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Abstract

The ubiquity of payment networks generates
vast transactional data encoding rich consumer
and merchant behavioral patterns. Recent foun-
dation models for transaction analysis process
tabular data sequentially but rely on index-
based representations for categorical merchant
fields, causing substantial semantic informa-
tion loss by converting rich textual data into
discrete tokens. While Large Language Mod-
els (LLMs) can address this limitation through
superior semantic understanding, their compu-
tational overhead challenges real-time finan-
cial deployment. We introduce a hybrid frame-
work that uses LLM-generated embeddings as
semantic initializations for lightweight trans-
action models, balancing interpretability with
operational efficiency. Our approach employs
multi-source data fusion to enrich merchant cat-
egorical fields and a one-word constraint princi-
ple for consistent embedding generation across
LLM architectures. We systematically address
data quality through noise filtering and context-
aware enrichment. Experiments on large-scale
transaction datasets demonstrate significant per-
formance improvements across multiple trans-
action understanding tasks.

1 Introduction

Foundation models have achieved remarkable suc-
cess across diverse domains, from natural language
processing (Brown et al., 2020; Devlin et al., 2018)
and computer vision (Dosovitskiy et al., 2020;
Awais et al., 2025) to multimodal learning (Ramesh
et al., 2021; Alayrac et al., 2022) and recommenda-
tion systems (Huang et al., 2024). Yet, their devel-
opment for tabular data—prevalent in real-world
applications—remains underexplored. Tabular data
presents unique challenges, including permutation
invariance, heterogeneous features, and domain-
specific semantics that differ from text and images.

Recent work by (Zhang et al., 2023a; Yeh et al.,
2025) introduced a foundation model for tabular

transactional data in the payment industry, showing
promising results by leveraging sequential patterns
across transactions. However, the model repre-
sents categorical merchant information by mapping
names to discrete indices and learning embeddings,
which leads to significant information loss. For ex-
ample, simply mapping “Costco” to an index fails
to capture its wholesale retail nature, membership-
based model, or consumer behavior implications.

Large Language Models (LLMs), with their rich
world knowledge and natural language understand-
ing, offer an opportunity to bridge this semantic
gap. Unlike index-based representations, LLMs
can directly process textual information within
transactions (e.g., merchant names and locations)
to generate semantically meaningful embeddings.
However, practical challenges arise in production
environments, including computational and latency
constraints, and the risk of introducing noise from
real-world financial data.

We present a novel framework that bridges this
gap by leveraging LLM-generated sentence embed-
dings to enhance foundation model performance
while maintaining production viability. Our ap-
proach addresses the semantic impoverishment of
categorical fields by using LLMs to generate con-
textualized embeddings that serve as initializations
for foundation models. We focus on fields with en-
richable contextual information as our primary use
cases: merchant category codes (MCC), merchant
names, and location information in transactional
data. Our method employs multi-source data fusion
to enrich these categorical fields and represents the
enhanced information through carefully designed
prompts optimized for consistent embedding gen-
eration.

A key innovation is our one-word limitation prin-
ciple (Jiang et al., 2024b) in prompt design, ensur-
ing consistent and focused representations. For
decoder-only models, we employ prompts such
as “This sentence: ‘[text]’ means in one word:”
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to generate focused outputs. We extract sentence
embeddings from the final layer’s hidden states,
specifically selecting the last non-padding token’s
representation.

Our framework systematically addresses data
quality through rule-based filtering and strategic
null token replacement, while incorporating re-
trieval mechanisms to augment basic field infor-
mation with relevant context. The resulting LLM-
based embeddings initialize field representations in
production models, enabling them to inherit seman-
tic understanding while maintaining deployment
efficiency through task-specific fine-tuning.

Our key contributions are: (1) A practical frame-
work for integrating LLM-based sentence embed-
dings into foundation models that mitigates infor-
mation loss in traditional index-based approaches;
(2) A comprehensive preprocessing and prompt
generation pipeline featuring the one-word limi-
tation principle for consistent embedding genera-
tion; (3) A multi-source data fusion strategy for
enriching categorical field information; (4) Empiri-
cal validation on real-world transaction data show-
ing significant improvements in various transaction
metrics1 across multiple LLM architectures.

2 Related Work

Our work is situated at the intersection of founda-
tion models for tabular data, sequential transaction
modeling, and semantic feature representation.

Foundation Models for Tabular Data Foun-
dation models, first popularized in NLP (Brown
et al., 2020), have recently been extended to tab-
ular data (Yang et al., 2023; Van Breugel and
Van Der Schaar, 2024; Zhang et al., 2023b). Ap-
proaches like TabPFN (Hollmann et al., 2022) and
tabular transformers mainly focus on static tables
for entry classification, regression, and imputation,
but are limited when applied to sequential transac-
tion data where temporal dependencies matter.

Sequential Transaction Modeling Modeling
transaction sequences requires capturing tempo-
ral patterns beyond isolated records. Recent
work (Skalski et al., 2023) addresses these tem-
poral dynamics, supporting tasks such as transac-
tion validation and next-transaction prediction. A
notable contribution is FATA-Trans (Zhang et al.,
2023a), which addresses key limitations of earlier

1Transaction volume, decline rate, and fraud rate are com-
monly used metrics for analyzing transactions in payment
network companies.

transformer-based models for sequential tabular
data. Unlike approaches that replicate static fields
across time steps and ignore temporal gaps, FATA-
Trans employs separate transformers for static and
dynamic fields, uses field-type embeddings to dis-
tinguish them, and applies time-aware position em-
beddings to capture both event order and time in-
tervals. This design reduces redundancy, models
temporal patterns effectively, and achieves state-of-
the-art results with improved interpretability.

Semantic vs. ID-based Feature Representa-
tion Traditional tabular models use ID-based em-
beddings for categorical features, capturing collab-
orative filtering (CF) signals (Schafer et al., 2007)
but lacking semantic understanding and struggling
with cold-start issues. Recent advances leverage
LLMs to create semantic embeddings, and hybrid
models (e.g., LLM2Rec (He et al., 2025)) align CF
and semantic signals for richer representations.

LLMs for Structured Data LLMs have been
adapted to structured data tasks via serialization
and fine-tuning, as in TableGPT2 (Su et al., 2024).
However, these methods mainly target general tab-
ular tasks and require full LLM inference, which
is impractical for large-scale, real-time transaction
systems.

Building on principles introduced by FATA-
Trans, our prior work (Yeh et al., 2025) scaled
sequential tabular modeling to billions of real-
world transaction records, creating a multi-purpose
transformer-based foundation model for transac-
tion understanding. This model processes transac-
tion sequences and produces predictions for mul-
tiple downstream objectives—including transac-
tion metric estimation and next-transaction predic-
tion—through a shared multi-task output module
with joint loss optimization. In this paper, we focus
on optimizing the transaction encoding stage. In
the original model, transaction vectors were formed
by concatenating randomly initialized embeddings
for each attribute (timestamp, amount, merchant
name, MCC, location, abnormal labels). Here, we
replace random initialization for selected categor-
ical attributes (merchant name, MCC, location)
with LLM-based semantic embeddings to capture
richer contextual meaning, while preserving the
remainder of the architecture and training proce-
dure. Distinct from prior work, we address the
challenge of sequential transaction modeling with
a hybrid approach that integrates LLM-based se-
mantic embeddings for categorical features while
maintaining efficient production deployment. Un-
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Figure 1: An overview of proposed method.

like end-to-end LLM methods that require costly
runtime inference, our framework precomputes se-
mantic embeddings offline and incorporates them
into the transformer-based sequential model (Yeh
et al., 2025). This design preserves semantic rich-
ness and sequential context while meeting the la-
tency and scalability requirements of real-world
financial transaction systems.

3 Methodology

In this section, we first present an overview of our
framework. Then we delve into each component
with detailed descriptions and examples to show-
case our approach.

3.1 Framework Overview

Our framework addresses the semantic information
loss in traditional foundation models for transac-
tion analysis through a systematic pipeline that
leverages LLM capabilities while maintaining pro-
duction deployment feasibility. Figure 1 illustrates
the end-to-end architecture, which consists of five
interconnected components designed to transform
sparse categorical merchant data into semantically
rich embeddings.

The pipeline begins with Data Collection,
where we gather raw categorical merchant infor-
mation from transactional datasets, including mer-
chant names, MCC, and location information. This
initial step identifies fields amenable to semantic
enrichment through external knowledge sources.

Data Fusion enhances the collected categorical
data by integrating information from multiple ex-
ternal sources. For MCC, we incorporate official
category descriptions, industry classifications, and
business type annotations. For merchant names,
we augment basic identifiers with business descrip-
tions and its associated MCC. This multi-source
approach addresses the sparsity inherent in raw
transactional data.

The Prompt Generation component transforms
the enriched categorical data into structured natu-

ral language inputs optimized for LLM processing.
Central to this stage is our Explicit One-word Limi-
tation Prompt Design principle, which ensures con-
sistent and focused semantic representations across
different LLM architectures. This design choice
prevents verbose or inconsistent outputs that could
introduce noise in the embedding generation pro-
cess.

LLM Processing converts the structured
prompts into high-dimensional sentence embed-
dings that capture semantic relationships and con-
textual knowledge. We extract these embeddings
from the final hidden layer representations, specifi-
cally targeting the last non-padding token to ensure
consistent dimensionality and semantic focus.

Finally, the generated Sentence Embeddings
serve as semantic initializations for categorical
field embeddings in the foundation models (Yeh
et al., 2025). This initialization strategy allows
lightweight transaction models to inherit rich se-
mantic understanding from LLMs while maintain-
ing computational efficiency through subsequent
task-specific fine-tuning.

3.2 Data Preprocessing and Prompt
Generation

Our data preprocessing pipeline addresses the chal-
lenge of transforming sparse categorical merchant
information into semantically rich representations
suitable for LLM processing. This process consists
of two primary stages: multi-source data fusion
and structured prompt generation.

3.2.1 Multi-source Data Fusion
We develop a comprehensive data integration
pipeline that enriches categorical fields through
external knowledge sources. Initial experiments
with simple, single-source prompts (e.g., "provide
the embedding of MCC 5044") yielded suboptimal
results, as they failed to capture the rich seman-
tic relationships between related categorical fea-
tures. This motivated our multi-source fusion ap-
proach that leverages contextual information from
multiple related fields. The process begins with
structured data extraction from multiple sources,
including official MCC documentation (ISO, 2023),
and internal merchant and geographical informa-
tion databases. For MCC, we integrate official
category descriptions, business type classifications,
and related merchant examples. Location data is
augmented with economic indicators, demographic
information, and region-specific financial patterns.
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3.2.2 Explicit One-word Limitation Prompt
Design

To ensure consistency and reduce noise in LLM
outputs, we implement an explicit one-word lim-
itation principle in our prompt design. This ap-
proach addresses the challenge of handling verbose
or inconsistent LLM responses that could introduce
noise in the embedding generation process. Our
prompt templates are structured to provide compre-
hensive context while constraining output format.
We design field-specific templates that incorporate
relevant contextual information while maintaining
semantic coherence across different data types.

3.3 LLM-based Sentence Embedding
Generation

We generate semantically rich embeddings for
three primary categorical fields: location informa-
tion, MCC, and merchant identifiers. Each field
type requires specialized prompt engineering to
capture domain-specific semantic relationships.

3.3.1 Location Embedding Generation
Location prompts incorporate geographical, eco-
nomic, and regulatory context relevant to financial
transactions. We design prompts that capture eco-
nomic indicators, and regional financial attibutes.

1 Input: "UNITED STATES OF AMERICA, New York"
2 Prompt: "Represent the following location in the context

of financial transactions, and economic indicators:
New York, USA.

↪→
↪→

3 Consider state-specific economic trends, population
demographics, major industries, and financial
regulations."

↪→
↪→

Listing 1: Location embedding prompt example for
state-level data

3.3.2 MCC Embedding Generation
MCC prompts leverage official category descrip-
tions and business characteristics to generate se-
mantically meaningful representations. We pro-
vide both basic and enriched versions depending
on available contextual information. For a com-
prehensive MCC representations, we incorporate
detailed business descriptions, included categories,
and similar merchant types:

3.3.3 Merchant Embedding Generation
Merchant prompts combine location, MCC cate-
gory, and business name information to create com-
prehensive merchant representations:

1 Input: MCC "5044"
2 Prompt: "The MCC 5044, titled 'Photographic, Photocopy,

Microfilm Equipment and Supplies', serves
business-to-business distributors of office and
photographic equipment including film, cash
registers, photocopy machines, and microfilm
machines. Similar categories include 5021 (Office
Furniture), 5045 (Computer Equipment), and 5943
(Stationery Stores).

↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 Please provide the embedding of MCC 5044."

Listing 2: Enriched MCC embedding prompt with con-
textual information

1 Input: "365 MARKET 888 432-3299"
2 Prompt: "The merchant '365 MARKET 888 432-3299' is

located in Troy, Michigan, USA. It belongs to MCC
category 5814 'Fast Food Restaurants', which serves
prepared food and beverages for on-premises or
carry-out consumption.

↪→
↪→
↪→
↪→

3 Please provide the merchant embedding."

Listing 3: Merchant embedding prompt combining lo-
cation and category context

3.3.4 Embedding Extraction and Processing

We evaluate multiple open-source LLMs for gen-
erating sentence embeddings. The embedding ex-
traction process involves extracting embeddings
from the final hidden layer, specifically targeting
the representation of the last non-padding token.

3.4 Foundation Model Initialization and
Training

The core innovation of our framework lies in
the semantic initialization strategy, where LLM-
generated embeddings serve as starting points
for training our foundation model (Yeh et al.,
2025). By precomputing embeddings for selected
attributes (merchant name, MCC, location) offline,
we decouple the semantic enrichment phase from
the inference pipeline. Once these embeddings ini-
tialize the model’s embedding layers, the architec-
ture and training procedure remain identical to the
original tabular foundation model framework—we
refer readers to (Yeh et al., 2025) for complete ar-
chitectural specifications and training details.

3.4.1 Embedding Initialization Strategy

We initialize categorical field embedding layers
with corresponding LLM-generated representa-
tions. This initialization provides several advan-
tages: (1) immediate access to semantic relation-
ships encoded by LLMs, (2) reduced training time
for achieving semantic coherence, and (3) im-
proved generalization to unseen categorical values
with similar semantic properties.
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3.4.2 Multi-task Learning Framework
Our training framework supports multiple down-
stream objectives simultaneously, including trans-
action metric assessment and transaction predic-
tion. By jointly optimizing for these objectives,
the framework enables the model to learn versa-
tile representations that generalize across various
tasks. This approach balances semantic richness
with task-specific performance, enabling founda-
tion models to leverage LLM capabilities while
maintaining computational efficiency for produc-
tion deployment.

4 Experiments

In this section, we present the results of comprehen-
sive experiments to evaluate the effectiveness of
our LLM-based semantic initialization framework
across multiple transaction understanding tasks.
Our evaluation encompasses both the quality of
generated embeddings and their impact on down-
stream financial applications. We use four different
LLMs for embedding initialization: LLama2-7b
and LLama2-13b (Touvron et al., 2023), Llama3-
8b (Grattafiori et al., 2024), and Mistral-7b (Jiang
et al., 2024a).

4.1 Dataset

We conduct experiments using one billion transac-
tion records from January 2022 to December 2023,
covering diverse merchant categories, user behav-
iors, and transaction patterns. Transactions from
the first 20 months are used for model training, the
21st month serves as the validation data, and trans-
action from the final 3 months is used as the test
data. The structured dataset, enriched with contex-
tual information from our preprocessing pipeline,
offers a robust testbed for evaluating semantic em-
beddings across varied merchants, locations, and
transaction contexts.

4.2 Evaluation Tasks

Our evaluation focuses on five tasks that assess
different aspects of semantic understanding:

Next Amount Prediction: Regression task fore-
casting a user’s next transaction amount, capturing
spending patterns and merchant pricing.

Next MCC Prediction: Multi-class classifica-
tion of the next transaction’s merchant category
code, evaluating business-type relationships.

Next Location Prediction: Classification of the
next transaction’s location (City), assessing spatial

patterns and preferences.
Next Merchant Prediction: Multi-class clas-

sification of the next merchant, requiring detailed
understanding of merchants and user preferences.

Transaction Metrics Assessment: Binary clas-
sification task for identifying anomalous transac-
tions based on merchant characteristics, transaction
patterns, and contextual features. This task requires
real-time inference capabilities and high precision
to minimize false classifications while maintaining
operational efficiency.

These tasks collectively evaluate the frame-
work’s ability to capture semantic relationships
across different categorical fields and their impact
on transaction understanding.

4.3 Evaluation Metrics
We employ task-specific metrics to comprehen-
sively assess performance. The reported metrics
include mean absolute error (MAE) and symmet-
ric mean absolute percentage error (sMAPE) for
amount prediction, as well as accuracy (Acc) and
F1-score for classification.

Transaction Metrics Assessment: An in-house
performance metric designed for evaluating trans-
action understanding capabilities. Due to the sensi-
tive nature of this task, detailed performance figures
cannot be disclosed. To present these results, we
compute the performance ratio between the eval-
uated model and the currently deployed system,
termed Relative Improvement (RI):

RI =
Sevaluated − Sbaseline

Sbaseline
× 100% (1)

where Sevaluated represents the performance score
of the evaluated model and Sbaseline represents
the performance score of the currently deployed
baseline system. A positive RI indicates perfor-
mance improvement over the baseline, while a neg-
ative RI indicates performance degradation. For
instance, RI=+50% indicates that the evaluated
model achieves 50% superior performance com-
pared to the currently deployed system in transac-
tion pattern recognition. This normalized approach
enables meaningful performance comparison while
adhering to confidentiality requirements for pro-
duction financial systems.

4.4 Baseline Comparisons
We compare our approach against a vanilla founda-
tion model (Yeh et al., 2025) baseline that uses tra-
ditional ID-based categorical representations with-
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Table 1: Performance comparison of various LLM architectures (Model) and embedding initialization methods
(Emb.) on transaction prediction tasks. “Vanilla” denotes the original foundation model. Green-highlighted cells
indicate settings where the model outperforms the vanilla baseline.

Model Emb. Next Amount Next MCC Next City Next Merchant
MAE sMAPE Acc F1 Acc F1 Acc F1

Vanilla 37.0430 0.3952 0.4107 0.1118 0.8454 0.6721 0.0760 0.0037

Llama2-7b

MCC

36.7474 0.3954 0.4134 0.1143 0.8443 0.6683 0.0913 0.0099
Llama2-13b 37.2129 0.3978 0.4118 0.1148 0.8436 0.6652 0.0905 0.0103
Llama3-8b 37.5144 0.4010 0.4132 0.1131 0.8456 0.6803 0.0960 0.0103
Mistral-7b 37.0173 0.3961 0.4152 0.1108 0.8449 0.6623 0.0934 0.0100

Llama2-7b

Merchant

36.9498 0.3949 0.4119 0.1054 0.8442 0.6625 0.0938 0.0098
Llama2-13b 37.0119 0.3962 0.4123 0.1014 0.8437 0.6597 0.0898 0.0085
Llama3-8b 37.0511 0.3968 0.4115 0.1102 0.8434 0.6606 0.0991 0.0098
Mistral-7b 36.8613 0.3957 0.4148 0.1141 0.8456 0.6649 0.0930 0.0095

Llama2-7b
MCC

Merchant

37.0336 0.3986 0.4145 0.1177 0.8452 0.6603 0.0929 0.0103
Llama2-13b 36.8841 0.3932 0.4154 0.1162 0.8451 0.6536 0.0946 0.0100
Llama3-8b 36.8522 0.3957 0.4168 0.1202 0.8458 0.6636 0.0994 0.0110
Mistral-7b 37.1708 0.3983 0.4126 0.1052 0.8433 0.6462 0.0901 0.0083

Llama2-7b
State
City

37.3200 0.4025 0.4163 0.1157 0.8450 0.6642 0.0959 0.0101
Llama2-13b 36.7465 0.3935 0.4151 0.1124 0.8459 0.6646 0.0951 0.0120
Llama3-8b 36.7652 0.3952 0.4146 0.1187 0.8451 0.6607 0.0947 0.0106
Mistral-7b 36.9257 0.3972 0.4125 0.1076 0.8437 0.6577 0.0904 0.0090

Llama2-7b

All Fields

37.0218 0.3977 0.4140 0.1178 0.8462 0.6683 0.0942 0.0098
Llama2-13b 37.1253 0.4003 0.4152 0.1184 0.8454 0.6651 0.0991 0.0115
Llama3-8b 36.8128 0.3927 0.4155 0.1208 0.8455 0.6716 0.0979 0.0110
Mistral-7b 36.8761 0.3955 0.4108 0.0960 0.8434 0.6398 0.0979 0.0074

Table 2: Transaction Metrics Assessment: Relative Im-
provement (RI) across different embedding initialization
strategies

Model MCC + Merchant Location All Fields

Vanilla Sbaseline Sbaseline Sbaseline
Llama2-7b -0.40% +2.85% +3.72%
Llama2-13b +2.66% +1.77% +2.92%
Llama3-8b +0.37% +2.78% +3.32%
Mistral-7b +0.83% +2.89% +3.93%

out LLM-based semantic embeddings. This base-
line represents the current state-of-practice in trans-
action modeling and provides a direct assessment
of semantic initialization benefits.

4.5 Results and Analysis
Table 1 presents comprehensive results comparing
different LLM architectures and embedding ini-
tialization strategies across transaction prediction
tasks. The numbers reported are averages over
three runs. Grey-highlighted cells indicate configu-
rations that outperform the vanilla baseline, reveal-
ing systematic patterns in semantic initialization
effectiveness.

Embedding Initialization Strategy Analysis
Our experimental results reveal distinct perfor-
mance characteristics across initialization strate-

gies. Single-field initialization strategies exhibit
more specialized benefits. While MCC-only and
merchant-only approaches both improve perfor-
mance on MCC and merchant prediction tasks,
combining them further boosts results. Location-
focused initialization presents mixed but generally
positive outcomes. It demonstrates a boost in the
next location prediction task, where other initial-
ization strategies fail to show superiority. Compre-
hensive all-fields initialization yields strong perfor-
mance across most configurations, though some
architectures exhibit reduced performance on spe-
cific metrics, indicating potential optimization chal-
lenges when integrating multiple embedding types
simultaneously.

Task-Specific Performance Analysis Amount
prediction tasks benefit from all initialization strate-
gies except the MCC-only approach, suggesting
that geographic and holistic semantic understand-
ing significantly enhance spending pattern predic-
tion, while MCC information alone offers limited
value. MCC/merchant prediction demonstrates the
most consistent improvements across all initializa-
tion strategies, with relative performance gains ob-
served in 82%/100% of experimental configura-
tions. This high success rate indicates that LLM-
generated embeddings effectively capture seman-
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tic relationships between merchant categories and
merchants. The universal nature of these gains
across all configurations underscores the critical
importance of semantic merchant understanding
for fine-grained prediction tasks. Location predic-
tion tasks show more modest improvements, with
the strongest gains achieved through all-fields ini-
tialization. This can be attributed to the relative
simplicity of the task, as location information in
a transaction sequence tends to be consistent, and
the vanilla model already demonstrates good per-
formance.

Architecture-Specific Performance Charac-
teristics Cross-architectural analysis reveals dis-
tinct performance profiles. Llama3-8b emerges as
the most versatile architecture, consistently achiev-
ing top-tier performance across multiple initializa-
tion strategies and tasks. The model’s ability to
effectively leverage semantic relationships across
different field combinations suggests superior ar-
chitectural suitability for transaction understanding
applications.

Transaction Metrics Assessment Table 2
presents Relative Improvement (RI) results for our
proprietary transaction metrics assessment. Nearly
all initialization strategies demonstrate superior per-
formance, showcasing the effectiveness of the pro-
posed method in real-world applications.

5 Conclusion

In this work, we addressed the limitations of tra-
ditional transaction analysis models that rely on
index-based representations for categorical mer-
chant fields, leading to a loss of valuable semantic
information. Building upon the tabular foundation
model framework in (Yeh et al., 2025), we propose
a hybrid approach that integrates LLM-generated
embeddings as semantic initializations. This inte-
gration preserves the computational efficiency and
scalability of the original architecture while en-
riching it with semantic understanding from large
language models. By precomputing LLM embed-
dings offline and using them to initialize embed-
ding layers, we eliminate runtime LLM inference
costs while retaining semantic richness. Our frame-
work further leverages multi-source data fusion
and a one-word constraint principle to ensure con-
sistency and robustness in embedding generation.
Through systematic noise filtering and context-
aware data enrichment, we enhance data quality
and model reliability. Empirical results on large-

scale transaction datasets validate the effectiveness
of our framework, demonstrating significant im-
provements across multiple transaction understand-
ing tasks while maintaining the production-ready
efficiency of the baseline model (Yeh et al., 2025).

Limitations

While our framework demonstrates significant im-
provements across multiple transaction understand-
ing tasks, several limitations warrant acknowledg-
ment and suggest directions for future research.

Prompt Engineering Sophistication: Our Ex-
plicit One-word Limitation Prompt Design, while
effective for consistency, represents a relatively
simple approach to prompt engineering. More
sophisticated prompt optimization techniques and
domain-specific fine-tuning of LLMs for financial
contexts could potentially enhance semantic repre-
sentation quality.

Model Coverage: Our evaluation focuses on
established LLM architectures and does not in-
clude the most recent state-of-the-art models
or specialized sentence embedding models such
as NV-Embed (Lee et al., 2024) and Qwen3-
embedding (Zhang et al., 2025). Testing with these
advanced models could potentially yield further
performance improvements and provide additional
insights into architectural suitability for financial
domain applications.

Categorical Field Scope: Our framework cur-
rently addresses MCC, merchant, and location em-
beddings, but does not extend to other potentially
valuable categorical fields such as transaction chan-
nels, payment methods, or temporal patterns. The
generalizability of our approach to these additional
fields remains to be validated.

Static Embedding Approach: The current
framework generates embeddings offline and does
not account for evolving merchant characteristics,
seasonal business patterns, or dynamic market
conditions. This static approach may limit the
framework’s ability to capture temporal semantic
changes in transaction contexts.

These limitations highlight opportunities for fu-
ture research while acknowledging the scope and
constraints of our current contribution to LLM-
based semantic enhancement in financial transac-
tion understanding.
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