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Abstract

In modern industry systems like multi-turn chat
agents, Text-to-SQL technology bridges natu-
ral language (NL) questions and database (DB)
querying. The conversion of tabular DB results
into NL representations (NLRs) enables the
chat-based interaction. Currently, NLR gener-
ation is typically handled by large language
models (LLMs), but information loss or er-
rors in presenting tabular results in NL remains
largely unexplored. This paper introduces a
novel evaluation method - Combo-Eval - for
judgment of LLM-generated NLRs that com-
bines the benefits of multiple existing methods,
optimizing evaluation fidelity and achieving a
significant reduction in LLM calls by 25-61%.
Accompanying our method is NLR-BIRD, the
first dedicated dataset for NLR benchmarking.
Through human evaluations, we demonstrate
the superior alignment of Combo-Eval with
human judgments, applicable across scenarios
with and without ground truth references.

1 Introduction

In real-world Natural Language Processing (NLP)
applications built around Large Language Mod-
els (LLMs) (Khurana et al., 2022; Vaswani et al.,
2017), there has been a growing prominence of
communicating using plain text across diverse data
types (Soudani et al., 2024; Duan et al., 2024; Liu
et al., 2022). Natural language (NL) interfaces to
databases (DBs) are increasingly becoming integral
in industry applications (Singh, 2023) and agent
workflows, leveraging Text-to-SQL systems to con-
vert user questions into structured SQL queries
and subsequently presenting query execution re-
sults (tables) in an NL format (Developer, 2024;
Vijay Venugopal, 2024). This transition from raw
tables to NL responses is critical, transforming the
impersonal “Computer says no” into user-friendly
interactions that enhance accessibility and engage-
ment (Farheen, 2025).

To build conversational applications for DBs,
two core components are essential: the genera-
tion of SQL queries based on user questions, and
the vernacular presentation of the DB outputs, the
latter being the focus of our study. Traditionally,
the emphasis has been on enhancing SQL genera-
tion accuracy (Iacob et al., 2020), leaving a gap in
methodologies for evaluating natural language rep-
resentations of SQL execution results (NLRs). Our
research addresses this gap by evaluating LLMs
in the task of transforming SQL execution result-
sets into natural language but also by proposing
enhanced methodology for such evaluations.

Existing evaluations, such as those discussed by
Wang et al. (2024), highlight limitations of met-
rics alone in assessing complex NL tasks. While
metrics are not entirely sufficient, our findings sug-
gest they offer valuable signals when paired with
LLM-based evaluations. We propose a compos-
ite method, Combo-Eval, which combines met-
rics with LLM-as-a-judge to enhance agreement
with human evaluations while significantly reduc-
ing computational overhead.

Our contributions include:

• Combo-Eval Method: An evaluation tech-
nique that synergizes metrics with LLM-
assessment, reducing LLM calls while main-
taining high evaluation fidelity.

• NLR-BIRD Dataset: A new NLR-BIRD
dataset spanning 11 domains, enabling evalu-
ation of NLR generation in context of Text-to-
SQL systems.

• Comprehensive Benchmarking: Evaluation
of 15 judge LLMs and multiple scenarios on
the task of NLR judging. We also share results
across multiple LLMs on the task of NLR
generation and share challenges.

• Evaluation Scenarios: Comparative analy-
sis with and without ground-truth references
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to emulate real-world industry applications
where references may be unavailable.

2 Background and Related Work

Research in natural language interfaces to DBs has
predominantly focused on two areas: Text-to-SQL
conversion (Iacob et al., 2020) and long-form ta-
ble question answering (LFTQA) (Roychowdhury
et al., 2024; Zhao et al., 2024; Nan et al., 2022).

Text-to-SQL targets SQL generation complex-
ities while neglecting the NLR phase critical for
user-interactive systems. Emerging studies have
begun to explore NL renditions from DB outputs,
yet they only scratch the surface with no mentions
of evaluation of these NLRs (Asim Biswal, 2025).

Unlike LFTQA, which emphasizes gleaning an-
swers directly from tables, where answers may be
a part of the available table, our work centers on
narrating complete tabular datasets following SQL
query execution. This narrative task demands accu-
rately conveying full table data in natural language,
a requirement particularly relevant for Text-to-SQL
implementations in conversational systems.

Methods for evaluating data similar to NLRs
have been explored in LFTQA (Wang et al., 2024),
indicating metrics as a poor judge that fail the eval-
uation task, and showing a preference for LLM-
based evaluation. In our work, we developed
the Combo-Eval method that outperforms singular
LLM-judges by enhancing utility of metrics and
integrating metric-based thresholds.

Despite assumptions that simpler tasks like table-
to-NL conversion would be straightforward, our
findings reveal that LLMs face significant hurdles
even in this domain. Our primary focus in this
paper is on evaluation of NLRs generated from DB
results across evaluation techniques and models.

More details on related work is in Appendix A.1

3 NLR Dataset

We introduce NLR-BIRD1 dataset which contains
NLRs across questions present in the BIRD-dev
dataset (Li et al., 2023), presenting a new data point
for NLR, thereby enabling users to test components
of DB interaction systems end-to-end, across 11
domains – financial, debit card specializing, for-
mula 1, codebase community, European football 2,
student club, California schools, card games, super-
hero, toxicology, and thrombosis prediction. The
data collection process is shared in Appendix A.2.

1https://sites.google.com/view/nlr-bird/home

Figure 1: Box plot of percentiles for NLRs in the dataset
representing character counts across result-set sizes.

The BIRD dataset contains 1534 NL questions
paired with ground truth SQL queries and a BIRD
DB. We used row count (rc) and column count
(cc) to measure the result size after executing these
queries on the DB. Large result sets may bene-
fit from a summarization strategy to formulate
the NLR for meaningful rendering and readabil-
ity. The summary method may depend on the ap-
plication: some needing a general summary, oth-
ers requiring partial data representation. To keep
a consistent style, large result sets (rc+cc≥500),
comprising 4.3% of samples (Figure 7 in Ap-
pendix A.3 shows the distribution of result size
in BIRD dataset), were excluded. The NLR-BIRD
dataset includes 1468 samples across 11 domains,
containing human-labeled ground truth NLR for
rc+cc<500 that narrates the tabular response gener-
ated by SQL execution.

Figure 1 depicts the correlation between the
length of NLRs and the result size, indicating a
clear upward trend in character count as rc+cc in-
creases. More comprehensive statistics, including
word counts, are available in Appendix A.3.

The maximum length of any word in the NLRs
is 92 characters, which corresponds to a URL. The
NLRs contain 19601 characters corresponding to
numbers and 62140 characters corresponding to
alphabets.

4 Methods

This section describes the three evaluation methods
and the two scenarios in which the methods are
applied. One scenario assumes the presence of
ground truth (GT) and uses it as a reference to
assess the evaluation strategies. The other scenario
handles cases where GT is unavailable, employing
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source information as a proxy for ground truth.
Given the straightforward nature of transforming

simple result-sets (rc=1 and cc=1; total rc+cc=2)
into NLRs due to limited information context, our
experiments and evaluations emphasize result-sets
with rc+cc≥3. We sampled our dataset to represent
the different result size categories uniformly. Hu-
man evaluators assessed the correctness (labeled 0
or 1) of NLRs (using the same process described for
dataset curation in appendix A.2) generated by four
LLMs for each sample: Phind-CodeLLma-34B-v2,
Llama-3.1-70B-Instruct, Llama-3.1-405B-Instruct
(Touvron et al., 2023), and GPT-4o (OpenAI et al.,
2024a). This evaluation yielded 660 labeled NLRs
corresponding to 165 unique questions, identifying
class 0 as incorrect and class 1 as correct.

The above LLM-generated human-assessed
NLRs serve as benchmarks to judge different eval-
uation methods (described in Section 4.2). We
assess per-class recall, precision, F1 score, as well
as macro recall, precision, F1, and overall accu-
racy. In scenarios with significant class imbalances,
macro-averaging is favored to aptly capture the
minority class 0, crucial for industry applications
where inaccuracies can detrimentally impact sys-
tem utility. We present the F1 scores in the main
paper and include other scores in the Appendix.

While human-assessed NLRs served as bench-
marks to evaluate different methods, we designated
25% of the samples (generated by GPT-4o) as the
dev set, which informed our threshold calibration,
prompt engineering, and inference parameters. The
remaining samples, generated by other models,
formed the test set. Results presented hereafter per-
tain to evaluations on the test set. Details about the
experimental setup are in Appendix A.4 and A.5.

4.1 Evaluation Scenarios

We present two scenarios in which our evaluation
methods are applied.

1) Model Generated NLR compared to Ground-
Truth NLR (GT): This approach uses the NLRs
from the NLR-BIRD dataset as the reference, as-
sessing the model-generated NLRs against anno-
tated ground-truth NLRs.

2) Model Generated NLR compared to User
Question and DB Result-Set (UQDB): This is de-
rived by appending the user’s question and DB
result-set table for the reference text. This does not
rely on annotated ground truth NLRs and relies on
source information instead.

Figure 2: The Combo-Eval method flow combining
metrics-based evaluation and LLM-as-a-judge.

4.2 Evaluation Methods

1) Metrics-as-a-Judge: Metrics including cosine
similarity, BERTScore (Zhang* et al., 2020), and
ROUGE scores (Lin, 2004) were considered. A
threshold was determined on the dev set to make
the decision boundary. Further details can be found
in Appendix A.6 and A.7.

2) LLM-as-a-judge: Automated evaluation us-
ing LLM-judge (Gu et al., 2024; Raina et al., 2024):

3) Combo-Eval method combines the above two
approaches in an attempt to retain benefits of both
to attain superior evaluation along with efficiency
advantages by limiting the number of LLM calls.

We started with computing metrics and deter-
mined upper and lower thresholds for each class
(more details in Appendix A.7). The samples that
didn’t pass through the extremity threshold were
sent to LLM-judge for a finer diagnostic. Figure 2
shows the flow of this method. To represent this
mathematically, let’s denote:

R (ROUGE-1 recall); C (class label 0 or 1)

L (Output of LLM-as-a-judge – True for class 1
and False for class 0)

th0l - th0u are lower and upper thresholds for
class 0, and th1l - th1u are for class 1.

The classification based on ROUGE score can
be represented as:

C = 1 if th11 < R =< th1u

C = 0 if th0l < R =< th0u

C = pending otherwise

Then, the final evaluation can be represented
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Result
size

Phind L3.1
70

L3.1
405

GPT-
4o

3-9 0.80 0.87 0.89 0.91
10-49 0.60 0.77 0.83 0.62
50-499 0.52 0.57 0.59 0.30
Total 0.65 0.75 0.78 0.63

Table 1: Human evaluation of NLRs generated by
LLMs - percentage of questions where NLR generated
by LLM is rated as acceptable by human evaluators.
Phind=Phind-CodeLlama-34B-v2; L3.170=Llama 3.1-
70B-instruct; L3.1405=Llama 3.1-405B-instruct.

using mathematical notation as

C =





1 if th1l < R ≤ th1u

∨ ((th0u < R ≤ th1l)

∨ (R ≤ th0l) ∨ (R > th1u)) ∧ L

0 if th0l < R ≤ th0u

∨ ((th0u < R ≤ th1l)

∨ (R ≤ th0l) ∨ (R > th1u)) ∧ ¬L

where ∨ represents logical OR, ∧ represents log-
ical AND, and ¬ represents logical NOT operation.

5 Results and Discussions

5.1 NLR Generation Model Performance

Quality of LLM-generated NLRs decreases signif-
icantly as the result size increases. Table 1 de-
tails human evaluation of LLM-generated NLRs,
segmented by result size. It reveals a consistent
trend where LLMs perform better with smaller
result-sets, with performance decreasing 10-30% as
result-set size increases from <10 to ≥10. Specifi-
cally, larger models like Llama-3.1-405B-instruct
generally outperform Phind-CodeLlama-34B-v2,
Llama-3.1-70B-instruct, and GPT-4o, particularly
on challenging result-set sizes >=10. Notably, GPT-
4o excels in the smallest size category of <10 but
underperforms with larger sizes.

The most common cause of incorrect NLRs was
incomplete information. As indicated in Figure 3,
common reasons for incorrect NLRs included miss-
ing elements from the result-set rendering the out-
come incomplete, hallucinations, rendering results
out of order for questions where the order was im-
portant, skipping nulls rather than indicating the
value was unavailable, formatting inconsistencies
impacting readability, and more. Incorrect NLRs at

Figure 3: Reasons for incorrect NLRs based on human
assessment of model-produced NLRs.

times had inconsistent behavior in de-duplicating
result-set values, and inconsistent behavior in inter-
preting ambiguities in user question or result-set.
All identified inaccuracies stem from the LLM gen-
eration of NLR, further explained in Appendix A.8.
A breakdown of issues across different LLMs and
examples of correct and incorrect NLRs are shared
in Appendix A.8.

Formatting inconsistencies, particularly in GPT-
4o outputs, were prominent with increased result
sizes. Discrepancies at the beginning versus the
end of NLR text and spacing issues were pro-
nounced, as illustrated in a detailed example in
Appendix A.9.

While smaller, structured result-sets are more
amenable to LLM processing, larger complex ta-
bles pose more challenges. These may exceed LLM
context windows, resulting in verbose or impracti-
cal NLR outputs for users.

5.2 Comparison Between Evaluation Methods

We evaluated model generated NLRs using three
methods (metric-based, LLM-as-a-judge, and
Combo-Eval) to analyze how well these methods
align with human judgments of NLR complete-
ness/comphrehensiveness, faithfulness, and read-
ability. Our results indicate that Combo-Eval ex-
hibits highest alignment with human judgment.

Metrics-as-a-Judge: Recall-based measures,
such as ROUGE, measure stronger differences
between correct and incorrect NLRs, compared to
other metrics. We calculated various automated
metrics between model-generated NLRs against
GT and UQDB. As shown in Figure 4, there is
a notable differentiation in median metric scores
for class 1 (correct NLRs) and class 0 (incorrect
NLRs). For a problem of this nature, we anticipate
observing a higher frequency of word/n-gram
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Figure 4: Difference between median scores of class
1 and class 0. Scores are computed between model
generated NLRs and (GT (blue) & UQDB (orange).)

matches for effective NLRs. This is because
tabular data retrieved from a query often reflects
specific values within tables, which may be more
appropriately rendered as-is in the NLR, rather
than substituting them with semantically similar
alternative words. This is likely why BERTscore
seems to be comparatively less prominent.

The model-generated NLRs with GT exhibit
the most difference in medians between correct
and incorrect NLRs, indicating a trend that could
aid in evaluating correct versus incorrect NLRs.
UQDB follows a similar pattern but with a rela-
tively smaller difference.

We use ROUGE-1-recall metric with a threshold
as decision boundary to classify NLRs into cor-
rect vs. incorrect based on general applicability of
this metric and the maximum median difference
between class 1 and 0. Decision boundaries and re-
sults for all the metrics are shared in Appendix A.6.

Table 2 reveals that metrics can help in evaluat-
ing NLR correctness, although identifying incor-
rect NLRs remains challenging based on per-class
scores. In real-world systems, correctly identifying
incorrect NLRs is important and opens opportuni-
ties to put correction/flagging measures in place.
More statistics and scores are in Appendix A.10.

LLM-as-a-Judge: Table 2 reveals that LLM-
based judgment outperforms metric-based methods
in both GT and UQDB scenarios. Notably, perfor-
mance is more robust for class 1, though identifying
class 0 instances remains more challenging.

Dissecting false judgments by result size, both
UQDB and GT show higher evaluation inaccura-

Figure 5: Breakdown of incorrect judgments by result
size across evaluation methods (Metrics-based, LLM-
judge, and Combo-Eval) for GT and UQDB scenarios,
showing higher misjudgments by LLM-as-a-judge on
higher result sizes.

cies with larger sizes, as seen in Figure 5. Although
LLM-judge yields fewer incorrect judgments than
Metrics-judge, it exhibits a higher proportion of
false judgments at larger result sizes, as detailed
in Appendix A.11. This shows that at larger result
sizes, not only is it harder for LLMs to generate
correct NLRs (Table 1), but it is also more diffi-
cult for LLM-based judges to accurately evaluate
model-generated NLRs.

Combo-Eval: Several experiments were con-
ducted including combining metrics and LLM-
judge output as features and training a machine
learning model which didn’t yield a robust model
and the overall performance did not improve. We
also tried injecting extra knowledge of the metrics
into the prompt or LLM-as-a-judge method which
did not improve the performance either.

Using a single threshold on ROUGE-recall does
not suffice, but the difference between class 1 and
class 0 tends to be more informative on the ex-
treme values (more information is shared in Ap-
pendix A.7). Combo-Eval effectively transcends
limitations associated with single thresholds by dy-
namically applying metric thresholds and subse-
quent LLM evaluation. This method demonstrated
superior performance, validating its utility across
varied judge models, as demonstrated in Figure 6.

For our test set, Combo-Eval reduced the LLM
calls by 61.43% in GT and 24.48% for UQDB.
This method optimizes the evaluation by passing
data through a low-complexity calculation first, and
passing only a subset of data through an LLM.

Combo-Eval across Models: As seen in Fig-
ure 6, small judge models (e.g., Grok-3-mini,
GPT-4.1 nano, GPT-4o mini) exhibit a promi-
nent improvement with the Combo-Eval frame-
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GT UQDB
Metrics-Judge LLM-judge Combo-Eval Metrics-Judge LLM-judge Combo-Eval

69.73 80.72±0.8 80.88±0.4 68.06 75.82±0.4 76.98±0.4
C0 C1 C0 C1 C0 C1 C0 C1 C0 C1 C0 C1

53.27
±0

86.19
±0

70.79
±1.1

90.65
±0.4

73.22
±0.7

88.55
±0.2

52.05
±0

84.06
±0

61.77
±0.6

89.87
±0.3

64.75
±0.5

89.22
±0.3

Table 2: F1 average (macro) across classes and F1 score per class, with standard deviation across 10 runs, for
evaluation methods - metrics (ROUGE1-recall with threshold to determine decision), LLM-as-a-judge, and Combo-
Eval method, across GT and UQDB scenarios. class 0 (C0); class 1 (C1). Judge LLM is GPT-4o.

Figure 6: Macro F1 scores across judge LLMs and evaluation methods for GT and UQDB scenarios. This figure
shows that Combo-Eval surpasses LLM-judge across different judge LLMs and highlights trends across judge
models. LLMs are ordered by their LLM-judge scores on GT, highest to lowest. Results in tabular format are in
Appendix A.12

work, demonstrating effective performance at re-
duced computational costs. Larger models main-
tain smaller benefits, underscoring Combo-Eval as
a strategic choice to balance accuracy and resource
consumption. This pattern is seen in both GT and
UQDB scenarios. Generally, Combo-Eval outper-
forms, signifying its robustness in varied scenarios.
Also, Combo-Eval’s reduced standard deviation in
results (Table 2) stems from fewer samples requir-
ing LLM evaluation, stabilizing evaluation consis-
tency.

GT vs. UQDB: Unlike GT, UQDB isn’t the
ground truth NLR, but the source information
that makes up the contents of the NLR. Thus,
we see models with stronger reasoning capabili-
ties, such as O1, exhibit consistent performance
across GT and UQDB scenarios, doing better
in the UQDB scenario compared to other mod-
els. On the contrary, most other models do better
with GT than UQDB by an average of 7.27% for
LLM-judge method and 6.71% for Combo-Eval

(Appendix A.12). However, with GT references
available, newer Llama models and Grok-3 are
formidable contenders, indicating various models’
adaptability.

Consistently, GT-based evaluations outperform
UQDB, though UQDB offers a viable alternative
when GT is inaccessible. UQDB results are much
worse for Cmd-A, Cmd-R+, Cmd-R, GPT-4.1 nano,
and GPT-4o mini, some even underperforming
compared to metrics-judge, indicating potential
limitation in inherent reasoning capabilities com-
pared to other models evaluated.

Model Ranking for NLR Generation: Ap-
pendix A.13 elucidates rankings among NLR gen-
eration models using the three evaluation methods.
Our evaluations establish that irrespective of meth-
ods, LLM rankings remain consistent, affirming
metrics as practical ranking tools for model perfor-
mance analysis.

Temperature Influence: While low temperature
settings are known to keep LLMs judgment closer

888



to the factual content (Samuylova; Salinas et al.,
2025), our experiments show that a judge model’s
temperature parameter change only minimally en-
hanced or deteriorated the judgment in different
directions for different judge models, showing lack
of any notable impact or trend. Combo-Eval had
similar improvements over LLM-Judge across tem-
peratures. The trend between LLM-judge and
Combo-Eval remained unchanged with tempera-
ture changes. Experiment details and results are in
Appendix A.14.

Extension and Future Directions: This work
lays the foundation for systematic evaluation of
existing and emerging LLMs on NLR generation
and judgment tasks. Future studies can leverage the
benchmark as a new dimension for model compari-
son and assessment under controlled conditions.

Beyond Text-to-SQL systems, the framework
can be extended to other settings that require nar-
rating structured or tabular data. For instance,
NLRs can support schema enrichment, expand-
ing database metadata with descriptive language
that helps users understand available information
and formulate better queries. In interactive sys-
tems, such narrations can bridge the gap between
user intent and schema representation (e.g., map-
ping "men’s department" to the canonical entity
MENS_DEPT), enhancing question understanding.

Another future direction includes comparing
Combo-Eval with hard metrics in reasoning-aware
datasets such as SciGen (Moosavi et al., 2021),
which feature expert-annotated table descriptions
requiring arithmetic reasoning.

Insights from our benchmarking results open up
opportunities to improve LLM capabilities. Fu-
ture work may explore improved LLM training
strategies or data augmentation methods to improve
models’ ability to handle large result sets and NLR
generation performance.

6 Conclusion

Using NL to communicate with DBs is a valuable
industry application. Our study identifies incom-
plete information as a predominant source of error
in NLRs, with model performance deteriorating as
result size increases. We introduce Combo-Eval
method, a new evaluation framework that aligns
closely with human judgment of NLR correctness
compared to traditional metrics-based and LLM-
based methods. Notably, Combo-Eval achieves this
alignment while significantly reducing computa-

tional demands by minimizing LLM calls, mak-
ing it especially advantageous in large-scale or
resource-constrained environments. Combo-Eval’s
differentiated improvements are particularly evi-
dent when using smaller judge models, offering a
cost-effective solution without compromising ac-
curacy. Our contribution also includes the release
of the NLR-BIRD dataset, providing a valuable
resource for benchmarking and further research in
this domain. Our experiments demonstrate that
the presence of ground truth data enhances evalua-
tion accuracy across methods. In scenarios where
ground truth is unavailable, UQDB proves to be a
viable alternative.

Limitations

Our study, while advancing NLR evaluation
methodologies, does present certain limitations.
While the NLR-BIRD dataset provides a robust
foundation, its domain coverage may not fully
capture the diversity of all industrial applica-
tions. These aspects highlight the need for con-
tinual dataset expansion and further exploration of
context-specific evaluation strategies. Additionally,
improving NLR generation by LLMs is not the
paper’s focus. Future LLMs could benefit from
training in these areas to enhance their table nar-
ration abilities and reduce information loss— the
number one reason behind incorrect NLRs as un-
covered by our work. Emphasizing completeness in
data-based narration can inherently improve LLM
performance in this task. Moreover, our analysis
shows varied performance based on result-set size
which may inform potential next steps in this area.
For large result-sets, there is a significant gap in
performance, indicating that summarization or rule-
based approaches might be needed to ensure NLR
completeness.
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A Appendix

A.1 Related Work and Background
Large language models (LLMs) have become
foundational tools in natural language processing
(NLP), a field that enables diverse domain analy-
sis across modalities such as speech (Nassif et al.,
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2019; Singh, 2022) and text. LLMs have rapidly
transformed real-world applications such as visual
question answering (Pattnayak et al., 2024, 2025),
product or content search and analysis (Meghwani
et al., 2025; Singh et al., 2021; Singh, 2021), inter-
active assistants, document understanding, (Patel
et al., 2024, 2025; Agarwal et al., 2025a,b), acces-
sibility for visually impaired users (Panda et al.,
2025a,b,c), and synthetic data-pipelines (Dua et al.,
2025; Agarwal et al., 2024a,b). Structured data
understanding and connecting language interfaces
to structured data has gained more momentum in
the last few years.

Traditionally in published studies on natural lan-
guage interfaces to DBs, the focus has been either
on converting text to SQL (Iacob et al., 2020) or
long-form table QA which stands for trying to ex-
tract answers present in tables directly, without
using SQL.

Surrounding text-to-SQL-based applications, a
lot of work has been presented such as question/-
query decomposition for breaking down the query
into sub-queries and combining the results (Pour-
reza and Rafiei, 2024), SQL correction for self-
checking syntactical issues in the generated query
(Chen et al., 2023a,b), producing SQL in the pres-
ence large schema and multi-table retrievals (Chen
et al., 2024; Xu et al., 2024), schema linking (Talaei
et al., 2024), noise in SQL generation (Wretblad
et al., 2024), SQL generation systems (Tian et al.,
2023), scaling (Wang et al., 2025) and more to get
better SQL generations from models (Dong et al.,
2023; Yang et al., 2024; Sun et al., 2023; Li et al.,
2024). However, this primarily targets complexi-
ties around the SQL generation part and the focus
on industry applications consuming the results of
such a system has been missing. In conversational
systems with Text-to-SQL backing, the user asks a
question in NL and also expects the response back
in NL rather than structured table or JSON type
of representation. One of the mentions of NLR
generation is in (Asim Biswal, 2025), where the
work briefly touched upon generating responses
from database results in the context of questions
requiring a combination of database schema and
real-world knowledge. However, there have been
no mentions of evaluation of these NL responses.
Thus, we find that there has been limited work
done on the natural language representations of
the result-set fetched after the produced SQL is run
against the DB. Existing work (Asim Biswal, 2025)
uses language models to handle such conversions

and no study presents how well language models
are able to represent such data in NL, nor any evalu-
ation methods have been discussed for this specific
problem. Errors/information loss induced by this
NLR generation step is not studied.

There has also been work in extracting NL an-
swers from tables directly, specifically around
short-form and long-form Table QA (LFTQA)
(Roychowdhury et al., 2024) (Zhao et al., 2024)
(Nan et al., 2022). Most of these tasks have been
around answering questions where the answer to
the question needs to be looked up in tables. In
essence, partial information from the table forms
the final answer, combined with other general/ana-
lytical reasoning in some of the benchmarks. On
the contrary, our work is focussed on the task of
narrating a tabular answer to a user question in
natural language. The task is not looking for an-
swers in the table or relying on reasoning from
LLMs to fetch answers from tables, but in ma-
jority of the questions, the full table provided in
the actual answer and the job of the model is to
correctly describe the information in the table in
natural language given the user question’s context.
In particular, the benchmark we provide is applica-
ble to Text-to-SQL applications in the real world
including conversational systems and are different
from LFTQA.

The work presented in (Parikh et al., 2020) fo-
cuses on obtaining descriptions from highlighted
sections of tables. It proposes a controlled gen-
eration task where, given a Wikipedia table and
highlighted cells, the goal is to generate a descrip-
tive sentence. However, this dataset does not ex-
plicitly represent the verbalization of tables in a
Text-to-SQL application, and there is currently no
benchmark available for this specific task.

While evaluation methods for NLR generation
from tabular result-set have not been explored,
there has been work in evaluating responses ex-
tracted from tabular sources in long-form Table
QA. We draw from LFTQA research on evaluation
(Wang et al., 2024) where it shows that existing au-
tomatic metrics fail in assessing the answers gener-
ated by LLM-based systems (e.g.,BLEU, ROUGE,
METEOR, and TAPAS-Acc). LLM-based metrics
demonstrate a significant improvement over tradi-
tional automated metrics in terms of correlation
with human evaluation. Even though the task we
are discussing here is not LFTQA, it is related to
tables and thus we can derive some learning from
the field. We evaluate metrics and LLM based eval-
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uation methods for NLRs as well. We use similar
criteria for evaluating NLRs using LLM-as-a-judge
for faithfulness and comprehensiveness. We also
take it forward and present a Combo-Eval method
that uses both metrics and LLM-judge, and sur-
passes LLM-judge’s performance in addition to
reducing number of LLM calls required.

If LLMs can handle long-form table question
answering, a task that seems more complex than
converting tables to natural language, one might
assume that the latter would be a relatively sim-
ple task lacking challenges. However, this is not
the case. Even long-form question answering on
tables remains an unsolved problem, posing numer-
ous challenges. particularly in industrial settings,
where accuracy is paramount, limiting its industry
adoption. Our study reveals that even for table-to-
NL tasks, LLMs struggle to perform effectively. In
this paper, our prime focus is on evaluation of these
NLRs generated from tables across evaluation tech-
niques and models.

A.2 Data Curation Process
The NLR-BIRD dataset was developed by extract-
ing and processing SQL queries from the BIRD-
dev dataset using SQLite. These queries were exe-
cuted against the database to retrieve the result sets,
serving as the basis for creating natural language
responses (NLRs).

Labeling involved contributions from four pro-
fessionals with backgrounds in database manage-
ment, data science, engineering, and related do-
mains. To streamline the annotation process, a
subset of queries was initially processed by various
LLMs to create a baseline. Annotators improved
upon these by either refining LLM-generated re-
sponses or crafting new NLRs from scratch.

For quality assurance, each annotator began with
a small set of random samples, both unlabeled and
baseline-labeled, to calibrate their understanding
of the task. Through iterative discussions, annota-
tors developed shared criteria for assessing NLR
correctness:

- An NLR is considered correct if it compre-
hensive and encapsulates all pertinent information
from the result-set relevant to the user’s question.

- A correct NLR should exhibit faithfulness. In-
clusion of excessive, unverifiable information ren-
ders an NLR incorrect.

- A correct NLR should be readable. While a
consistent format is encouraged, variations are per-
missible if readability and completeness are main-

Figure 7: Result size distribution in the BIRD-dev
dataset. rc=row count; cc=column count.

tained.
Example of handling ambiguous queries include

interpreting “Which constructors have been ranked
1?” where the SQL-derived DB results list multiple
constructors. Annotators were instructed to treat
all listed constructors as sharing rank 1, consistent
with the ground-truth logic used to generate the DB
results.

A post-annotation review process involved multi-
ple reviewers to cross-check agreements, achieving
an 83.3% agreement rate among annotators.

A.3 Dataset Attributes

Figure 7 shows the result size disctribution in the
BIRD-dev dataset. The NLR-BIRD datasets con-
tain NLRs for all result sizes rc+cc<500.

In the NLR-BIRD dataset, he maximum word
length is 92 characters, typically representing
URLs. NLRs are composed of 19,601 numeric
characters and 62,140 alphabetic characters.

Table 3 illustrates the distribution of character
and word counts for NLRs across varied result-set
sizes.

Figure 8 and Figure 9 depict the word count
distribution and character count variation among
NLRs, respectively.

A.4 Prompts

Prompt for NLR generation:

tbl_str = table.to_json(orient="
records", lines=True) # table
is a pandas dataframe

prompt = """For the following
question , use the Answer
provided to generate a
response in plain text. Do not
make up any information , only
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Total rc+cc
= 2

3<=
rc+cc
<10

10<=
rc+cc
<50

50<=
rc+cc
<500

count 1468 907 328 130 103
mean(c) 311 74 120 434 2853
mean(w) 49 13 20 65 444
std(c) 1421 62 112 659 4611
std(w) 236 10 19 100 784
min(c) 3 3 8 40 13
min(w) 1 1 2 5 5
25%(c) 57 51 68 125 636
25%(w) 9 8 12 22 114
50%(c) 81 68 103 244 1470
50%(w) 14 12 18 40 202
75%(c) 123 89 142 442 3266
75%(w) 21 16 23 67 449
max(c) 27892 1481 1508 6014 27892
max(w) 4931 237 252 926 4931

Table 3: NLR statistics: Character (c) and word (w)
counts across result sizes (rc+cc) and overall.

use what can be found in the
table to return the plain text
response. Do not compute any

trend. Do not calculate any
numbers. Do not miss any
answer row.

Question: {question}

Answer: {tbl_str}

Response:"""

LLM judge prompt:

judge_prompt = """ Question: {q}

Actual answer :{ip}

Model generated answer :{op}

For the above question , you have
the correct answer (`Actual
answer `) known and a model
generated answer. Compare if
the model generated answer
contains complete and correct
information to answer the
question as the actual answer.

Figure 8: Box plot for word count distribution in NLRs
across various result-set sizes.

Figure 9: Character count distribution in NLRs of the
NLR-BIRD dataset. (x-axis: sample number, y-axis:
character count.)

It is ok if the format is
different but core information
in the model generated answer
should match the correct

answer as it relates to the
question.

Does the model generated answer
hold the same information as
the actual answer? Say True or
False.

Evaluation:"""

The value for ip above is the ground truth NLRs for
GT and the user question + db results for UQDB.

A.5 Inference Parameter Settings

The following settings were used where applicable.

• max_new_tokens: 2000

• temperature: 0.01

• top_p: 0.95
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• top_k: 10

• frequency_penalty: 1.1

A.6 Metrics

Table 4 contains the different metrics considered
for metric-based evaluation, along with a thresh-
old for each to determine decision boundary and
results representing alignment with human assess-
ment. The thresholds were determined on the dev
set and the results shared below reflect the results
of the thresholds applied on the test set.

We calculated ROUGE-1, ROUGE-2, ROUGE-
L, BERTscore, and cosine similarity for the model
generated NLRs (compared to both GT and UQDB)
and computed their medians per class Table 5
shows the results.

A.7 Thresholds Used for Experiments

Metrics:
A threshold was determined on the dev set to

make the decision boundary using grid search. This
was done while optimizing for macro F1 score. We
searched for this threshold for ROUGE1-recall met-
ric, which was choosen specifically for its simplic-
ity, general applicability on different types of text,
and large difference in median scores between class
0 and class 1.

Threshold of 0.45 for GT and 0.4 for UQDB
yielded best macro F1 score (across class 0 and
class 1) on the dev set. The Results section shared
the results from application of these thresholds on
the test set.

Combo-Eval:
As shown in Figure 10, the extreme scores pro-

vide a better indication of the accuracy of an NLR.
The difference between class 1 and class 0 ROUGE
recall scores tends to be more informative on the
extreme values, where the difference between %
of samples from class 1 and class 0 for the score
threshold is not only high but also the class with
lower number is samples has a very small presence
on those scores.

After conducting a grid search on the lower and
upper extremes of ROUGE-1 recall scores using the
development set, we established thresholds for both
ends. This grid search was optimized for macro
F1 score to best align with human assessments of
NLRs, where F1 scores were averaged for class 0
(NLRs deemed incorrect by humans) and class 1
(NLRs deemed correct by humans).

The following thresholds were used.

Figure 10: Trend for % of samples with different
ROUGE 1 recall scores for class 1 and for class 0 for GT
vs. model outputs and UQDB vs. model outputs. The
plot shows the extreme scores tend to show more differ-
ence between class 1 and class 0, indicating the potential
for choosing thresholds that are more likely to contain
true positives and true negatives, and minimizing false
positives and false negatives.

th0l = 0 for GT; 0.05 for UQDB
th0u = 0.1 for GT; 0.1 for UQDB
th1l = 0.9 for GT; 0.87 for UQDB
th1u = 1 for GT and UQDB
These thresholds were then applied to test set and

that represents the numbers shared in the Results
section 5.

A.8 LLM Generation Errors

Some errors produced by LLM generated NLRs
have common grounds for what went wrong. Fig-
ure 11 shows the trends for breakdown of the error
types.

Clarifying the source of errors, all identified in-
accuracies stem from LLM-generation of NLR, as
SQL execution was based on ground-truth SQLs
provided in the BIRD dataset, assumed to represent
correct data.

Examples of correct and incorrect NLRs by gen-
eration models are shared below.

• Model: Phind-CodeLLma-34B-v2

Correct NLR:

Q: "In which city can you find the school in
the state of California with the lowest latitude
coordinates and what is its lowest grade? In-
dicate the school name.

NLR: "The school with the lowest latitude
coordinates in the state of California is Cen-
tral Middle - RISE located in Oroville. This
school offers classes from grade 7 onwards."

Incorrect NLR:
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Recall Prec F1 Recall Prec F1
Metric Thresholds GT UQDB
Cosine similarity GT=0.7 UQDB=0.65 0.65 0.62 0.63 0.61 0.6 0.6
BERTscore recall GT=0.3 UQDB=0.3 0.54 0.69 0.6 0.59 0.77 0.67
BERTscore precision GT=0.7 UQDB=0.6 0.65 0.67 0.66 0.55 0.63 0.59
BERTscore F1 GT=0.45 UQDB=0.41 0.56 0.66 0.6 0.56 0.68 0.62
ROUGE-1 recall GT=0.45 UQDB=0.4 0.68 0.71 0.7 0.68 0.68 0.68
ROUGE-1 precision GT=0.8 UQDB=0.65 0.63 0.62 0.63 0.56 0.58 0.57
ROUGE-1 F1 GT=0.7 UQDB=0.5 0.72 0.69 0.71 0.69 0.71 0.7
ROUGE-2 recall GT=0.4 UQDB=0.3 0.72 0.7 0.71 0.68 0.66 0.67
ROUGE-2 precision GT=0.7 UQDB=0.43 0.65 0.62 0.64 0.58 0.58 0.58
ROUGE-2 F1 GT=0.45 UQDB=0.43 0.71 0.68 0.69 0.67 0.64 0.66
ROUGE-L recall GT=0.45 UQDB=0.4 0.69 0.71 0.7 0.67 0.67 0.67
ROUGE-L precision GT=0.8 UQDB=0.42 0.63 0.61 0.62 0.54 0.61 0.57
ROUGE-L F1 GT=0.7 UQDB=0.5 0.71 0.66 0.69 0.7 0.67 0.68

Table 4: Decision boundary thresholds (determined using the dev set) across various metrics, along with results
on test set (macro average recall, precision, and F1 scores) indicating alignment with human assessments of NLR
correctness. Thresholding on ROUGE scores aligns more closely with human assessments than cosine similarity
and BERT scores.

Median of the metric computed between
model generated NLR and

Metric GT UQDB
class 0 class 1 class 0 class 1

Cosine similarity 0.58 0.75 0.64 0.72
BERTscore recall 0.70 0.79 0.51 0.52
BERTscore precision 0.74 0.82 0.68 0.73
BERTscore F1 0.70 0.81 0.58 0.60
ROUGE-1 recall 0.47 0.86 0.39 0.65
ROUGE-1 precision 0.78 0.93 0.81 0.92
ROUGE-1 F1 0.53 0.83 0.49 0.69
ROUGE-2 recall 0.27 0.69 0.22 0.4
ROUGE-2 precision 0.48 0.79 0.5 0.67
ROUGE-2 F1 0.31 0.67 0.24 0.49
ROUGE-L recall 0.44 0.81 0.36 0.58
ROUGE-L precision 0.71 0.91 0.73 0.83
ROUGE-L F1 0.48 0.76 0.42 0.63

Table 5: Median values broken down by human evaluation category (0-NLRs deemed incorrect by human; 1-NLRs
deemed correct by human) across scores (cosine similarity, BERTscore, and ROUGE) representing computation of
model produced NLRs wrt GT NLRs as well as wrt UQDB.
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Figure 11: Reasons for inaccurate NLRs - overall and
by LLM.

Q: "What are the webpages for the Los Ange-
les County school that has between 2,000 and
3,000 test takers?"

NLR: "The webpage for the Los Angeles
County school with between 2,000 and 3,000
test takers is www.avdistrict.org."

NLR is missing information. The
DB result set returned websites
’www.avdistrict.org’, ’www.lbschools.net’,
and ’www.hartdistrict.org’.

• Model: Llama3.1-70B-Instruct

Correct NLR:

Q: "Give the code of sets have expansion com-
mander type?"

NLR: "The sets with expansion commander
type are C13, C14, C15, C16, C17, CM1, and
CMD.

Incorrect NLR:

Q: "When was the set of cards with "Ances-
tor’s Chosen" released?"

NLR: "The set of cards with "Ancestor’s Cho-
sen" was released on 2002-05-27."

This is incorrect because the DB results re-
turned three dates ([’2007-07-13’], [’2002-05-
27’], [’2018-12-07’]), but the LLM assumed
only one is correct.

• Model: Llama-3.1-405B-Instruct

Correct NLR:

Q: "List the football players with a birthyear
of 1970 and a birthmonth of October."

NLR: "Chris Swailes, Dean Kiely, Edwin van
der Sar, and Sander Boschker"

Incorrect NLR:

Q: "Which set is not available outside of the
United States and has foil cards with Japanese
writing on them? Please include the set ID in
your response."

NLR: "Commander’s Arsenal (50) is not avail-
able outside of the United States and has foil
cards with Japanese writing on them."

Names and IDs returned included ["Comman-
der’s Arsenal", ’50’], [’Premium Deck Series:
Fire and Lightning’, ’307’], [’From the Vault:
Exiled’, ’522’], [’From the Vault: Relics’,
’523’], [’From the Vault: Legends’, ’524’],
[’From the Vault: Realms’, ’525’], [’From the
Vault: Twenty’, ’526’], [’From the Vault: An-
nihilation’, ’527’], [’From the Vault: Angels’,
’528’], [’From the Vault: Lore’, ’529’]. The
NLR contained incomplete information.

• Model: GPT4o

Correct NLR:

Q: "What is the sum that client number 4’s
account has following transaction 851? Who
owns this account, a man or a woman?"

NLR:"The sum that client number 4’s account
has following transaction 851 is 15096. The
owner of this account is a man."

Incorrect NLR:

Q: "What is the amount of debt that client
number 992 has, and how is this client doing
with payments?"

NLR: "Client number 992 has a debt amount
of 53076 and is doing well with payments, as
indicated by the status "A"."
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Assumption for the meaning of A is consid-
ered incorrect. For another example of a bad
NLR for this model, see Appendix A.9.

A.9 Format Inconsistency Error Example

While manually reviewing LLM generation of
NLRs, we noticed format inconsistencies impact-
ing readability of NLRs, specially in high volumes
for GPT-4o as the generation model. An example
of such an NLR is as follows.

User question: Provide the IDs and age of the
client with high level credit card, which is eligible
for loans.

NLR generated based on DB results (21 rows)
is shared below. For readability and space,
some lines were truncated (represented by sym-
bol <...TRUNC>) where the same format pattern
was repeating.

Account ID: 66, District Name: Rychnov nad
Kneznou, District Region: east Bohemia

Account ID: 273, District Name: Karlovy
Vary, District Region: west Bohemia

Account ID: 485, District Name: Kutna
Hora, District Region: central Bohemia

Account ID: 539, District Name: Rakovnik,
District Region: central Bohemia

Account ID: 1050, District Name: Hodonin,
District Region: south Moravia

Account ID: 1286, District Name: Zdar
nad Sazavou, District Region:

south Moravia

Account ID:

1527,

District Name:

Tachov,

District Region:

west Bohemia

<...TRUNC>

Account ID:
1965,
District Name:
Hodonin,
District Region:

south Moravia

Account ID:

2137,

District Name:

Kladno,

District Region:

central Bohemia

Account

ID:

2464,

<...TRUNC>

There were multiple new lines between lines
above randomly distributed, which were removed
from the above response to enhance readability of
the text.

This was seen more predominantly in large
result-set sizes.

A.10 Evaluation Results using GPT-4o as the
Judge Model

Table 6 presents how well different NLR evalu-
ation methods align with human assessments of
NLRs. It includes detailed scores for recall, preci-
sion, and F1, both at the class level and averaged
(macro level). The evaluation methods covered are
Metrics-as-a-Judge, LLM-as-a-Judge, and Combo-
Eval. This table offers broader results than Table 2,
which is limited to F1 scores, by presenting a wider
range of statistical metrics.

With GPT-4o as the judge model, Combo-Eval
achieves only modest performance gains compared
to the LLM-judge approach. Nonetheless, it main-
tains its overall performance while requiring fewer
LLM calls. Conversely, as shown in Table 8, when
other judge models are used, Combo-Eval offers
greater performance gains while simultaneously re-
ducing the number of LLM calls. The reduction
in LLM calls remains constant regardless of which
judge LLM is being used.

A.11 Misjudgment by Result Size
Table 7 presents the distribution of falsely judged
NLRs categorized by the size of the results. As
demonstrated in Figure 12, both LLM-judge and
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Metrics-judge LLM-judge Combo-Eval
C0 C1 C0 C1 C0 C1

GT
Recall 46.9 89.69 65.78±1.4 92.92±0.7 71.29±1.0 89.26±0.2
Prec 61.63 82.95 76.65±1.7 88.49±0.4 75.26±0.5 87.85±0.3
F1 53.27 86.19 70.79±1.1 90.65±0.4 73.22±0.7 88.55±0.2
Rec(macro) 68.30 79.35±0.7 80.27±0.5
Prec(macro) 72.29 82.57±0.9 81.56±0.4
F1(macro) 69.73 80.72±0.8 80.88±0.4
Accuracy 78.52 85.83±0.6 85.07±0.3
UQDB
Recall 50.44 84.06 49.56±0.9 96.15±0.7 55.05±0.9 93.72±0.6
Prec 53.77 84.06 82.02±2.4 84.37±0.2 78.65±2 85.14±0.2
F1 52.05 84.06 61.77±0.6 89.87±0.3(SD) 64.75±0.5 89.22±0.3
Rec(macro) 67.25 72.85±0.3 74.39±0.3
Prec(macro) 68.92 83.19±1.2 81.9±1
F1(macro) 68.06 75.82±0.4 76.98±0.4
Accuracy 75.29 83.99±0.4 83.99±0.4

Table 6: Results (with standard deviation where applicable across 10 runs) from evaluation methods (ROUGE1-recall
with threshold to determine classification, LLM as a judge and Combo-Eval method) across class 0 (C0) and class 1
(C1), and average recall, precision, and F1, along with the overall accuracy. Judge LLM is GPT-4o.

Result size
3-9 10-49 50-499

Metrics-Judge
GT 30.44 30.44 39.13

UQDB 40.00 32.00 28.00
LLM-judge

GT 22.95 34.43 42.62
UQDB 26.76 32.39 40.85
Combo-Eval

GT 24.59 32.79 42.62
UQDB 31.34 29.85 38.81

Table 7: Percentage of samples that were falsely judged
by LLM-judge method broken down by result size.

Combo-Eval methods lead to a reduction in the
overall number of incorrect judgments compared to
the traditional metrics-based evaluation. However,
among the incorrect judgments that remain for each
method, Table 7 details the percentage breakdown
by result size.

The LLM-as-a-judge method consistently en-
counters greater difficulty in accurately judging
larger result sizes compared to smaller ones.

A.12 Judgment by Different Judge Models

Table 8 shows F1 macro scores across 15 judge
LLMs for GT and UQDB scenarios for the LLM-

Figure 12: Percentage reduction in incorrect NLR judg-
ments for LLM-judge and Combo-Eval methods com-
pared to Metrics-based evaluation method in UQDB
(left) and GT (right) scenarios.

as-a-judge and Combo-Eval methods. The judge
LLMs include both closed-source and open-source
models of different sizes.

• Llama series instruct models (3.3-70B, 3.1-
70B, and 3.1-405B)

• OpenAI GPT-4o (OpenAI et al., 2024a), 4o
mini, 4.1, 4.1 mini, 4.1 nano

• OpenAI advance reasoning models including
O1 (OpenAI et al., 2024b) and O3 mini (Ope-
nAI, 2025)
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Judge model GT UQDB
LLM-as-a-judge Combo-Eval (ours) LLM-as-a-judge Combo-Eval (ours)

L3.3-70b 84.60 83.90 77.32 79.40
L3.1-405b 84.18 83.08 77.79 79.14
L3.1-70b 82.93 83.17 77.01 79.5

O1 82.68 83.00 82.08 82.68
Grok-3 82.43 82.80 77.89 78.99
Cmd-A 82.31 83.17 66.86 70.18

GPT-4.1 mini 81.65 83.44 77.65 79.90
GPT-4o 80.72 80.88 75.82 76.98
O3-mini 80.71 81.76 75.94 77.79
GPT-4.1 79.75 80.91 72.67 74.42

CMD-RPlus 77.08 78.95 65.29 67.48
CMD-R 76.02 80.57 68.70 72.0

GPT-4.1 nano 75.66 82.04 57.95 62.14
GPT-4o mini 74.56 78.95 66.12 69.97
Grok-3-mini 73.37 79.17 70.56 74.61

Average 79.91 81.72 72.64 75.01

Table 8: F1 macro scores across judge LLMs under GT and UQDB scenarios. Best score amongst different judge
LLMs is in blue and worst score is in red. Best score between LLM-judge and Comb-eval for each judge model
is in bold. Score for Metric-judge is 69.73% for GT and 68.06% for UQDB. Results are ordered (descending) by
scores on LLM-judge with GT reference.

• Cohere Cmd-A (Cohere et al., 2025), R (Co-
here, a), and R+ (Cohere, b)

• Grok-3 and Grok-3-mini (xAI)

Combo-Eval outperforms LLM-judge for most
of the judge models considered. The results show
an average improvement of 1.81% using Combo-
Eval over LLM-judge when GT is used as the
reference, and 2.37% when UQDB is used as the
reference.

When ground truth NLRs are unavailable, re-
lying on the UQDB approach can be a viable al-
ternative. Otherwise, GT scenario exhibits betters
alignment with human assessment of NLRs com-
pared to UQDB.

The results indicate that, in the UQDB scenario,
the alignment with human assessment decreases
by 7.27% for the LLM-judge method compared
to using GT. For the Combo-Eval method, the
alignment reduces by 6.71% under the same con-
ditions.

A.13 Evaluation Methods for Determining
Accuracy Across Different
NLR-Generation LLMs

In the paper, we conducted a human evaluation of
NLR generations from different LLMs. We previ-

ously shared the agreement between human evalua-
tion of LLM-generated NLRs and the NLR evalu-
ation using three automated evaluation methods -
Metric-judge, LLM-judge, and Combo-Eval. Now,
we take a different route and compare the overall
accuracy evaluation we obtain using Metric-judge,
LLM-judge, and Combo-Eval for NLRs produced
by the different generation LLMs, and compare that
to the overall accuracy we obtain from human eval-
uation of NLRs generated by each of the different
LLMs. This shows how well we can rank different
LLMs for the task of generating NLR without hu-
man evaluation knowledge. For this exercise, we
use GPT-4o as our judge model.

We run the evaluation methods against the test
data to determine overall accuracy percentage
rather than sample-by-sample alignment with hu-
man evaluation. In other words, we calculate ac-
curacy solely based on these evaluation methods,
without comparing how well they agree with hu-
man assessments for each specific sample.

The results from this exercise are shared in Ta-
ble 9. Our findings reveal that all the evaluation
methods rank the performance of generation LLMs
similarly for the task of NLR generation in a way
that matches the rankings from human evaluations.
Therefore, to determine which model performs
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Judge Phind L3.1 70 L3.1 405
Human 0.65 0.75 0.78
GT
Metrics-Judge 0.79 0.80 0.81
LLM-Judge 0.72 0.8 0.82
Combo-Eval 0.73 0.80 0.81
UQDB
Metrics-Judge 0.73 0.76 0.76
LLM-Judge 0.75 0.86 0.89
Combo-Eval 0.68 0.78 0.79

Table 9: Accuracy of NLRs generated across LLMs
using Metrics as a judge, LLM as a judge, Combo-Eval,
and human evaluation. Phind=Phind-CodeLlama-34B-
v2; L3.170=Llama 3.1-70B-instruct; L3.1405=Llama
3.1-405B-instruct.

better at generating NLRs, metrics thresholding
can be a practical alternative. Although there is a
greater discrepancy between human and metrics-
based judgments of individual NLRs, this approach
can still effectively identify the general trend or
ranking of LLMs for this task.

In an industry setting, this approach can aid in
selecting the most suitable model for the task from
the available options, thereby supporting critical
decision-making and development.

A.14 Temperature Change for Judge LLMs

On a subset of judge LLMs, we ran evaluations
using three temperature settings, 0.01, 0.5, and 1.
Table 10 shows the F1 macro score (averaged F1
score representing class 0 and class 1 alignment
with human evaluation) for LLM-as-a-judge evalu-
ation method and the Combo-Eval method.

For the Llama-3.3-70B-Instruct model, we ob-
serve that lower temperature settings yield slightly
better scores across both LLM-as-a-judge and
Combo-eval methods under GT as well as UQDB
scenarios. On the other hand, for GPT-4o, higher
temperature settings result in marginally improved
scores, with temperature 0.5 showing highest
scores for GT scenario and temperature of 1.0
showing highest scores for UQDB scenario. The
other judge models don’t exhibit any clear trends.
Also, the differences between scores across the var-
ious temperature settings across the judge models
remain very minimal.

In conclusion, no clear trend emerges from this
experiment; the evaluation does not significantly
worsen or improve with an increase or decrease

Judge Eval method t0.01 t0.5 t1.0
GT
L3.370 LLM-judge 84.60 84.25 83.39
L3.370 Combo-

Eval
83.90 83.53 83.17

Grok-3 LLM-judge 82.43 83.45 82.58
Grok-3 Combo-

Eval
82.80 82.80 82.43

GPT-4o LLM-judge 80.72 81.14 80.89
GPT-4o Combo-

Eval
80.88 82.00 81.88

G4.1nano LLM-judge 75.66 75.88 74.37
G4.1nano Combo-

Eval
82.04 81.69 79.61

UQDB
L3.370 LLM-judge 77.32 76.24 76.18
L3.370 Combo-

Eval
79.40 78.30 78.28

Grok-3 LLM-judge 77.89 77.08 77.71
Grok-3 Combo-

Eval
78.99 78.85 79.40

GPT-4o LLM-judge 75.82 76.54 77.58
GPT-4o Combo-

Eval
76.98 77.67 78.25

G4.1nano LLM-judge 57.95 58.17 54.17
G4.1nano Combo-

Eval
62.14 62.97 59.12

Table 10: F1 macro score (averaged score from class
1 and class 0 F1) showing alignment of evaluation
methods with human judgement across different tem-
perature settings. L3.370=Llama 3.3-70B-instruct;
G4.1nano=GPT4.1-nano

in temperature for the task of judging NLRs. The
slight variations observed in the results across dif-
ferent temperature settings indicate varying trends
for different judge LLMs, suggesting no consis-
tent trend regarding temperature settings across all
LLMs. The results imply that different judge mod-
els may react differently to temperature changes,
but the impact is minimal. Combo-Eval remains
superior to LLM-judge across most judge LLMs,
and this trend persists across different temperature
settings.

902


