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Abstract

Entity Linking (EL) has traditionally relied on
large annotated datasets and extensive model
fine-tuning. While recent few-shot meth-
ods leverage large language models (LLMs)
through prompting to reduce training re-
quirements, they often suffer from inefficien-
cies due to expensive LLM-based reasoning.
ARTER (Adaptive Routing and Targeted Entity
Reasoning) presents a structured pipeline that
achieves high performance without deep fine-
tuning by strategically combining candidate
generation, context-based scoring, adaptive
routing, and selective reasoning. ARTER com-
putes a small set of complementary signals
(both embedding and LLM-based) over the
retrieved candidates to categorize contextual
mentions into easy and hard cases. The cases
are then handled by a low-computational entity
linker (e.g. ReFinED) and more expensive tar-
geted LLM-based reasoning respectively. On
standard benchmarks, ARTER outperforms Re-
FinED by up to +4.47%, with an average gain
of +2.53% on 5 out of 6 datasets, and performs
comparably to pipelines using LLM-based rea-
soning for all mentions, while being as twice as
efficient in terms of the number of LLM tokens.

1 Introduction

Entity Linking (EL), also known as Named Entity
Disambiguation (NED), is the critical process of
accurately associating ambiguous textual mentions
with their corresponding specific entities within a
knowledge base. Entity linking systems are widely
used in search engines, automated knowledge ex-
traction platforms, question-answering systems,
and other large-scale NLP systems.

Traditional EL methods depend on large labeled
datasets and extensive fine-tuning, which limits
their adaptability to new domains and their ability
to scale (Ayoola et al., 2022; Wu et al., 2020b).
They also struggle with “hard cases” including:
1) low-context mentions, which have insufficient

context to disambiguate (e.g., “Ireland” in a short
snippet), 2) lexical ambiguity, when the same sur-
face form maps to multiple entity types or senses
(e.g., a country versus its national team), and 3)
knowledge-intensive cases, which demand exter-
nal or implicit world knowledge for correct linking
(e.g., interpreting ‘the Big Apple’ as New York
City involves background knowledge rather than
textual clues).

Large Language Models (LLMs) have trans-
formed entity linking by using prompt-based meth-
ods (Xin et al., 2024) in place of large annotated
datasets thus improving performance on difficult
disambiguation cases through their advanced rea-
soning. However, current LLM-centric approaches
are inefficient, as they require repeated model calls
at each step, leading to increased cost and slower
processing.

Traditional EL systems struggle to handle cases
where mention complexity varies, as they do not
adapt based on varying complexities of mentions.
Our proposed framework, ARTER (Adaptive Rout-
ing and Targeted Entity Reasoning), dynamically
applies advanced reasoning based on mention com-
plexity—offloading only the most ambiguous cases
to an LLM, which resolves them using a targeted
reasoning prompt, thus eliminating the need of fine-
tuning or annotating new examples for those hard
mentions.

ARTER is a structured pipeline as illustrated in
Figure 1. The pipeline starts with generating candi-
date entities and computing candidate scores; then
using these scoring signals, a lightweight router
classifies mentions as easy or hard cases. Easy
mentions are handled by fast traditional EL models,
while hard cases are routed through a reasoning
prompt for refined disambiguation. This design
offers two key benefits. First, it avoids the com-
putational cost of full-model fine-tuning required
by systems like ReFinED, which typically need to
be adapted to new datasets or domains to achieve
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Context: Target fell 1.52 or 3 
percent to 48.77. Saks rose, 
Home Depot fell…
Mention: Target

Input

C1 Target Corporation
C2 Target Australia
C3 Target Canada
C4 Target ship
C5 Biological target
…

Candidates

Router

Candidate 
Scores 

Computation 

Statistical 
Aggregation 

of 
Candidate 

Scores

Random 
Forest 

Classifier

 Handling “easy” mentions

Label 
Prediction

Easy

✓Hard

ReFinEd

You are an expert in entity linking. Given a 
mention, its context, and a list of 
candidates
…

Predictions: Target Corporation 
(Q1046951)

Targeted Reasoning

Candidate Generation Adaptive Routing Entity Linking

Entity Linker

The Framework of ARTER

Figure 1: ARTER leverages a light-weight router on top of the given context and retrieved candidate entities to
categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity
linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively.

strong performance. In our approach, ReFinED re-
mains frozen, serving for fast high-recall candidate
generation and handling “easy” mentions. Second,
by applying targeted reasoning prompts to diffi-
cult mentions, our method avoids relying solely on
prompt-based inference as in OneNet (Liu et al.,
2024) and is more efficient as only hard cases in-
cur the LLM cost rather than every mention. We
evaluate ARTER on standard benchmarks—AIDA
(Hoffart et al., 2011), MSNBC (Cucerzan, 2007),
ACE2004 (Ratinov et al., 2011), AQUAINT (Milne
and Witten, 2008), CWEB (Gabrilovich et al.,
2013), and WIKI (Guo and Barbosa, 2018) and
demonstrate improved performance through effi-
cient, selective use of LLM reasoning. Based on
our benchmarking results, we try to answer the
following research questions:

1. Can the strategic application of LLM-based
techniques within ARTER significantly im-
prove EL performance for ambiguous men-
tions (i.e., “hard cases” where traditional mod-
els typically falter)?

2. Do all mentions require LLM reasoning? If
not, which mentions can be handled by tradi-
tional models? How can we reduce the cost
of LLM-based reasoning without sacrificing

accuracy?

3. How does ARTER compare to the full prompt-
ing approach in terms of accuracy and compu-
tational efficiency?

2 Related Work

Entity Linking (EL) has seen significant progress
with systems like BLINK and ReFinED. Wu et al.
(2020a) proposed BLINK, a zero-shot framework
that uses a bi-encoder for candidate retrieval and a
cross-encoder for ranking. While effective on large
datasets such as TACKBP-2010, BLINK struggles
with long-tail entities due to limited contextual un-
derstanding. ReFinED (Ayoola et al., 2022) ad-
dresses efficiency by processing all mentions in
a single pass and improves accuracy with fine-
grained entity typing and entity priors. Our work
builds on these systems by using its candidate gen-
eration module to obtain high-quality entity candi-
dates, while avoiding the burden of fine-tuning by
relying on prompt-based strategies instead.

Despite our focus on EL, recent progress in Rela-
tion Extraction (RE) is closely related because both
tasks require understanding and reasoning over en-
tity–context relationships. Many prompting tech-
niques developed for RE, such as few-shot and
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chain-of-thought reasoning, have proven transfer-
able to EL and help LLMs perform contextual dis-
ambiguation. Recent work explores LLM-based
approaches to both EL and RE. Wadhwa et al.
(2021) show that few-shot prompting can match
RE baselines, while Chain-of-Thought (CoT) im-
proves accuracy. Wang et al. (2024) apply retrieval-
augmentation for entity disambiguation, but find
performance still lags behind SOTA on GERBIL
(Hoffart et al., 2015). LLMAEL (Xin et al., 2024)
augments mention context with LLM-generated de-
scriptions but requires fine-tuning. OneNet (Liu
et al., 2024) uses a fully prompt-based EL pipeline
without retraining, yet lacks adaptive control over
reasoning depth.

3 Method

3.1 Problem Formulation

Given the context (e.g. an article or piece of text) of
a mention, the task of entity linking is to correctly
identify the candidate entity associated with the
mention as per a knowledge base.

3.2 Candidate Generation

Our entity-linking pipeline leverages the ReFinED
candidate-generation module, which returns an ini-
tial pool of 30 ranked candidates for each mention.
Each candidate refers to a unique entity entry (ar-
ticle) in the underlying English Wikipedia knowl-
edge base, which serves as the reference set for
disambiguation. For additional metadata such as
entity titles and short descriptions, we retrieve the
corresponding information from Wikidata linked
to each Wikipedia entity. These enriched represen-
tations are then used in the subsequent routing and
reasoning stages.

3.3 Router

For efficiency, we retain the top 10 from the 30 re-
trieved candidates to train the router. For these top
10 candidates, we compute three cosine-similarity
scores using a Sentence Transformer encoder over
each candidate’s title+description. Let c ∈ Rd de-
note the vector for the mention’s surrounding con-
text, m ∈ Rd the vector for the mention surface
form, and ei ∈ Rd the vector for the i-th candi-
date entity (title+description). Cosine similarity
between any two vectors u,v ∈ Rd is

cos(u,v) =
u · v

∥u∥ ∥v∥ . (1)

For each candidate i, we define:

θ1(i) = cos
(
c, ei

)
, (2)

θ2(i) = cos
(
m, ei

)
, (3)

θ3(i) = max
i̸=j

cos
(
ei, ej

)
. (4)

where θ1(i) is the context–entity similarity, θ2(i)
is the mention–entity similarity, and θ3(i) is the
inter-candidate similarity (the maximum similarity
between candidate i and any other candidate i ̸= j).

These similarity measures are computed in par-
allel with a fourth score generated by a small, non-
reasoning language model (e.g., Llama-3.1-8B-
Instruct). The LLM receives a single-turn prompt
containing the mention, its context, and the top-10
candidates (with titles + descriptions) and outputs a
confidence score ϕ(i) for each candidate. All four
scores are passed to our router, which uses them
to decide whether heavy reasoning via the LLM
is necessary or if the mention can be linked using
lower-cost methods (see Appendix A for the full
LLM prompt template).

Since any single sample can produce multi-
ple candidate entities—each with four confidence
scores—we aggregate all candidate scores into a
set of statistical features as shown in Table 1.

To distinguish between “easy” and “hard” cases,
we use the predictions from the ReFinED end-to-
end entity-linking model. Specifically, for each
mention in the AIDA training set (18,395 in-
stances), we obtain the predicted entity from Re-
FinED. If the predicted entity matches the gold-
standard label, we mark the case as easy; if the
prediction is incorrect (i.e., the predicted entity
does not align with the gold label), we mark the
case as hard.

The predictions from ReFinED on the AIDA
training set are used to generate “easy” and “hard”
labels, which serve as training data for a Random
Forest classifier. This classifier is then applied to
test instances, splitting them into two subsets: those
predicted as easy are handled directly by the Re-
FinED module, while those predicted as hard are
routed to the reasoning module with an advanced
prompt.

To further illustrate the separation between easy
and hard cases, we provide representative examples
below:

873



Feature Description
top1 Highest candidate score after similarity-

penalization1

top2 Second-highest candidate score after
similarity-penalization1

margin Difference between top1 and top2 (i.e.
top1 − top2)

entropy Shannon entropy (base-2) of the flattened
candidate-score distribution

n_cands Number of entity candidates retrieved for
the mention

sent_len Length (in tokens) of the sentence contain-
ing the mention

score_1 Average of score θ1 across all candidates
score_2 Average of score θ2 across all candidates
score_3 Average of score θ3 across all candidates
score_4 Average of score ϕ across all candidates

Table 1: Summary of the ten features used to decide
whether a mention is “easy” or “hard.” 1Both top1 and

top2 are computed as
θ1 + θ2 − θ3 + ϕ

3
, where θ3 is

subtracted to penalize similarity among candidates.

Easy Linking Sample

Easy Case: Washington, D.C.
Mention: Washington
Context: Documented From NPR news in Washington I’m Corey Flintoff...
Correct Entity: Washington, D.C. (Q61)
----------------------------------------------------------------
Explanation: The mention appears in a well-known journalistic context
(NPR), and ReFinED confidently disambiguates it using surface-level
cues, without needing additional reasoning.

Hard Linking Sample

Mention: Target
Context: Target fell 1.52 or 3 percent to 48.77. Saks rose,
Home Depot fell...
Correct Entity: Target Corporation (Q1046951)
----------------------------------------------------------------
Explanation: The context involves financial information and lists
multiple retail companies, suggesting a stock market setting.
However, "Target" is a highly ambiguous mention with many possible
entity candidates, including Target Corporation, Target Australia,
Target Canada, and other non-retail meanings.

3.4 Reasoning Module

For hard cases, a Reasoning Module is leveraged
to integrate entity description generation and tar-
geted reasoning. For each mention, the LLM-based
reasoning is formulated as a multiple-choice task
over the top 30 candidates retrieved by ReFinED’s
candidate generation module. We study various
reasoning models, including Deepseek R1 0528,
GPT-4.1, Claude 3 Haiku and Claude 3.5 Sonnet.
We include the results of the best reasoning models
in Table 3.

3.4.1 Prompting Strategies
To fully utilize the reasoning capabilities of LLMs,
we experimented with various prompting strate-
gies, including zero-shot (Kojima et al., 2023), few-
shot (Brown et al., 2020), Chain-of-Thought (CoT)

(Wei et al., 2023), contrastive prompting (Chia
et al., 2023), and ReAct-style prompting (Yao et al.,
2023). Contrastive prompting enhances robustness
by providing positive and negative examples, while
ReAct-style prompting interleaves reasoning with
actions, enabling step-by-step thinking and tool
or information access. A detailed comparison of
all strategies on the ACE2004 hard cases dataset
is shown in Table 8. The compasison shows that
the most effective approach turns out to be the one
combining few-shot examples with CoT reasoning.
This method encourages the model to analyze men-
tions and candidates step by step, leveraging entity
descriptions and category consistency. The prompt
format explicitly aligns each mention and its sur-
rounding context with a list of candidate entities
and requires the model to identify the most seman-
tically compatible option or return −1 if none fits.
Few-shot examples illustrate the step-by-step rea-
soning process that links contextual cues to the ap-
propriate entity description, grounding predictions
in the candidate information provided.

The full prompt template, including system in-
structions, few-shot examples, and the output for-
mat, is provided in Table 11 (Appendix A). A sam-
ple output generated from the reasoning module is
shown below to demonstrate the reasoning output
(the candidate entities are not fully shown due to
space limit):

Reasoning Sample Generation

Mention: Target
Context: Target fell 1.52 or 3 percent to 48.77. Saks rose,
Home Depot fell...
Candidate Entities (subset):

- Target Corporation (Q1046951): American retailer
and supermarket chain

- Target Australia (Q7685854): Australian department
store chain

- Target Canada (Q4140889): Canadian subsidiary
of Target Corporation

- Target (Q180238): British television series
- Target Books (Q12005242): Publisher of Doctor
Who novelizations

- Target (Q971985): 1985 film by Arthur Penn
- Biological target (Q904407): Molecular target in
drug design

- ...
----------------------------------------------------------------
Prediction: Target Corporation (Q1046951)
LLM Reasoning:
1. The context is discussing stock market performance and mentions
various companies and their stock prices.
2. 'Target' is mentioned alongside other retail companies
like Home Depot and Saks.
3. The text states 'Target fell 1.52 or 3 percent to 48.77',
which refers to stock price movement.
4. Among the candidates, only Target Corporation
(an American retailer) fits this context as a publicly
traded company.
5. Other candidates like Target Australia or Target
Canada are not likely to be traded on the US stock market.
6. The remaining candidates are unrelated to retail or
the stock market. Therefore, Target Corporation is the
most appropriate match for this mention.
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4 Experimental setup

4.1 Datasets
Data source A comprehensive and diverse evalu-
ation was conducted on publicly available datasets.
These datasets cover a wide range of domains by
including both standard benchmarks and challeng-
ing cases, like long-tail entity linking. The datasets
used to benchmark performance are the following:
AIDA (Hoffart et al., 2011), MSNBC (Cucerzan,
2007), ACE2004 (Ratinov et al., 2011), AQUAINT
(Milne and Witten, 2008), CWEB (Gabrilovich
et al., 2013) and WIKI (Guo and Barbosa, 2018).
Table 2 mentions details about the datasets. Stan-
dard pre-processing steps—such as text normal-
ization, entity extraction, and format standardiza-
tion were applied for consistency across datasets.
Wikipedia dumps were used as the knowledge base
for candidate generation, providing an up-to-date
and extensive entity source.

Dataset Source Mentions
ACE2004 News articles 259
AIDA Reuters news articles 4464
AQUAINT Newswire articles 743
MSNBC News articles 656
CWEB Web Pages 6821
WIKI Wikipedia articles 11154

Table 2: Summary of entity linking test datasets used in
our evaluation.

4.2 Entity Linking Evaluation Metric
Disambiguation Accuracy is defined as the follow-
ing to evaluate our entity linking system

Accuracy =
TPlink

TPlink + FPlink + FNlink
(5)

where TPlink is the number of mentions correctly
linked to their gold entity, FPlink is the number of
mentions linked to an incorrect entity, FNlink is the
number of mentions that should have been linked
but were not.

4.3 Entity Linking Baselines
As our primary external baseline, we compared
with the state-of-the-art ReFinED model (Ayoola
et al., 2022). After routing, mentions classified as
easy are resolved by ReFinED, which leverages
fine-grained entity types and description-based
ranking to disambiguate entities without additional

reasoning. For secondary analysis, we included the
full prompting baseline, which applies LLM-based
reasoning to every mention without routing.

5 Results

5.1 Router Performance

We select an optimal decision threshold for the
router (τ = 0.735) on the AIDA validation set
(4,784 instances) by maximizing Youden’s J statis-
tic. The classifier achieves an average AUC of 73.8,
accuracy of 65.1%, F1 score of 75.3, and an aver-
age “easy” subset accuracy of 89.3% across the
six test datasets. More details about the Router
performance is reported in Table 6 in Appendix A.
Note that out setup prioritizes “easy” subset accu-
racy over “hard” subset accuracy. The reason is
that misrouting a hard example into the easy path is
very likely to cause the RefinED model to output an
incorrect entity, whereas sending an easy example
into the hard path only slightly reduces efficiency
while still producing a correct prediction.

5.2 Result Analysis and Discussion

In this section, we analyze and discuss the results
from the angle of questions outlined in the Intro-
duction.

1. Can the strategic application of LLM-based
techniques within ARTER significantly improve EL
performance for ambiguous mentions (i.e. “hard
cases” where traditional models typically falter)?

Yes. Table 3 shows that our hybrid method con-
sistently performs better than the ReFinED baseline
on most datasets, and delivers results close to the
best full prompting approaches. For example, we
improve over ReFinED by +3.52% on ACE2004,
+4.47% on MSNBC, +2.46% on AIDA, +2.09% on
CWEB. On AQUAINT, our performance is slightly
lower by 0.13%.

Comments on WIKI dataset We would like
to especially point out that it is expected that Re-
FinED outperforms all other methods on the WIKI
dataset. This aligns with the fact that ReFinED was
trained specifically on the full English Wikipedia,
giving it a natural advantage on this dataset. The
WIKI dataset is the only case where ReFinED out-
performs ARTER .

2. Do all mentions require LLM reasoning? If
not, which mentions can be handled by traditional
models? How can we reduce the cost of LLM-based
reasoning without sacrificing accuracy?
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Method ACE2004 AQUAINT AIDA MSNBC CWEB WIKI

ReFinED 83.98% 86.25% 83.07% 85.98% 69.54% 85.98%

Ours (ReFinEd + Claude 3 Haiku) 87.50% 86.38% 82.10% 90.11% 71.63% 80.44%

Ours (ReFinEd + Claude 3.5 Sonnet) 86.33% 83.88% 85.53% 89.96% 70.37% 83.61%

Ours (ReFinEd + GPT-4.1) 87.16% 84.84% 83.64% 90.45% 70.95% 83.46%

Ours (ReFinEd + DeepSeek R1) 85.58% 78.56% 83.61% 87.82% 68.62% 82.33%

Full Prompting (Claude 3 Haiku) 88.28% 87.36% 79.60% 90.86% 72.79% 77.72%

Full Prompting (Claude 3.5 Sonnet) 86.33% 83.19% 85.81% 90.25% 70.70% 83.45%

Gap (Our Best - ReFinED) +3.52% +0.13% +2.46% +4.47% +2.09% -2.37%

Gap (Our Best - Full Prompting Best) -0.78% -0.98% -0.28% -0.41% -1.16% 0.16%

Table 3: Accuracy comparison across six entity linking benchmarks. Bolded values indicate the best performance
among our approaches, underlined values indicate the best numbers among full prompting. Takeaway: ARTER out-
performs ReFinED and achieves results comparable to full prompting pipeline. Breakdown of accuracy on easy and
hard cases can be found in Table 10 (Appendix A).

Mention Type ACE2004 AQUAINT AIDA MSNBC CWEB WIKI

Easy Mentions 129 (50.4%) 411 (57.1%) 2967 (67.0%) 390 (59.5%) 6592 (59.3%) 4555 (67.3%)

Hard Mentions 127 (49.6%) 309 (42.9%) 1458 (33.0%) 266 (40.5%) 4530 (40.7%) 2213 (32.7%)

Table 4: Mention distribution across six benchmark datasets after classification by the router. Each cell shows the
number of mentions and the corresponding percentage relative to the dataset total. Takeaway: More than half of
samples across all datasets are resolved using ReFinED, thus saving on expensive LLM reasoning.

Router Setting Type ACE2004 AQUAINT AIDA MSNBC CWEB WIKI

With Router Input 268,576 662,139 3,621,636 584,071 10,126,537 4,799,149

Output 12,811 32,050 106,009 27,552 461,227 157,559

Without Router Input 519,186 1,428,343 10,387,291 1,322,745 23,275,390 13,384,407

Output 25,123 72,651 395,849 57,042 1,096,601 488,213

Input Reduction (%) 48.28% 53.63% 65.14% 55.84% 56.49% 64.15%

Output Reduction (%) 49.01% 55.88% 73.22% 51.70% 57.94% 67.73%

Table 5: Input and output token usage for reasoning module across datasets with and without router. Takeaway: The
router significantly reduces both input and output tokens across all datasets, leading to substantial inference cost
savings—especially since output tokens are typically more expensive. Explanation: The without router rows reflect
token usage when all mentions (easy and hard) are processed by the LLM. The with router rows include only hard
mentions that require LLM reasoning, as easy mentions are handled by ReFinED without incurring LLM tokens.
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Our router identifies easy mentions that can be
resolved accurately without LLMs. As shown in
Table 4, between 50.4% to 67.3% of mentions in
each dataset fall into this category. These are pro-
cessed by ReFinED, demonstrating that a majority
of mentions do not require costly LLM inference.
This insight enables efficient deployment without
degrading performance.

ARTER achieves accuracy that is comparable to
full LLM prompting. This highlights that our rea-
soning module, when applied only to challenging
mentions, is not just cost-efficient but also highly
effective. More details about model accuracy and
inference cost across several LLM-based configu-
rations in Appendix A.

3. How does ARTER compare to the full prompt-
ing approach in terms of accuracy and computa-
tional efficiency?

When compared with full prompting (which
sends every mention to a reasoning LLM), our
method achieves similar accuracy with much less
computation. The performance gap is small: within
1% on most datasets. As shown in Table 4, hard
mentions make up just 32.7 to 49.6% of the data
depending on the dataset. This selective use of
LLMs leads to large efficiency gains without com-
promising accuracy.

6 Deployment Efficiency

Modern entity linking systems, such as OneNet
(Liu et al., 2024), use LLMs with reasoning strate-
gies like Chain-of-Thought for every mention.
However, not all mentions require this level of
reasoning. Our method introduces a router that
identifies "easy" mentions and handles them with
a lightweight model like ReFinED, skipping LLM
reasoning when unnecessary.

To benchmark efficiency, the number of LLM
tokens used is tracked and measured using the
tiktoken library with the cl100k_base encoding,
which is the same tokenizer employed by ChatGPT-
3.5 and GPT-4-turbo. Although originally designed
for OpenAI models, this tokenizer serves as a rea-
sonable proxy for Claude models, which do not
provide a public tokenizer. Tokens generated by
LLaMA 3.1-8B-Instruct (used in the routing mod-
ule) are excluded from the deployment-efficiency
calculation due to their negligible cost (approxi-
mately $0.05 per 1M input tokens and $0.08 per
1M output tokens). An estimated cost for Router
feature generation using LLaMA 3.1-8B-Instruct

is provided in Appendix A.2.
As shown in Table 4, between 50.4% and 67.3%

of mentions in public datasets are classified as easy
and can be accurately resolved without invoking an
LLM. This routing strategy results in an average
reduction of 58.25% in LLM token usage across
datasets (Table 5). More importantly, output token
usage, which typically incurs higher cost, decreases
by an average of 59.25%, substantially reducing
inference cost.

7 Conclusion

ARTER achieves strong entity linking performance
by adaptively routing mentions based on contex-
tual difficulty. Compared to ReFinED, it improves
accuracy by up to +4.47%, with an average gain of
+2.53% across datasets. While maintaining com-
parable performance to full LLM-based prompting
methods (within ±1% on most datasets), ARTER re-
duces LLM token usage by an average of 58.25%,
demonstrating significantly better efficiency during
deployment.

Beyond benchmarks, ARTER addresses practi-
cal deployment needs: it avoids domain-specific
fine-tuning, routes most mentions through a fast
path to prevent latency spikes and cost surges, and
combines lightweight models with LLM reason-
ing to ensure robustness under domain shifts and
knowledge base updates.

Limitations

Our study has several limitations. First, due to com-
putational and budget constraints, we were unable
to benchmark a broader range of large language
models in full prompting settings. Second, we have
not yet explored the use of LLMs for direct entity
candidate generation; incorporating this could help
us better understand the contribution of generation
versus reranking through ablation studies. Third,
while our routing mechanism shows promising ef-
ficiency gains, we have not systematically studied
the effect of different router parameter configura-
tions on accuracy. We leave these directions for
future work.
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A Experimental Supplement

A.1 Router Performance Metrics
We tabulate the full per-dataset router metrics. Our
analysis demonstrates that the router’s accuracy on
the subset it labels as “easy” is consistently and
substantially higher than on the subset it labels as
“hard” (Table 6) . This outcome directly reflects
our design objective of minimizing false-easy er-
rors—i.e. hard examples erroneously passed to
the lightweight ReFined module—because any in-
stance classified as “hard” is instead routed to the
reasoning LLM and resolved correctly. In contrast,
false-hard errors (truly easy examples sent to the
reasoning path) incur only modest extra computa-
tion while still yielding accurate entity links.

Dataset AUC Accuracy F1 Easy-Acc Hard-Acc

ACE2004 0.826 0.602 0.703 0.938 0.260

AIDA 0.782 0.727 0.818 0.916 0.342

AQUAINT 0.670 0.600 0.721 0.905 0.194

MSNBC 0.739 0.646 0.757 0.926 0.237

CWEB 0.703 0.650 0.728 0.791 0.444

WIKI 0.710 0.683 0.789 0.880 0.277

Table 6: Router performance by dataset. “Easy-Acc” is
accuracy on the instances the router predicts as “easy”;
“Hard-Acc” is accuracy on the instances the router pre-
dicts as “hard”.

A.1.1 Feature and Ablation Analysis
Feature importance. On the development set,
Random Forest impurity reductions rank the fea-
tures as follows: the average of θ3 across candi-
dates is most influential, followed closely by the
average of θ2. Next comes the entropy of the (base-
2) normalized flattened candidate–score distribu-
tion and the margin between the top two penalized
candidates (top1− top2). Sentence length and the
average of θ1 contribute comparably, while abso-
lute peak scores (top1, top2) provide additional
but secondary signal. The average of the LLM-
driven score ϕ (score_4) has a smaller yet non-
negligible effect, and the sheer number of candi-
dates (n_cands) is least informative. As usual, im-
portances are setup-dependent (e.g., router thresh-
olds, class rebalancing, feature scaling) and are
interpreted as relative contributions rather than ab-
solute effects.

Ablation. We ablate features by removing them
from the classifier. Eliminating the LLM-driven
score ϕ (score_4) changes accuracy by −1.0% on

the easy subset and +1.0% on the hard subset;
because our routing objective prioritizes easy ac-
curacy to avoid unnecessary expensive reasoning,
and because ϕ is computed by a lightweight, fast,
low-cost scorer, we retain ϕ in the full model. Re-
moving high-importance signals (avg θ3, avg θ2)
degrades overall accuracy more substantially, con-
firming their central role. The exact trade-offs de-
pend on router configuration; a more comprehen-
sive exploration of router design is left to future
work.

A.2 Cost for Router LLM-based Features
We estimate the cost for generating the LLM score
used as one of the features in Router training. We
compute the total input and output tokens con-
sumed for generating the feature for all datasets
under consideration. We use the API pricing as per
Groq1 as an estimate for running the LLM infer-
ence ($0.05/M for input tokens and $0.08/M for
output tokens). Table 7 shows the number of input
and output tokens (in millions) and the total cost
incurred. Despite the high token usage, running
inference using a 8B model is cheaper than using
other proprietary models, thus making the router
training resource efficient.

Dataset Input Tokens (M) Output Tokens (M) Cost ($)

ACE2004 0.421 0.027 0.023
AQUAINT 1.142 0.084 0.064
MSNBC 1.174 0.071 0.064
AIDA 17.581 0.539 0.922
CWEB 24.154 1.398 1.320
WIKI 10.814 0.677 0.595

Total 55.29 2.80 2.99

Table 7: Estimated cost for generating LLM-based fea-
tures using observed token usage

A.3 Prompting Strategy Comparison
We evaluated several prompting strategies for entity
linking on the ACE2004 hard cases dataset using
the Haiku 3 model.

Table 8 compares different prompting strate-
gies on ACE2004 hard cases. Zero-shot prompt-
ing relies on the model’s prior knowledge with-
out examples, achieving 75.89% accuracy. Few-
shot provides illustrative examples, while Chain-of-
Thought (CoT) encourages step-by-step reasoning.
Combining few-shot with CoT yields the best per-
formance (81.3%), as it guides the model with both

1https://groq.com/pricing
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examples and structured reasoning. Contrastive
prompting exposes correct and incorrect examples
to reduce common errors (79.46%), and ReAct-
style prompting interleaves reasoning with actions,
which is less beneficial for this self-contained task
(76.79%).

Table 8 summarizes the accuracy achieved by
each strategy.

Strategy Accuracy (%)

Zero-shot 75.89

Few-shot 76.79

Few-shot + CoT 81.30

Contrastive 79.46

REACT 76.79

Table 8: Accuracy of different prompting strategies on
the ACE2004 hard cases dataset.

A.4 Cost-Performance Analysis
The trade-off between model accuracy and infer-
ence cost is analyzed across several LLM-based
configurations. Based on a total usage of 20.06
million input tokens and 0.80 million output to-
kens, cost estimates are computed using publicly
available API pricing for each model.

Figure 2: Entity linking accuracy vs. total inference
cost across LLM-based configurations.

As shown in Table 9 and Figure 2, Claude 3
Haiku provides the best cost-effectiveness, achiev-
ing 87.5% accuracy at only $6.01. DeepSeek of-
fers the lowest overall cost ($4.55) with slightly
lower performance (85.58%). In contrast, premium
models such as Claude Opus 4 and GPT-4.1 offer
marginal accuracy improvements at significantly
higher cost. These results highlight the importance

Model Input Output Cost ($)

Claude 3 Haiku $0.25/M $1.25/M 6.01

Claude 3.5 Sonnet $3.00/M $15.00/M 72.14

Claude Opus 4 $15.00/M $75.00/M 360.72

GPT-4.1 $2.00/M $8.00/M 46.50

DeepSeek $0.14/M $2.19/M 4.55

Table 9: Estimated inference cost using observed token
usage (20.06M input, 0.80M output) and current API
pricing.

of model choice in reducing cost and achieving
efficiency gains.

A.5 Accuracy Breakdown on Easy and Hard
Cases

Entity linking accuracy is reported separately for
easy and hard mentions to provide a clearer evalua-
tion of the effectiveness of selective LLM reason-
ing.

Table 10 summarizes accuracy across six bench-
mark datasets. Results are presented for ReFinED
alone, the proposed hybrid reasoning variants, and
full prompting using Claude models. The rows are
organized into three categories: (1) models applied
to easy cases, (2) models applied to hard cases, and
(3) full prompting baselines for comparison.

A.6 Prompting details
Table 11 lists the prompts used for the Router score
computation and the reasoning module.
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Model ACE2004 AQUAINT AIDA MSNBC CWEB WIKI

Easy Cases

ReFinEd Only 93.80% 90.50% 91.60% 92.60% 79.10% 88.00%

Reasoning (Claude 3 Haiku) 95.35% 92.21% 87.87% 93.85% 81.07% 83.95%

Reasoning (Claude 3.5 Sonnet) 93.80% 89.29% 92.01% 93.08% 79.66% 87.73%

Hard Cases

Reasoning (Claude 3 Haiku) 81.10% 80.91% 62.76% 86.47% 60.75% 64.89%

Reasoning (Claude 3.5 Sonnet) 78.74% 75.08% 73.18% 86.09% 57.66% 74.56%

Full Prompting Baselines (All Cases)

Claude 3 Haiku 88.28% 87.63% 79.60% 90.86% 72.79% 77.72%

Claude 3.5 Sonnet 86.33% 83.19% 85.81% 90.25% 70.70% 83.42%

Our Hybrid Accuracy (ReFinEd for Easy Cases + LLM for Hard Cases)

Claude 3 Haiku 87.50% 86.38% 82.10% 90.11% 71.63% 80.44%

Claude 3.5 Sonnet 86.33% 83.88% 85.53% 89.96% 70.37% 83.61%

ReFinEd Baseline (All Cases) 83.98% 86.25% 83.07% 85.98% 69.54% 85.98%

Table 10: Entity linking accuracy (%) across datasets, separated by case difficulty and reasoning strategy.
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Module Prompt

LLM scores (confidence) System Instruction:
Context: <context>
Mention: <mention>
Candidate: <candidate>
On a scale from 0 to 1, how confident are you that this candidate correctly resolves the
mention? Reply with a single number between 0.0 and 1.0.
Output Format:
{"scores": {"<candidate_id>": <confidence>}}

Entity Linking (All datasets) System Instruction:
You are an expert in entity linking. Given a mention, its context, and a list of candidates (each
with title, description, and ID), identify the most relevant entity. Pay close attention to the
entity descriptions as they provide crucial information for disambiguation. If no candidate is
suitable, return -1. Only return the answer in the specified JSON format.
Examples with reasoning:
Example 1: Mention: "Apple"
Context: "I love my new Apple iPhone."
Candidates: 1. Apple Inc. — Technology company known for iPhone and iPad [Q312], 2.
Apple (fruit) — Edible fruit [Q89], 3. Apple Records — British record label [Q213710]
Reasoning: The context mentions ’iPhone’; the correct entity is Apple Inc.
Output: {"linked_entity": 1, "entity_id": "Q312", "entity_title": "Apple
Inc.", "reasoning": "..."}
Example 2: Mention: "Paris"
Context: "I’m planning a trip to Paris next summer."
Candidates: 1. Paris (France) [Q90], 2. Paris (mythology) [Q167646], 3. Paris, Texas
[Q43668]
Reasoning: ’trip to’ implies travel to a city; correct entity is Paris, France.
Output: {"linked_entity": 1, "entity_id": "Q90", "entity_title": "Paris",
"reasoning": "..."}
Example 3: Mention: "XYZ"
Context: "The company XYZ is not well known."
Candidates: 1. Microsoft [Q2283], 2. Google [Q95], 3. Amazon [Q3884]
Reasoning: ’XYZ’ does not match any candidate.
Output: {"linked_entity": -1, "entity_id": "-1", "entity_title": "None",
"reasoning": "..."}
Example 4: Mention: "Einstein"
Context: "Einstein’s theory of relativity revolutionized physics."
Candidates: 1. Albert Einstein [Q937], 2. Einstein (band) [Q12309581], 3. Einstein
(disambiguation) [Q214395]
Reasoning: Context refers to physics; correct entity is Albert Einstein.
Output: {"linked_entity": 1, "entity_id": "Q937", "entity_title": "Albert
Einstein", "reasoning": "..."}
Example 5: Mention: "Java"
Context: "I’m learning Java programming language for software development."
Candidates: 1. Java (programming language) [Q251], 2. Java (island) [Q252], 3. Java
(coffee) [Q2642722]
Reasoning: Context refers to programming; correct entity is Java (programming language).
Output: {"linked_entity": 1, "entity_id": "Q251", "entity_title": "Java
(programming language)", "reasoning": "..."}

Table 11: Prompts used by each module in our pipeline.
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