C (1)

where C represents the classification decision and
R represents the LLM’s rationale for the decision.

This function is implemented through a text-to-
text transformation, where prompts are crafted for a
given (p, s, u) using LLMs. We design the prompts
to have placeholders for input data and PC-SA
specific instructions, therefore reducing the auto-
prompting task to optimizing the instructions to
the quality assessment LLM. To reduce the search
space and parameterize the problem, we structure
the instructions at PC-SA level, considering instruc-
tions to be dependent only on the SA si and PC p
given by product a, and model it as independent
from the UA value u. Note that UA values- titles,
product descriptions, and images - are mainly what
the correctness of SA s gets assessed against, hence
the classifier f is a function of u, however the struc-
ture of the prompt is modeled independently.

Thus, given the PC and SA of interest of the
given product, instruction creation is modeled by
π : P × S → I where P and S are the set of

all PCs and SAs respectively, and I represents the
instruction space. These instructions are then fed
into the text-to-text transformation function T :
I × U → Y , to create an element of the output
token space Y . The end-to-end pipeline can now
be expressed as

f(p, s, u) = g(T (π(p, s), u)); g : Y → {R, C}.

3.2 CoT prompting approach

We adapt a Chain-of-Thought (CoT) prompting ap-
proach (Wei et al., 2022; Ma et al., 2023), assuming
that an LLM’s inherent contextual understanding
from pre-training can resolve ambiguity in our task.
This simplifies our general prompt function from
Equation 1 to f(p, s, u) = g(T (p, s, u)). Here,
we rely on the model’s implicit knowledge of the
PC-SA pair (p, s) to produce a high-quality trans-
formation T (p, s, u) without explicit instructions.
Our zero-shot prompt incorporates intermediate
reasoning steps to guide the classification, which
further helps the enhanced subsequent techniques
detailed next.

3.3 Human engineered PC-SA instructions

To capture nuanced requirements and store-specific
expectations at a PC-SA level, we manually engi-
neer a set of "golden" instructions with the help
of domain experts. These instructions cover 2,388
PC-SAs, which we select based on PC frequency,
and serve as our implementation of the mapping
function π(p, s) defined in §3.1. To manage the
significant manual effort, we adopt a hierarchical
approach, authoring instructions at the more gen-
eral SA level rather than for each PC-SA pair.

Each instruction provides comprehensive guid-
ance to the LLM by including three key compo-
nents: (1) a formal definition of the SA’s seman-
tic scope within e-commerce; (2) clear guidelines
for handling edge cases and ambiguity; and (3)
domain-specific constraints that may differ from
the LLM’s general pre-trained knowledge.

3.4 Cascaded PC-SA instruction generation

Manually creating instructions for each PC-SA pair
improves LLM comprehension but is unscalable
for large catalogs that contain tens of thousands of
such pairs. To address this challenge, we introduce
an auto-prompt cascade for instruction generation
by leveraging a minimal set of manually crafted
instructions to efficiently generate nuanced, PC-SA
specific instructions at scale.
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Algorithm 1 Cascaded few shot prompt generation
1: IH ← set of hand crafted instructions
2: for s ∈ S do ▷ iteration 1
3: IA(1) ← ∅ ▷ Initialize IA(1) as the set of

auto-generated instructions for attribute s
4: Randomly sample M product categories from P to

get P ′ = {p1, ..., pM}
5: for px ∈ P ′ do ▷ Use LLMs to generate automated

instructions for (px, s)
6: IA(1) ← IA(1) ∪ LLM(d(px), d(s), IMH )
7: end for
8: end for
9: for τ ∈ {2, ..., T} do ▷ iteration τ

10: IA(τ) ← ∅ ▷ Initialize the set of final PC-SA
instructions

11: for s ∈ S do ▷ Use IA(τ−1) as few shot
examples to generate instructions for all (p, s) pairs

12: for p ∈ P do
13: IA(τ) ← IA(τ)∪LLM(d(p), d(s), IM

A(τ−1))
14: end for
15: end for
16: end for
17: return IA(T )

Let us formally define the instruction generation
problem. Let d be the definition function, such that
dP(p) : P → DP denotes the definition of the
PC p, and dS(s) : S → DS denotes the definition
of the SA s. We will drop S and P subscripts to
simplify notation. Let IH ⊂ I denote the space
of human-crafted PC-SA instructions and IA ⊂ I
denote the space of automatically generated PC-SA
instructions, where I is the space of all instructions.

In order to generate an instruction for a given
PC-SA (pa, sb) and capture the nuances for SA sb
specific to product type pa, we propose to generate
an automated PC-SA instruction i

′
pasb

by utilizing
K few-shot examples over K different product
categories for the same SA sb, denoted by ipksb ∈
IH, 1 ≤ k ≤ K. This is tantamount to modeling
the instruction generation function as

π′(d(pa), d(sb), ip1sb , · · · , ipKsb) = i′pasb ,

∀a ∈ {1, · · · , |P|}, b ∈ {1, · · · , |S|} (2)

This mapping π′ : DP × DS × IK
H → IA is our

proposed efficient proxy of the more ambiguous
instruction mapping function π : P × S → I.
However, this approach is intractable in practice as
it necessitates K instructions for each SA, leading
to a total of O(K × |S|) hand-crafted instructions.

To address this limitation, we propose a cascaded
instruction generation framework where we utilize
an LLM to assist the above using a much smaller
set of M hand-crafted instructions. Fig 2 illustrates
an example through the first two iterations of the

Model Method Precision Recall F1 score Effort

Mixtral 8x7B

Baseline 50.08% 38.45% 43.50% 0
CoT prompting 57.67% 44.98% 50.54% 10

Human engineered 68.57% 51.24% 58.65% 308
Auto prompt cascade 70.13% 52.80% 60.24% 3

Mixtral 8x22B

Baseline 60.27% 42.61% 49.92% 0
CoT prompting 69.92% 61.32% 65.34% 10

Human engineered 73.05% 66.01% 68.35% 308
Auto prompt cascade 81.46% 69.46% 74.98% 3

DeepSeek R1
Distill

Qwen 32B

Baseline 51.25% 75.33% 61.00% 0
CoT prompting 57.50% 85.71% 68.83% 10

Human engineered 66.10% 86.87% 75.09% 308
Auto prompt cascade 66.30% 88.21% 75.70% 3

Claude 3.5
Sonnet

Baseline 66.00% 68.80% 67.37% 0
CoT prompting 83.95% 74.64% 79.02% 10

Human engineered 86.96% 80.34% 83.52% 308
Auto prompt cascade 92.04% 90.23% 91.13% 3

Table 1: Performance comparison of different prompt
generation methods and models for the correctness task
on english. The full table is given in Table 5.

cascade. In iteration 1, we leverage M manually
created PC-SA instructions to generate M few shot
examples per SA through a mapping function h1 :
DP ×DS × IM

H → IA defined as

h1(d(px), d(sb), ip1s1 , · · · , ipMsM ) = i′pxsb ,

x ∈ {1, · · · ,M}, b ∈ {1, · · · , |S|} (3)

In iteration 2, we utilize M automatically gen-
erated instructions as few shot examples at an SA
level for the SA sb to produce PC-SA instructions
for target pair (pa, sb) through mapping function
h2 : DP ×DS × IM

A → IA defined as

h2(d(pa), d(sb), i
′
p1sb

, · · · , i′pMsb
) = i′pasb ,

a ∈ {1, · · · , |P|}, b ∈ {1, · · · , |S|}. (4)

One could generally repeat this process a few
rounds to iteratively refine the final instructions.
That is, utilizing the automated-instructions gener-
ated at step τ denoted by i

′(τ)
p1sb ∈ IA(τ) , the itera-

tion (τ + 1) generations can be formalized as

hτ+1(d(pa), d(sb), i
′(τ)
p1sb

, · · · , i′(τ)pMsb
) = i′(τ+1)

pasb

Final iteration τ = T then yields the automated
instructions i

′(T )
p1sb ∈ IA(T ) that will be utilized in

the down-stream quality classification task.
This cascaded framework enables us to maintain

instruction quality through hierarchical knowledge
transfer and reduces manual effort from O(K×|S|)
to O(M) by structured knowledge transfer between
iterations. The pseudocode is provided in Alg. 1.
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Figure 3: F1 score comparison on the incorrect class
of three LLMs on the correctness task using Mixtral
8x7B, Mixtral 8x22B, DeepSeek R1 Distill Qwen 32B,
and Claude 3.5 Sonnet. The top and bottom rows show
F1 scores across the number of iterations and few shot
examples respectively. Iteration 0 denotes performance
of the CoT prompting. The dotted line represents best
iteration across at least three of the four LLMs.

4 Experimental setup

4.1 Tasks and datasets

We evaluate our method on two product quality as-
sessment tasks, correctness and applicability, using
proprietary datasets sampled from an e-commerce
catalog, which we describe below. The datasets
were labeled by subject matter experts and they did
a 10% random blind auditto ensure an accuracy of
at least 98% of the evaluation set. 1

Correctness: In this task, we are interested in
identifying inconsistencies between UAs and SAs
of a product. If an SA value is inconsistent with
UAs, we call it incorrect, otherwise it is correct.
For example, if a product description states that
a jacket "keeps you dry in heavy downpours and
harsh weather", but the SA "water resistance level"
lists it as "water-resistant", the output would be in-
correct since water-resistant materials only protect
against light rain while waterproof materials fully
block moisture.

We create a comprehensive human labeled En-
glish language dataset, covering 12,046 unique PC-
SA combinations across 1,322 PCs and 1,410 SAs
with both correct and incorrect labels. The dataset
consists of 13,725 labels (12,148 correct, 1,577 in-

1To the best of our knowledge, there are no publicly avail-
able datasets for these tasks.

Language Model Prompting Incorrectness

technique Precision Recall F1 score

Spanish

Mixtral 8x7B
Baseline 34.69% 8.95% 14.23%

CoT prompting 56.92% 18.37% 27.78%
Auto prompt cascade 67.31% 19.27% 29.96%

Mixtral 8x22B
Baseline 41.18% 10.94% 17.29%

CoT prompting 62.75% 16.67% 26.34%
Auto prompt cascade 60.87% 21.88% 32.19%

German

Mixtral 8x7B
Baseline 39.06% 12.76% 19.24%

CoT prompting 55.00% 22.22% 31.65%
Auto prompt cascade 61.97% 22.22% 32.71%

Mixtral 8x22B
Baseline 50.98% 13.07% 20.81%

CoT prompting 66.20% 23.62% 34.82%
Auto prompt cascade 60.64% 28.64% 38.91%

Italian

Mixtral 8x7B
Baseline 20.31% 7.93% 11.41%

CoT prompting 62.20% 26.95% 37.61%
Auto prompt cascade 69.23% 30.36% 42.21%

Mixtral 8x22B
Baseline 44.62% 17.26% 24.89%

CoT prompting 68.92% 30.36% 42.15%
Auto prompt cascade 78.46% 30.36% 43.78%

French

Mixtral 8x7B
Baseline 28.00% 7.53% 11.87%

CoT prompting 62.92% 29.68% 40.33%
Auto prompt cascade 78.12% 26.32% 39.37%

Mixtral 8x22B
Baseline 43.86% 13.16% 20.25%

CoT prompting 75.00% 25.13% 37.65%
Auto prompt cascade 68.97% 31.41% 43.16%

Table 2: Performance comparison of incorrectness met-
rics for different prompt generation methods on multi-
lingual datasets. The full table is given in Table 6.

correct). This is the primary task we are interested
in, but we also perform experiments on other tasks
that we describe below.

Multilingual correctness: To evaluate our
framework’s multilingual capabilities, we curate
evaluation datasets across four major European lan-
guages. These datasets contain 1,014 labeled exam-
ples for Spanish (822 correct/192 incorrect), 1,102
for German (903 correct/199 incorrect), 1,011 for
Italian (843 correct/168 incorrect), and 1,014 for
French (823 correct/191 incorrect).

Applicability: In this task, we are interested in
identifying the SAs that are not relevant (inappli-
cable) for a given product. For instance, in shoes
PC, the SA "heel length" is inapplicable to a pair of
sneakers while it is applicable to stilettos. Similar
to the correctness-task, this is framed as a binary
(Applicable/Inapplicable) classification task. Our
English language dataset is comprised of 1,581
SAs where 70% of the instances belong to the Ap-
plicable class. We again utilize our auto prompt
cascade’s instructions on correctness task for appli-
cability to demonstrate generalization across tasks.

4.2 Models and hyperparameters

We employ Claude 3.5 Sonnet (ANTHROPIC,
2024) to generate instructions for our auto prompt
cascade and evaluate their effectiveness on four
foundational LLMs: Mixtral 8x7B (Jiang et al.,
2024a), Mixtral 8x22B (AI, 2024), DeepSeek R1
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Model Method Precision Recall F1 score Effort

Mixtral 8x7B
Baseline 52% 50.93% 51.45% 0

CoT prompting 49.27% 55.46% 52.16% 10
Auto prompt cascade 54.83% 58.56% 56.63% 3

Mixtral 8x22B
Baseline 62.25% 44.54% 51.92% 0

CoT prompting 66.98% 43.92% 53.12% 10
Auto prompt cascade 69.30% 45.15% 54.62% 3

Table 3: Performance comparison of different prompt
generation methods/models for the applicability task.
The full table is given in Table 7.

Distill Qwen 32B (Guo et al., 2025), and Claude
3.5 Sonnet.

To tune the hyperparameters - iterations T and
few-shot examples M - for the auto prompt cascade,
we construct two balanced datasets comprising text
and numeric SAs for the English correctness task,
each with 250 correct and 50 incorrect samples. We
first determine the optimal value of T by conduct-
ing experiments for T = 0 . . . 6, where T = 0 is a
baseline without auto prompt cascade instructions,
i.e. the CoT prompt. Using this optimal T , we then
tune for M . To ensure robustness and generaliza-
tion, we select the final hyperparameter values for
T and M that yield optimal performance across a
majority of tested LLMs.

4.3 Metrics and evaluation

For our binary classification tasks (Correct/Incor-
rect or Applicable/Inapplicable), we report preci-
sion, recall, and F1 score. We prioritize metrics
on the negative class for hyperparameter tuning,
reflecting our task’s focus. To assess scalability,
we measure Effort, the time in minutes required for
manual prompt engineering per PC-SA.

We evaluate four methods: (1) a baseline us-
ing vanilla prompting, (2) CoT prompting (§3.2),
(3) human-engineered instructions (§3.3), and (4)
our auto-prompt cascade (§3.4). Due to the time-
intensive nature of method (3), we apply it only to
our primary task of English correctness. Similarly,
to manage computational cost for the multilingual
and applicability tasks, we report results on two
LLMs: Mixtral 8x7B and Mixtral 8x22B. We show
the prompt templates used in §A.

5 Results

Determining hyperparamaters: We determine
the optimal number of iterations, T , using our hy-
perparameter tuning datasets (§4.2) for the cor-
rectness task. As plotted in Fig 3, F1 scores
peak at T=2. The performance gain from T=1

to T=2 shows the model’s ability to capture nu-
ances through iterative refinement. For instance,
the instruction for a walking stick’s base material
evolves from a generic definition at T=1: (A base
material for a walking stick refers to the primary
material used to construct the base of the walking
stick, which is typically wood, aluminum, carbon
fiber, or other sturdy materials) to a more contex-
tualized instruction at T=2: (Base material refers
to the material that makes up the bottom part of a
walking stick, which comes into contact with the
ground and provides stability and traction when
using the stick). This improvement stems from the
model first integrating domain-specific metadata at
T=1, then performing SA-level refinement at T=2
for finer distinctions.

Our method is also robust to the number of few-
shot examples, M . Fig 3 shows that with the op-
timal T=2, performance is steady across various
values of M , with most models showing peak F1
score at M=6. Given these observations, we select
T=2 and M=6 for our auto-prompt cascade in all
subsequent experiments.

Correctness: As shown in Table 1, the auto
prompt cascade consistently improves F1 scores
for incorrect SA detection across all models. With
Claude 3.5 Sonnet, it achieves a 91.13% F1 score,
a 23.76% improvement over the baseline. We
observe similar gains with DeepSeek R1 Distill
Qwen 32B (61.00% to 75.70%), Mixtral 8x22B
(from 49.92% to 74.98%), and Mixtral 8x7B (from
43.50% to 60.24%).

Our approach also significantly reduces human
effort. The human-engineered method requires
308 minutes per PC-SA to cover only 2,388 PC-
SAs, whereas our auto prompt cascade handles
all 12,046 PC-SAs in just 3 minutes per PC-SA.
This represents a 99% reduction in human time for
superior performance. In comparison, the CoT ap-
proach requires 10 minutes per PC-SA but yields
consistently lower performance with no PC-SA
specific instructions.

Multilingual correctness: We use Mixtral
8x7B and Mixtral 8x22B to compare our auto
prompt cascade with CoT and vanilla prompting
approaches. Table 2 suggests that our approach
improves the F1 score across all four languages -
Spanish, German, Italian, and French by 10-30%
over the baseline, demonstrating the cross-lingual
generalization capability of our approach.

Applicability: Table 3 shows consistent im-
provements across F1 score for the Inapplicable
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PC SA (value) CoT (abridged reasoning) APC (abridged reasoning)
Walking
stick

base material
(rubber)

Incorrect: The product data mentions that the walking stick is
made of ’Huangtang wood’ and has a ’steel spike’ and ’metal-
reinforced rubber tip cover’. There is no mention of the walking
stick being made of rubber material.

Correct: The product data mentions a ’metal-reinforced
removable rubber tip cover’ for the walking stick, which
implies that the base material that comes into contact with
the ground is rubber.

Table 4: Qualitative example contrasting CoT and auto-prompt cascade predictions. The table presents abridged
reasoning segments that directly contributed to the correct decision, with complete rationales and further examples
provided in §C.4.

class, from 51.45% to 56.63% for Mixtral 8x7B,
and from 51.92% to 54.62% for Mixtral 8x22B,
demonstrating the generalization capability of the
automatically-generated instructions of the auto
prompt cascade approach across correctness and
applicability tasks.

Qualitative examples: To illustrate the effec-
tiveness of our approach, we present a qualitative
example where auto prompt cascade (APC) instruc-
tions helped the model correct its initial assessment
error for the correctness task in Table 4. The table
provides an abridged version of the reasoning that
led to this correction, while full reasoning details
and additional examples are discussed in §C.4. The
PC is a walking stick and the value of the base
material is rubber, which is correct in ground truth.
The CoT prompt implicitly interprets base material
as the material of the entire stick. Seeing “Huang-
tang wood” and a “steel spike,” it concludes the
test value “rubber” contradicts the product data and
predicts Incorrect.

The APC instruction generated is Base material
refers to the material that makes up the bottom
part of a walking stick, which comes into contact
with the ground and provides stability and traction
when using the stick. With this disambiguation,
the model’s evidence retrieval shifts to the phrase
“metal-reinforced removable rubber tip cover,” and
the rationale updates accordingly, yielding Correct.
This example illustrates how the learned instruction
resolves an attribute ambiguity at a PC level.

Cost: Our method generates instructions for
each PC-SA combination offline and the generated
instruction for the PC-SA is then used for all the
items in the PC. Hence, the number of LLM infer-
ences required for our method is linearly propor-
tional to the number of PC-SAs (tens of thousands)
and not the number of items in the catalog (hun-
dreds of millions).

The final results in the paper needed only 20,506
instruction generation LLM calls. We generated
the instructions using Claude 3.5 Sonnet, with an
average of 2717 input tokens and 113 output to-
kens per LLM call. In comparison to CoT, our

approach consumes the extra computational cost
of $ 0.0097/PC-SA for creating the instructions,
which is negligible. The inference costs on the
downstream quality classification tasks for CoT
and our approach are comparable as both use the
same underlying LLM.

Statistical signifcance: We performed a sta-
tistical evaluation of the results, showing that the
performance gains are statistically significant in
the vast majority of cases. We assessed the sig-
nificance using a paired subsampled bootstrap test
with 5,000 class-balanced 80% draws without re-
placement, applying a plus-one correction. The
detailed ∆ F1 scores and the p values are shown in
§C.5.

6 Conclusion and future work

We propose an auto-prompt cascade for assessing
product quality with LLMs - the first scalable ap-
proach for multilingual catalog quality assessment.
It expands a small set of human-crafted instructions
(6) to over 12,000 PC-SA-specific prompts, reduc-
ing manual effort by 99%. Our cascade demon-
strates improvement of classification performance
across two tasks and generalizes to five languages
and multiple LLMs. While applied to product qual-
ity, it can be extended to product categorization and
attribute generation. This work also underscores
the need for quantitative metrics to evaluate instruc-
tion quality directly, measuring clarity, consistency,
and handling of edge cases.

7 Limitations

While our auto-prompt cascade demonstrates sig-
nificant improvements, we acknowledge some lim-
itations that offer avenues for future research.

Firstly, the evaluation of the generated instruc-
tions is currently extrinsic, measured only by their
impact on downstream quality tasks. As noted in
our conclusion, there could be a need for intrinsic,
quantitative metrics to directly assess the quality
of the instructions themselves - for instance, by
measuring their clarity, consistency, and ability to
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handle edge cases without relying on models run
on downstream tasks.

Secondly, while we demonstrate strong perfor-
mance on e-commerce quality tasks like correct-
ness and applicability, the framework’s effective-
ness on other e-commerce tasks, such as attribute
value generation or product categorization, remains
an open question. Extending and validating the
auto prompt cascade for these different tasks is a
key direction for future work.

Finally, an additional limitation pertains to the
proprietary nature of our dataset. To alleviate this,
we provide a thorough description of the quality as-
sessment tasks and a detailed statistical breakdown
of the composition of the datasets.
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A Prompt templates

The following subsections contain the prompt tem-
plates that we use for our experiments.

A.1 Baseline prompt template

We use the prompt template shown in Figure 4 for
the baseline experiment as detailed in §4.3. We
use the same baseline prompt for all PC-SA pairs.
Given below is an example of the template for the
SA - base material. This template instructs the
model to adopt an auditor persona and perform a
binary classification (Correct or Incorrect). Note
that it defines Correct as the absence of a contra-
diction, rather than requiring explicit confirmation,
which is inline with our correctness problem de-
fined in §4.1.

A.2 CoT prompt template

For the CoT experiment as detailed in §4.3, we use
different prompts for different groups of SAs. The
prompt template shown in Figure 5 is an example
used for the attribute base material in the walking
stick product category.

Unlike the baseline, this CoT prompt is highly
structured with explicit sections for introduction,
data, rules, test value, and output format. The key
component is the Rules section, which contains a
placeholder for a sequence of reasoning steps that
guide the LLM make accurate classifications. This
design encourages the model to "think systemati-
cally" by following a prescribed logical flow before
making its final assessment, aiming to improve ac-
curacy on nuanced and complex cases.

A.3 Auto prompt cascade prompt template

Finally, for our proposed auto-prompt cascade
method, we augment the CoT prompt with an ad-
ditional Instruction field. This section contains the
nuanced, domain-specific definition that is auto-
matically generated by our cascade. The prompt
template shown in Figure 6 illustrates this for the
base material attribute of a walking stick. Notice it
is identical to the CoT template in §A.2, with the
exception of the crucial auto-generated instruction.

This final template directly addresses the core
challenge of domain-specific knowledge gaps. By
inserting the auto-generated instruction, we pro-
vide the LLM with a precise, contextual definition
for the PC-SA pair. Furthermore, the instruction
forces the model to ground its reasoning in this
new information, making its decision making pro-

cess more transparent and aligned with the specific
requirements of the e-commerce catalog.

B Hyperparameter Analysis

This section presents a detailed analysis of the
hyperparameter tuning experiments for our auto-
prompt cascade method. As introduced in §4.2,
Figure 7 illustrates the precision, recall, and F1
score of the incorrect class across multiple itera-
tions, T , of the auto-prompt cascade. Iteration 0
represents the baseline performance obtained with
standard CoT prompting, prior to the application of
the auto-prompt cascade. The dotted line in each
subplot denotes the empirically determined opti-
mal iteration, defined as the earliest iteration where
at least three of the four evaluated LLMs achieve
their peak performance for the corresponding met-
ric. Notably, our method consistently demonstrates
optimal performance around the second iteration,
indicating rapid convergence and highlighting the
efficiency of the auto-prompt cascade in improving
model performance.

After determining the optimal number of iter-
ations, T = 2, we proceed with hyperparameter
tuning on the same datasets to ascertain the opti-
mal number of few-shot examples, M . Figure 8
illustrates the impact of varying M on the preci-
sion, recall, and F1 score for the incorrect class.
Iteration 0 in this context signifies instruction gen-
eration based solely on the PC and SA definitions,
without any few-shot examples. The dotted line in
each subplot marks the optimal selection of few-
shot examples, corresponding to the earliest point
where the majority of the evaluated LLMs exhibit
peak performance. Observing the results presented
in Figure 7, it is evident that the majority of the
subplots (5 out of 6) demonstrate optimal perfor-
mance for the LLMs when M = 6 few-shot ex-
amples are utilized. This consistent trend across
diverse metrics and models strongly indicates that
M = 6 represents the most effective configuration
for instruction generation within our auto-prompt
cascade method. Consequently, we adopted this
value for M in our experiments involving the auto-
prompt cascade.

C Full results

In this section, we present the full results of the
following tables - Table 1, Table 2, and Table 3.
In these tables, we show the precision/recall/F1
score metrics on the positive class as well ("cor-

947



You are an auditor for an e-commerce store. You are given a product and its
data below. You will also be given a test value for ’base material’.

<Product data goes here.>

The test value for ’base material’ is ’rubber’. Based on the given
product data, you have to say if the test value is ’Correct’ or ’Incorrect’. If
the product data does not contradict the given value, your prediction should
be ’Correct’.

Output the results in the following output format.
<Output format>

Figure 4: Baseline prompt template for the attribute base material.

### Introduction:
You are an auditor for an e-commerce store. You are given a product and its
data below. You will also be given a test value for ’base material’.
Please classify the value as ’Correct’ or ’Incorrect’ based on the rules given
below.

### Product data:
Given below is the product data.
<Product data goes here.>

### Rules:
To ensure accurate predictions, adhere to the following rules in sequence and
think systematically before responding:
<CoT rules go here.>

### Test value:
Now verify the test value of the attribute ’base material’: ’rubber’.

### Output format:
Output the results in the following output format.
<Output format>

Figure 5: CoT prompt template for the product category walking stick and attribute base material.

rect" for the correctness task and "applicable" for
the applicability task). We also provide the num-
bers for accuracy on the respective datasets and the
numbers of unique PC-SA combinations which had
instructions generated for a particular experiment.

C.1 English correctness results

As detailed in section 4.1, correctness in english
is our main dataset with 13,725 labels (12,148 cor-
rect, 1,577 incorrect) across 12,046 unique PC-SA

combinations. Table 5 is the full version of Table
1. It presents the performance comparison of four
LLMs, Mixtral 8x7B, Mixtral 8x22B, DeepSeek
R1 Distill Qwen 32B, and Claude 3.5 Sonnet,
across four prompting methods: baseline, Chain-
of-Thought (CoT) prompting, human-engineered
prompts, and our proposed auto-prompt cascade.
Across all models and metrics, the auto-prompt cas-
cade consistently outperforms other methods. For
instance, on Mixtral 8x22B, it achieves the high-
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### Introduction:
You are an auditor for an e-commerce store. You are given a product and its
data below. You will also be given a test value for ’base material’.
Go through the instruction to understand what ’base material’ means in context
of this product. Please classify the value as ’Correct’ or ’Incorrect’ based
on the rules given below.

### Product data:
Given below is the product data.
<Product data goes here.>

### Rules:
To ensure accurate predictions, adhere to the following rules in sequence and
think systematically before responding:
<CoT rules go here.>

### Test value:
Now verify the test value of the attribute ’base material’: ’rubber’.

### Instruction:
Here is some additional information about ’base material’ to help you make
highly accurate classifications.
In your reasoning, explain how you applied this information to reach your
conclusion.

Base material refers to the material that makes up the bottom part of a
walking stick, which comes into contact with the ground and provides stability
and traction when using the stick.

### Test value:
Now verify the test value of the attribute ’base material’: ’rubber’.

### Output format:
Output the results in the following output format.
<Output format>

Figure 6: Auto prompt cascade prompt template for the product category walking stick and attribute base material.
We add the auto generated instruction to the walking stick-base material PC-SA pair to the CoT prompt template.

est incorrectness F1 score of 74.98% and correct-
ness F1 score of 97.02%, with an overall accuracy
of 94.37%, surpassing both CoT prompting and
human-engineered prompts. Notably, the cascade
scales to 12,046 unique PC-SA combinations with
just 3 minutes of human effort per unique PC-SA
combination, compared to 5.1 hours (308 minutes)
for human-engineered prompts. This trend holds
consistently across other models, with Claude 3.5
Sonnet reaching a correctness F1 of 98.86% and an
accuracy of 97.62%.

When comparing model performance under the
same prompting method, larger models consistently
outperform smaller ones. For instance, under CoT
prompting, Mixtral 8x22B outperforms Mixtral
8x7B on correctness F1 score (95.81% vs. 94.33%),
incorrectness F1 score (65.34% vs 50.54%), and
accuracy (92.21% vs. 89.50%). Likewise, human-
engineered prompts show progressively better re-
sults on larger models, with Claude 3.5 Sonnet
achieving the highest correctness F1 of 97.95%
under this setting. Under the auto-prompt cas-
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Figure 7: Performance comparison on the incorrect class of four LLMs across the number of iterations used for
instruction generation on the correctness task using Mixtral 8x7B, Mixtral 8x22B, DeepSeek R1 Distill Qwen 32B,
and Claude 3.5 Sonnet. The top and bottom rows show performance on text and numeric attributes respectively.
Iteration 0 denotes performance before the auto-prompt cascade. The dotted line represents best iteration across
majority of the LLMs.

cade, Claude 3.5 Sonnet consistently leads with the
best overall performance (correctness F1 98.86%,
accuracy 97.62%), followed by Mixtral 8x22B
and DeepSeek R1 Distill Qwen 32B. Interestingly,
while DeepSeek R1 Distill Qwen 32B lags behind
on baseline and CoT prompting, its performance
under the auto-prompt cascade improves substan-
tially, achieving a correctness F1 of 96.24% and
accuracy of 93.17%, indicating that prompt quality
has an outsized impact on lower-capacity models.
These results demonstrate that the auto-prompt cas-
cade consistently boosts performance across model
sizes and architectures, narrowing the gap between
smaller and larger models while dramatically re-
ducing manual effort.

C.2 Multilingual correctness results

We mention in §4.1 that we also test our auto
prompt cascade on four european language datasets
- Spanish, German, Italian, and French. These
datasets contain 752, 799, 734, and 793 PC-SA
pairs respectively. Table 6, the full version of Ta-
ble 2, reports the precision, recall, F1 score, and ac-
curacy for both correctness and incorrectness clas-
sifications using Mixtral 8x7B and Mixtral 8x22B
across baseline, CoT prompting, and auto-prompt
cascade methods. In all cases, the auto-prompt cas-
cade outperforms both baseline and CoT prompting
on the key metrics of Incorrectness F1 score, Cor-
rectness F1 score, and Accuracy. For example, in
Spanish, Mixtral 8x7B’s Incorrectness F1 score im-
proves from 14.23% (baseline) and 27.78% (CoT)

to 29.96% with the auto prompt cascade, while
Correctness F1 rises from 88.37% to 90.20%, and
accuracy increases from 79.52% to 81.37%.

When comparing models within each prompting
technique, Mixtral 8x22B consistently outperforms
Mixtral 8x7B on Incorrectness F1, Correctness F1,
and Accuracy for both baseline and CoT prompt-
ing across all languages. For instance, under CoT
prompting in Italian, Mixtral 8x22B achieves an
Incorrectness F1 score of 42.15%, Correctness F1
score of 92.13%, and accuracy of 83.18%, com-
pared to 37.61%, 91.44%, and 82.32% for 8x7B,
respectively. However, the auto-prompt cascade
substantially narrows this performance gap. In
French, Mixtral 8x7B with the cascade achieves an
Incorrectness F1 of 39.37%, Correctness F1 score
of 91.23%, and accuracy of 81.59%, approach-
ing the CoT-prompted 8x22B values of 43.16%,
90.97%, and 81.36%. In several cases, the cascade-
augmented 8x7B even outperforms CoT-prompted
8x22B, such as in Italian where it reaches 42.21%
Incorrectness F1 score, 92.20% Correctness F1
score, and 82.90% accuracy. These results reaf-
firm the cascade’s strong generalizability and its
ability to consistently improve both correctness and
error detection across models and languages while
reducing manual effort.

C.3 English applicability results

We also show the full results table of the applica-
bility task (introduced in §4.1). Table 7 is an ex-
panded version of Table 3, reporting metrics on our
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Figure 8: Performance comparison on the incorrect class across the number of few shot examples used for instruction
generation on the correctness task, using Mixtral 8x7B, Mixtral 8x22B, DeepSeek R1 Distill Qwen 32B, and Claude
3.5 Sonnet. The top and bottom rows show performance on text and numeric attributes respectively. Iteration 0
signifies instruction generation using only the PC and SA definitions. The dotted line represents optimal selection of
few-shot examples across majority of the LLMs.

Model Method Incorrectness Correctness Accuracy Unique PC-SA Effort

Precision Recall F1 score Precision Recall F1 score Count

Mixtral 8x7B

Baseline 50.08% 38.45% 43.50% 92.23% 95.01% 93.60% 88.18% 0 0
CoT prompting 57.67% 44.98% 50.54% 93.01% 95.68% 94.33% 89.50% 0 10

Human engineered 68.57% 51.24% 58.65% 93.89% 96.96% 95.40% 91.40% 2388 308
Auto prompt cascade 70.13% 52.80% 60.24% 94.05% 97.07% 95.54% 91.66% 12046 3

Mixtral 8x22B

Baseline 60.27% 42.61% 49.92% 92.82% 96.35% 94.55% 89.87% 0 0
CoT prompting 69.92% 61.32% 65.34% 95.06% 96.58% 95.81% 92.21% 0 10

Human engineered 73.05% 66.01% 68.35% 95.64% 96.84% 96.24% 92.98% 2388 308
Auto prompt cascade 81.46% 69.46% 74.98% 96.11% 97.95% 97.02% 94.37% 12046 3

DeepSeek R1
Distill Qwen 32B

Baseline 51.25% 75.33% 61.00% 96.59% 90.70% 93.55% 88.62% 0 0
CoT prompting 57.50% 85.71% 68.83% 93.02% 91.78% 94.80% 90.77% 0 10

Human engineered 66.10% 86.87% 75.09% 98.22% 94.21% 96.17% 93.07% 2388 308
Auto prompt cascade 66.30% 88.21% 75.70% 98.40% 94.17% 96.24% 93.17% 12046 3

Claude 3.5 Sonnet

Baseline 66.00% 68.80% 67.37% 95.93% 95.40% 95.66% 92.03% 0 0
CoT prompting 83.95% 74.64% 79.02% 96.75% 98.15% 97.44% 95.13% 0 10

Human engineered 86.96% 80.34% 83.52% 97.47% 98.44% 97.95% 96.04% 2388 308
Auto prompt cascade 92.04% 90.23% 91.13% 98.74% 98.99% 98.86% 97.62% 12046 3

Table 5: Performance comparison of different prompt generation methods and models for the correctness task on
the english language.

English dataset spanning 1,310 unique PC-SA com-
binations. Across both Mixtral 8x7B and 8x22B,
the auto-prompt cascade consistently outperforms
baseline and CoT prompting on Inapplicable F1,
Applicable F1, and Accuracy. For Mixtral 8x7B,
the cascade improves Inapplicable F1 from 51.45%
(baseline) and 52.16% (CoT) to 56.63%, Appli-
cable F1 from 78.83% and 76.84% to 79.85%,
and Accuracy from 70.52% to 72.49%. Similar
trends hold for Mixtral 8x22B, where the cascade
increases Inapplicable F1 from 51.92% (baseline)
and 53.12% (CoT) to 54.62%, Applicable F1 from
82.83% and 83.91% to 84.63%, and Accuracy from
74.70% to 77.04%. As with other tasks, the cas-
cade achieves these improvements while scaling to
all 1,310 PC-SA combinations with just 3 minutes

of human effort per combination, confirming its
efficiency and generalizability.

C.4 Qualitative results

In Table 8, we present qualitative examples that
demonstrate the impact of integrating PC-SA in-
structions within our auto prompt cascade frame-
work for the correctness task in english. These
cases illustrate how targeted, context-aware instruc-
tions can substantially improve model performance
by guiding the model to attend to PC specific nu-
ances that generic prompts may overlook. By com-
paring the model’s initial CoT predictions with
those informed by PC-SA instructions, we high-
light the value of structured, domain-adapted guid-
ance in reducing assessment errors and enhancing
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Model Prompting Incorrectness Correctness Accuracy Unique PC-SAs Effort

technique Precision Recall F1 score Precision Recall F1 score with inst.

Spanish

Mixtral 8x7B
Baseline 34.69% 8.95% 14.23% 81.83% 96.05% 88.37% 79.52% 0 0

CoT prompting 56.92% 18.37% 27.78% 83.51% 96.56% 89.56% 80.40% 0 10
Auto prompt cascade 67.31% 19.27% 29.96% 83.61% 97.91% 90.20% 81.37% 752 3

Mixtral 8x22B
Baseline 41.18% 10.94% 17.29% 82.11% 96.32% 88.65% 80.04% 0 0

CoT prompting 62.75% 16.67% 26.34% 83.28% 97.67% 89.90% 80.85% 0 10
Auto prompt cascade 60.87% 21.88% 32.19% 84.03% 96.69% 89.92% 81.05% 752 3

German

Mixtral 8x7B
Baseline 39.06% 12.76% 19.24% 81.55% 95.09% 87.80% 78.81% 0 0

CoT prompting 55.00% 22.22% 31.65% 83.39% 95.55% 89.06% 79.05% 0 10
Auto prompt cascade 61.97% 22.22% 32.71% 83.49% 96.65% 89.59% 79.88% 799 3

Mixtral 8x22B
Baseline 50.98% 13.07% 20.81% 81.96% 96.92% 88.81% 80.40% 0 0

CoT prompting 66.20% 23.62% 34.82% 83.85% 97.05% 89.97% 80.53% 0 10
Auto prompt cascade 60.64% 28.64% 38.91% 84.53% 95.45% 89.66% 80.24% 799 3

Italian

Mixtral 8x7B
Baseline 20.31% 7.93% 11.41% 83.68% 93.82% 88.46% 79.58% 0 0

CoT prompting 62.20% 26.95% 37.61% 87.04% 96.31% 91.44% 82.32% 0 10
Auto prompt cascade 69.23% 30.36% 42.21% 87.35% 97.62% 92.20% 82.90% 734 3

Mixtral 8x22B
Baseline 44.62% 17.26% 24.89% 85.26% 95.71% 90.18% 82.64% 0 0

CoT prompting 68.92% 30.36% 42.15% 87.51% 97.27% 92.13% 83.18% 0 10
Auto prompt cascade 78.46% 30.36% 43.78% 87.63% 98.34% 92.68% 84.08% 734 3

French

Mixtral 8x7B
Baseline 28.00% 7.53% 11.87% 81.72% 95.53% 88.09% 79.01% 0 0

CoT prompting 62.92% 29.68% 40.33% 85.54% 95.98% 90.46% 80.48% 0 10
Auto prompt cascade 78.12% 26.32% 39.37% 85.12% 98.28% 91.23% 81.59% 793 3

Mixtral 8x22B
Baseline 43.86% 13.16% 20.25% 82.74% 96.11% 88.93% 80.55% 0 0

CoT prompting 75.00% 25.13% 37.65% 84.93% 98.05% 91.02% 81.24% 0 10
Auto prompt cascade 68.97% 31.41% 43.16% 85.87% 96.72% 90.97% 81.36% 793 3

Table 6: Performance comparison of different prompt generation methods on multilingual correctness datasets.

Model Method Inapplicable Applicable Accuracy Unique PC-SA Effort

Precision Recall F1 score Precision Recall F1 score Count

Mixtral 8x7B
Baseline 52% 50.93% 51.45% 78.48% 79.20% 78.83% 70.52% 0 0

CoT prompting 49.27% 55.46% 52.16% 79.13% 74.73% 76.84% 68.82% 0 10
Auto prompt cascade 54.83% 58.56% 56.63% 81.09% 78.65% 79.85% 72.49% 1310 3

Mixtral 8x22B
Baseline 62.25% 44.54% 51.92% 78.20% 88.05% 82.83% 74.70% 0 0

CoT prompting 66.98% 43.92% 53.12% 78.46% 90.42% 83.91% 76.15% 0 10
Auto prompt cascade 69.30% 45.15% 54.62% 78.97% 91.15% 84.63% 77.04% 1310 3

Table 7: Performance comparison of different prompt generation methods and models for the applicability task

interpretability in product quality tasks.

In the first example, for a walking stick’s base
material, the initial CoT reasoning fails to link a
metal-reinforced removable rubber tip cover to the
SA value rubber. Our auto generated instruction
explicitly defines the base material as the compo-
nent that contacts the ground and provides stabil-
ity and traction. This PC specific clarification en-
ables the model to correctly infer that the rubber tip,
which interacts with the ground, justifies the SA
value rubber despite the main body being Huan-
tang wood. The corrected assessment shows how
such context-sensitive instructions can resolve am-
biguities arising from indirect evidence in product
descriptions.

In the second example, for the age range SA

of a pet food product, the initial model prediction
was correct due to a lack of explicit age informa-
tion in the product data. However, the PC-SA in-
struction emphasizes the need to map age range
attributes to the intended life stage of the animal,
as inferred from product descriptions. This instruc-
tion prompted the model to scrutinize the product
title and bullet points, which referenced puppy and
rapidly growing puppies, indicating the product
targets the puppy growth stage rather than young
adult. Consequently, the model revised its assess-
ment, identifying the mismatch between the test
value and the actual target demographic. This ex-
ample underscores how PC-SA instructions can sur-
face implicit cues in product data, enabling more
accurate and contextually grounded SA validation.
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Product cate-
gory

Walking stick Pet Food

Attribute base material age range
Attribute value rubber young adult
CoT pred. Incorrect Correct
CoT reasoning The product data mentions that the walking stick is made

of ’Huangtang wood’ and has a ’steel spike’ and ’metal-
reinforced rubber tip cover’. There is no mention of the
walking stick being made of rubber material. Therefore,
the test value ’Rubber’ for the attribute ’base material’
contradicts the facts stated in the product data.

The product data does not contain any information about the intended age
range for this dog food product. The title and description focus on nutritional
details for growing puppies, but do not specify an age range. Without clear ev-
idence to confirm or contradict the test value of ’Young Adult’, the prediction
must be ’Correct’.

Auto prompt
cascade PC-SA
instruction

Base material refers to the material that makes up the
bottom part of a walking stick, which comes into contact
with the ground and provides stability and traction when
using the stick.

Age range indicates the intended or appropriate age group for which the pet
food product is suitable. Pet food is designed to provide proper nutrition for
animals at different life stages, and the age range helps ensure that the product
meets the specific dietary needs of pets based on their age. It guides users to
select the most appropriate age range for their pet, ensuring they receive the
right nutritional balance for their growth and development stage.

Auto prompt
cascade pred.

Correct Incorrect

Auto prompt
cascade reason-
ing

The product data mentions a ’metal-reinforced removable
rubber tip cover’ for the walking stick, which implies
that the base material that comes into contact with the
ground is rubber. Therefore, the test value ’Rubber’ for
’base.material’ is consistent with the information provided
in the product data.

The product title ’Complete And Balanced Dry Dog Food For Growing
Puppies 20Lb’ and the bullet points mentioning ’puppy’ and ’rapidly growing
puppies’ clearly indicate that this product is intended for puppies or young
dogs in their growth stage. The test value ’Young Adult’ contradicts this
information as it refers to a different life stage beyond the puppy/growing
phase. Therefore, the test value is incorrect for this specific product.

Table 8: Examples of improved correctness decisions with automated PC-SA specific instructions.

Model APC vs method Mean ∆ F1 p-value

Mixtral 8×7B
Baseline 0.1695 <0.002
CoT 0.0986 <0.002
Human engineered 0.0173 0.0353

Mixtral 8×22B
Baseline 0.2503 <0.002
CoT 0.0960 <0.002
Human engineered 0.0556 <0.002

DeepSeek R1
Distill

Qwen 32B

Baseline 0.1465 <0.002
CoT 0.0688 <0.002
Human engineered 0.0061 0.1615

Claude 3.5 Sonnet
Baseline 0.2377 <0.002
CoT 0.1214 <0.002
Human engineered 0.0762 <0.002

Table 9: Statistical evaluation of APC improvements
over baseline, CoT, and human-engineered prompts.

C.5 Statistical significance
Table 9 reports the statistical significance of the im-
provements of auto prompt cascade (APC) over
baseline, CoT, and human-engineered prompts
across multiple models. We perform these tests
on our primary task of english correctness. We
measure the significance using a paired subsam-
pled bootstrap test with 5,000 class-balanced 80%
draws without replacement and a plus-one correc-
tion.

We compute the ∆ F1 scores and the p-values
between APC and each method across all the four
models - Mixtral 8x7B, Mixtral 8x22B, DeepSeek
R1 Distill Qwen 32B, and Claude 3.5 Sonnet. We
observe consistent and significant gains in nearly
all comparisons, with p-values below 0.002 in the
majority of cases. These results confirm that the
performance improvements are robust and not at-
tributable to random variation.
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