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Abstract

The increasing complexity of modern driving
systems demands efficient collection and analy-
sis of specific driving scenarios that are crucial
for system development and validation. Cur-
rent approaches either rely on massive data col-
lection followed by manual filtering, or rigid
threshold-based recording systems that often
miss important edge cases. In this paper, we
present Distributed Adaptive Scene Recogni-
tion (DASR), a novel multi-agent cloud-edge
framework for language-guided scene detection
in connected vehicles. Our system leverages
the complementary strengths of cloud-based
large language models and edge-deployed vi-
sion language models to intelligently identify
and preserve relevant driving scenarios while
optimizing limited on-vehicle buffer storage.
The cloud-based LLM serves as an intelligent
coordinator that analyzes developer prompts
to determine which specialized tools and sen-
sor data streams should be incorporated, while
the edge-deployed VLM efficiently processes
video streams in real time to make relevant de-
cisions. Extensive experiments across multiple
driving datasets demonstrate that our frame-
work achieves superior performance compared
to larger baseline models, with exceptional per-
formance on complex driving tasks requiring
sophisticated reasoning. DASR also shows
strong generalization capabilities on out-of-
distribution datasets and significantly reduces
storage requirements (28.73 %) compared to
baseline methods.

1 Introduction

The field of computer vision has witnessed impres-
sive advancements with the emergence of Vision-
Language Models (VLMs) (Tian et al., 2024; Ma
et al., 2024), which provide new opportunities for
intelligent scene understanding and visual compre-
hension. These models have evolved from tradi-
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Figure 1: Overview of our multi-agent collaboration
framework. Our vehicle space-limited buffers will only
sotre the relevent scenes determined by our framework.

tional computer vision algorithms, which relied
heavily on pre-defined feature extraction and clas-
sification, to more sophisticated systems capable of
understanding complex visual scenarios through
natural language interactions. Recent develop-
ments in VLMs, such as GPT-40 (OpenAl et al.,
2024) and QwenVL (Bai et al., 2023), have demon-
strated unprecedented capabilities in bridging the
gap between visual perception and language under-
standing, enabling more intuitive and flexible scene
analysis (Cui et al., 2024a,b).

Despite these technological advances, the de-
mand for intelligent scene understanding has grown
significantly across various domains (Qi et al.,
2025; Park et al., 2024). In the development and
validation of intelligent driving systems, engineers
and developers have a particular interest in col-
lecting and analyzing specific types of scenarios
that are crucial for understanding system perfor-
mance. For instance, vehicle company engineers
often need to examine how their systems behave
in near-miss cases, such as when a vehicle sud-
denly brakes ahead, or when a pedestrian appears
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Figure 2: An overview of the proposed framework for smart scene detection.

unexpectedly at the edge of visibility. Other scenar-
ios of interest might include merge interactions on
highways, complex intersection negotiations, or in-
stances where multiple road users interact in close
proximity. These cases are vital for understand-
ing system behavior, validating safety mechanisms,
and identifying areas for improvement (Montanari
et al., 2020a; Elspas et al., 2021).

However, efficiently collecting and analyzing
such specific scenarios presents significant chal-
lenges (Elspas et al., 2021; Elrofai et al., 2016).
Current approaches primarily fall into two cate-
gories: mass data collection and threshold-based
recording. The first approach involves gathering
massive amounts of driving data, followed by labor-
intensive processes to identify and extract the rel-
evant cases. The second approach relies on pre-
defined CAN bus thresholds - for instance, only
recording when specific vehicle parameters ex-
ceed certain values, such as brake pedal pressure
above 90% or steering angle beyond certain de-
grees. While these threshold-based methods can re-
duce data volume, they are often too rigid and may
miss important scenarios that do not trigger these
predefined thresholds. Additionally, while state-of-
the-art VLMs offer powerful scene understanding
capabilities, they often require relatively large com-
putational resources, making real-time scenario
identification and analysis challenging (Cui et al.,
2024d,c). These limitations create significant bot-
tlenecks in the development process, where engi-
neers must either spend considerable time on mas-
sive amounts of data or risk missing valuable cases

that do not trigger conventional thresholds.

Our Distributed Adaptive Scene Recognition
(DASR) solution, a multi-agent collaboration be-
tween cloud and edge models, presents an opportu-
nity to address these challenges. In this paradigm,
the cloud-based LLM serves as an intelligent co-
ordinator that determines which additional inputs
from the toolbox should be incorporated to enhance
the scene understanding while the core VLM is de-
ployed at the edge and consistently handles the
fundamental scene detection tasks. Additionally,
the on-cloud LLM also specifies which sensor data
streams should be preserved alongside the video
footage in the vehicle buffer for comprehensive
post-analysis by developers and engineers. This
paradigm allows the system to flexibly enhance
its analysis capabilities by incorporating the most
relevant supplementary augmented data for each
specific scenario type. We highlight the contribu-
tions of our paper as follows.

* We propose DASR, a novel multi-agent cloud-
edge collaboration decision-making frame-
work. Our system uses a cloud-based LLM
as an intelligent coordinator to adaptively se-
lect specialists and sensor data streams, while
an efficient edge-deployed VLM makes real-
time scene relevance decisions, addressing the
limitations of traditional threshold-based and
mass data collection approaches.

* We demonstrate DASR’s performance
through extensive experiments, achieving
91.35% precision across various autonomous

851



driving tasks with baselines, outperforming
larger baselines while showing exceptional
generalization to out-of-distribution datasets
(91.93% on DRAMA, 77.68% on HAD).

* We validate DASR’s practical utility by re-
ducing storage requirements by 28.73% com-
pared to conventional approaches, enabling
more efficient use of limited on-vehicle buffer
capacity while maintaining high detection
quality for critical driving scenarios.

* We productize DASR as an enterprise solu-
tion for automotive manufacturers, demon-
strating significant business impact through
reduced development time, faster validation
cycles, and improved data quality.

2 Problem Definition

Given the complexity of modern vehicle systems,
it is crucial for automotive companies to efficiently
collect and analyze specific scenarios that are rele-
vant for system development and validation. Due
to hardware constraints in commercial vehicles,
where the video buffer typically can only store ap-
proximately one minute of recording, there is a crit-
ical need to intelligently identify and preserve the
most relevant scenes. This limitation formulates
our task from simple data collection to precise, real-
time decision making about which moments are
truly valuable for system development and valida-
tion. Formally, given an instructive prompt P from
the developer describing scenarios of interest (e.g.,
“emergency braking scenarios"), § = {v, §}!TT
representing the scene state, where v; represents
vehicle speed information at time ¢ while 6; rep-
resents the steering information, and a continuous
video stream V' = {f, fii1, ..., ft+T}§+T from
vehicle cameras, our pipeline f aims to determine
whether the current frame sequence should be pre-
served. This can be expressed as:

Smart Data Collection : f(P,V,S) — V;
1 Store (1)
Store Relevent Data :  [V'] —— B

where V' € V represents the identified frames
of interest that should be stored in the vehicle’s
limited bufferB. Given the buffer constraint | B| ~
60s, the function f must efficiently identify and
preserve only the most relevant segments while
operating in real time.

3 Distributed Adaptive Scene Recognition

3.1 Multi-Agent Cloud-Edge Collaboration
Framework

We propose a multi-agent cloud-edge collaboration
framework that efficiently and intelligently collects
relevant data while minimizing vehicle buffer us-
age and maintaining real-time operation capabili-
ties. Our framework consists of three main compo-
nents: a cloud-based LLM that serves as an intelli-
gent coordinator, an edge-deployed efficient VLM
that processes the video stream in real-time, and
an edge toolbox containing various supplementary
tools that can be selected. Every time a devel-
oper provides a prompt describing their scene of
interest, our framework processes it through this
sequential pipeline. First, the prompt is sent to the
cloud-based LLM, which analyzes it to determine
what supplementary tools and vehicle sensor data
(CAN Bus, IMU) would be most relevant for de-
tecting such scenes. The LLM’s analysis is then
transmitted to the edge device, where the selected
tools from the toolbox provide additional informa-
tion to enhance the edge VLM’s decision-making
capabilities. Using this enriched input, the edge
VLM makes more accurate binary decisions about
whether the current scene fulfills the prompt re-
quirements. When a scene is identified as relevant,
both the video frames and the LLM-specified sen-
sor data are preserved in the vehicle’s buffer for
later analysis.

3.2 Powerful Cloud-based LLM Coordinator

We utilize OpenAl GPT-40 (OpenAl et al., 2024)
as our LLM coordinator. Specifically, our cloud-
based LLM implements a hierarchical classifica-
tion process g(-), categorizing each task into three
predefined classes (Road Environment Perception,
Spatial Relation Recognition, Ego Vehicle Cen-
tric Reasoning) and three complexity levels (Easy,
Medium, Hard). This classification enables a chain-
of-thought reasoning (Wei et al., 2023; Nie et al.,
2024) process, following a fundamental principle
of information efficiency: we avoid providing su-
perfluous supplementary data for simple tasks such
as traffic light state detection, as excessive informa-
tion could potentially degrade the VLM’s decision-
making process. Based on this analysis, the LLM
outputs both the selected tools Oy, and required
sensor data specifications Ogore (€.g., accelera-
tion vectors from IMU, brake pressure signals from
CAN Bus) to the edge VLM. For instance, in per-
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Table 1: Specialist source and description.

Specialist Source ‘

Description

Object Detector YOLOV10-base (Wang et al., 2024a)

‘ Accurately identifies and localizes various objects with bounding box information.

Weather Detector OpenWeather API (OpenWeather API., 2023) ‘

Identify weather conditions and their impact on visibility and road conditions.

Dynamics Monitor Vehicle CAN Bus & IMU

‘ Process CAN bus signals and IMU data to interpret complex vehicle dynamic data.

Distance Estimator MiDas-v3.1-Hybrid (Birkl et al., 2023) ‘

Estimate precise spatial distances for detected objects in the scene.

Time-of-Day Detector GPS & TomTom API (TomTom, 2023)

‘ Identify lighting conditions for scene understanding across different times of day.

ception tasks, the LLM might select an object de-
tector to provide bounding box information to the
edge VLM. In more complex scenarios, such as
near-collision detection prompts, the LLM would
additionally activate a depth estimator to provide
crucial spatial information to the VLM agent. The
example output from LLLM can be seen in Sec. ??
and the process from LLM is as follows:

g(P) — [Ot00l7 Ostore] (2)
3.3 Useful Toolbox on Edge

Given LLM’s demonstrated capabilities in tool uti-
lization and reasoning, providing domain-specific
specialists can significantly enhance the VLM
agent’s detection accuracy. The toolbox transmits
(this process is defined as [(+)) specialist output S
to the on-edge VLM after receiving the LLLM tool
decision output Oyper:

Z(Otool) — S (3)

Our toolbox comprises five categories of spe-
cialists, each excelling in their respective domains:
Object Detection Specialist for precise entity local-
ization, Vehicle Dynamics Specialist for accurate
motion estimation, Distance Estimation Specialist
for detailed spatial computation, Temporal Context
Specialist for time-specific features, and Weather
Recognition Specialist for environmental condition
assessment. This multi-specialist design leverages
each specialist’s domain expertise to complement
the VLM’s general scene understanding capabili-
ties: While VLMs perform well in general scene
comprehension, each specialist provides precise
quantitative measurements within their specific do-
main of expertise. This combination of generalist
VLM capabilities with specialized domain exper-
tise enables more robust and accurate scene de-
tection across diverse automotive scenarios. The
detailed information of the specialist is in Tab. 1

3.4 Efficient Edge-based VLM Classifier

As mentioned in the previous parts, the edge-
deployed VLM serves as the core decision-making

component h(-), integrating both the current video
stream V' and supplementary information .S from
LLM-selected tools to determine whether the ob-
served scene matches the developer’s prompt re-
quirements P. This integration process combines
real-time video analysis with tool-generated out-
puts to make binary decisions about scene rele-
vance. The process is as follows:

WP, T,V) — {1,0},
v, if (P, S, V)
if h(P, S, V)

1
vV = )
0, “4)

None,

[V/] Store B

One of our first priorities is that we want the on-
edge VLM to be efficient and can be deployed on
the vehicle side. Therefore, we utilize Qwen2-VL-
2B (Wang et al., 2024b) checkpoint as our pre-
trained foundation checkpoint due to its small size
while maintaining acceptable reasoning capabili-
ties. Followed by the visual instruction tuning ap-
proach (Liu et al., 2023), we performed comprehen-
sive fine-tuning across the model’s visual encoder,
LLM components, and projection layers. This end-
to-end fine-tuning approach is crucial as our auto-
motive scene understanding task involves domain-
specific images that may differ from Qwen2VL’s
pretraining data, enabling the visual encoder to
learn task-specific feature representations. Cross-
entropy loss is used during training to optimize the
VLM’s outputs.

M
Loss = =Y Yo, 10g(Po,) )

c=1
Additionally, to ensure optimal deployment
efficiency on the vehicle’s edge device, we
apply Activation-Aware Weight Quantization
(AWQ) (Lin et al., 2024) to our fine-tuned model.
AWQ enables compression of our VLM from FP16
to 4-bit precision, significantly reducing memory
usage while maintaining model performance. This
quantization approach is important for automo-
tive applications where computational resources
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Road Env. Perception

Spatial Relations Recog.

Ego-centric Reasoning

Trfc. Wea Road Sur.

Trfc. Key Ego Situ. Act.

Models #Para  Details Light -ther Type Obj. Flow Obj. Crrl. Asse. Rec. Total mAP
MiniCPM-2.60 8B 56.14 90.67 75.05 68.18 69.06 55.09 69.35 75.31 65.64 69.08 69.39
Qwen2VL-7B 9B 51.30 88.24 87.56 57.14 65.46 54.22 72.02 71.82 69.26 70.00 68.56
Qwen2VL-2B 2B - 43.85 85.81 78.89 52.34 50.87 45.56 43.01 58.19 46.33 54.38 56.09
Qwen2VL-2B 2B FT 81.56 79.84 99.73 99.38 82.67 88.35 86.06 89.58 96.53 89.79 89.30
Qwen2VL-2B 2B FT4-bit  86.30 96.34 99.18 94.47 87.43 77.57 85.49 90.76 96.51 91.12 90.45
DASR (Ours) 2B FT4-bit  86.33 97.57 99.13 94.16 83.15 81.12 86.52 89.59 97.99 91.35 90.62

Table 2: Scene recognition performance on Nuplan-QA-Eval Dataset (Park et al., 2025). The metric used is precision
(%). The best-performing model in each task is bolded, while the second-best is underlined.

and power consumption are highly constrained,
yet high accuracy must be maintained for safety-
critical scene detection tasks.

4 System Evaluation

4.1 Implementation Details

We adopted Qwen2-VL-2B (Wang et al., 2024b)
as our pretrained foundation model. For fine-
tuning, we utilized the Nuplan-QA-Eval (Park et al.,
2025) dataset, which we restructured from its origi-
nal multiple-choice format into a binary question-
answering dataset. The processed dataset contains
approximately 18,000 training samples and 8,004
test samples. To efficiently fine-tune the vision-
language model while maintaining performance
comparable to full fine-tuning, we employed the
LoRA (Low-Rank Adaptation) technique (Hu et al.,
2021). Based on empirical observations, we set the
LoRA rank to 8. The model was trained for five
epochs using a learning rate of le-4, with a batch
size of one.

4.2 Experiment Setup

For our experiments, we utilize three test
sets:  Nuplan-QA-Eval (Park et al.,, 2025),
DRAMA (Malla et al., 2023) and HAD (Kim
et al., 2019). Our lightweight VLM was trained
on Nuplan-QA-Eval data collected from Boston,
Pittsburgh, Las Vegas, and Singapore, making this
our primary test set. To verify our framework’s
scalability across different driving environments,
we evaluated on the DRAMA dataset from Tokyo,
Japan and the HAD dataset from San Francisco,
USA as our Out-Of-Distribution (OOD) test sets.
Tokyo and the Bay Area’s traffic patterns differ
significantly from those in Boston, Pittsburgh, Las
Vegas, and Singapore, providing a robust test of
generalization. Additionally, the input lengths vary
considerably between datasets - DRAMA uses 2-
second videos while HAD uses 20-second videos -
allowing us to assess the generalizability and scala-
bility of our models across different temporal spans.

Since the DRAMA and HAD datasets use a cap-
tion format, we developed rule-based converters to
transform these into balanced yes/no questions, en-
suring an equal distribution of positive and negative
answers in our evaluation. Given the limited buffer
capacity of on-vehicle storage systems, DASR uses
precision as the ideal evaluation metric because it
directly measures how accurately the system identi-
fies truly relevant driving scenes, ensuring optimal
use of the constrained storage space.

4.3 Intelligent Scene Collection Performance

To validate the scene recognition performance of
our framework, we conducted a comprehensive
comparison of our 4-bit 2B fine-tuned VLM frame-
work against several baseline models: a standard
finetuned-2B-4bit Qwen2VL without our frame-
work, a Finetuned Qwen2VL-2B, Qwen2VL-2B,
Qwen2VL-9B, and MiniCPM-2.60.

As shown in Tab. 2, our framework achieved the
highest total precision and mean average precision
across all baselines. We showed even substantial
improvements over larger models like Qwen2VL-
7B and MiniCPM-2.60. Notably, our framework
demonstrated exceptional performance in action
recommendation precision (0.9799), weather/con-
dition precision (0.9757), and road type/condition
precision (0.9913).

The results conclusively demonstrate that our
framework delivers substantial value in complex
decision-making tasks such as action recommen-
dation and ego-vehicle maneuver precision, where
deeper contextual understanding is critical. This
performance pattern validates our core hypothe-
sis that complex driving tasks benefit significantly
from decomposition into specialists, each designed
to handle specific aspects of scene understanding.
Rather than relying on a single model to solve all
driving-related challenges, our approach of provid-
ing the right specialized tools for each sub-task
enables the Al system to achieve higher overall
precision, particularly in scenarios requiring so-
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Table 3: Performance on OOD datasets. The metric
used is precision (%). The best-performance model is
bolded, while the second-best is underlined.

Table 4: Effectiveness in data storage. The best-

performance model is bolded.

Method ‘ Average Storage (s) ‘ Improvement (%)

Method # Params | FT | Quantilized | DRAMA | HAD
MiniCPM-2.60 9B X 16 float 78.03 69.93
Qwen2VL 9B X 16 float 85.09 65.12
Qwen2VL 2B X 16 float 83.96 61.69
Qwen2VL 2B v 16 float 97.77 73.17
Qwen2VL 2B v 4 bit 81.96 70.01
DASR (Ours) 2B v 4 bit 91.93 77.68

phisticated reasoning and decision-making.

4.4 Performance on OOD Dataset

To evaluate generalization capabilities, we tested
our framework on two out-of-distribution (OOD)
datasets: DRAMA (Tokyo, Japan, 3s-video) and
HAD (San Francisco, USA, 20-s video). As shown
in Table 3, DASR achieved 91.93% precision on
DRAMA and 77.68% on HAD. Results demon-
strate that our approach significantly improves pre-
cision compared to baseline models without the
framework, indicating robust performance even
when faced with previously unseen data distribu-
tions.

The strong performance across dramatically dif-
ferent geographical and temporal contexts not only
validates the framework’s transferability but also
indicates its potential for deployment in diverse
global settings without requiring extensive region-
specific retraining. This generalization capability
represents a significant advancement toward devel-
oping VLMs that can reliably support connected
driving systems across varied environments.

4.5 Data Storage Efficiency Performance

We evaluated data storage efficiency using the HAD
dataset. Each testing scenario in the HAD dataset
contains a 20-second video, with not all frames
necessarily relevant to the scene’s caption. We
aimed to assess the data storage efficiency of our
method compared to two baselines: (1) storing all
frames indiscriminately (Qian et al., 2024), and (2)
using thresholds (Montanari et al., 2020b; Kreutz
et al., 2022) (filtering the stopped scenarios using
velocity and steering) on sensor or CANBus data to
determine which frames to store. Our framework
exam a 3-second window, and the window will
slide second by second, if the scene satisfies the
prompt, the data stream will be stored.

Our DASR framework significantly outper-
formed both approaches, requiring only 14.34 sec-
onds of storage on average—a 28.73% reduction
compared to Baseline One. This improvement

Method 1 (Caesar et al., 2022)
Method 2 (Montanari et al., 2020b)
DASR (Ours)

13.50%
28.73%

17.30
14.34

20.00

demonstrates DASR’s ability to intelligently iden-
tify and preserve only the most relevant portions of
each driving scenario, making more efficient use of
limited on-vehicle buffer capacity while reducing
subsequent data processing requirements.

S Application Impact and Payoff

DASR aims to deliver substantial practical benefits
for driving data collection and analysis with four
key projected benefits:

First, we target a 25-30% reduction in storage us-
age by intelligently preserving only relevant scenes
and essential sensor data. Second, we anticipate
reducing engineers’ data review time by approxi-
mately 60% through automated scenario identifica-
tion. Third, the intelligent selection of complemen-
tary CAN bus signals and sensor data enhances
analysis quality without additional collection ef-
forts. Finally, these improvements will translate
to roughly 40% faster validation cycles for new
ADAS features, accelerating the time-to-market.

6 Conclusion

We presented DASR, a multi-agent cloud-edge
framework for language-guided scene detection
in autonomous vehicles. Our approach distributes
tasks between cloud-based LL.Ms that analyze de-
veloper prompts and select appropriate tools, and
lightweight edge VLMs that perform real-time
scene recognition. Experiments demonstrate su-
perior detection performance (91.35% precision),
strong generalization to out-of-distribution datasets
(91.93% on DRAMA, 77.68% on HAD), and
28.73% reduction in storage requirements.

In conclusion, DASR accelerates automated driv-
ing development by eliminating manual data fil-
tering, enabling faster iteration and validation of
ADAS features and it represents a significant ad-
vancement toward efficient, intelligent data collec-
tion for automated driving, effectively balancing
edge deployment constraints with the reasoning
capabilities of language models.
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Limitations

While our cloud-edge architecture demonstrates
promising results for intelligent ADAS data collec-
tion, several limitations should be acknowledged:

Cyber Security Risk Our cloud-edge architec-
ture for smart data collection introduces several
potential cybersecurity vulnerabilities. The dis-
tributed nature of the system creates multiple attack
surfaces, including the communication channels be-
tween the vehicle and cloud infrastructure, where
adversaries could potentially hack or attack trans-
mitted tokens.

Network Dependency The proposed system re-
lies on consistent connectivity between vehicles
and cloud infrastructure. In areas with limited net-
work coverage or during connectivity interruptions,
the system may temporarily lose its ability to iden-
tify valuable data collection opportunities, poten-
tially missing important corner cases.

Limited Multi-Modal Integration The current
system primarily focuses on visual data and does
not fully leverage other sensor modalities available
in modern vehicles, such as LiDAR, radar, or ultra-
sonic sensors, which could provide complementary
information for more robust scene understanding.

References

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Reiner Birkl, Diana Wofk, and Matthias Miiller. 2023.
Midas v3.1 — a model zoo for robust monoc-
ular relative depth estimation. arXiv preprint
arXiv:2307.14460.

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit
Fong, Eric Wolff, Alex Lang, Luke Fletcher, Os-
car Beijbom, and Sammy Omari. 2022. Nuplan: A
closed-loop ml-based planning benchmark for au-
tonomous vehicles. Preprint, arXiv:2106.11810.

Can Cui, Yunsheng Ma, Xu Cao, Wengian Ye, and Zi-
ran Wang. 2024a. Drive as You Speak: Enabling
Human-Like Interaction with Large Language Mod-
els in Autonomous Vehicles. In 2024 IEEE/CVF Win-
ter Conference on Applications of Computer Vision
Workshops (WACVW), pages 902-909, Waikoloa, HI,
USA. IEEE.

Can Cui, Yunsheng Ma, Xu Cao, Wengian Ye, Yang
Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu, Zi-
chong Yang, Kuei-Da Liao, Tianren Gao, Erlong
Li, Kun Tang, Zhipeng Cao, Tong Zhou, Ao Liu,

Xinrui Yan, Shuqi Mei, Jianguo Cao, Ziran Wang,
and Chao Zheng. 2024b. A survey on multimodal
large language models for autonomous driving. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV) Workshops,
pages 958-979.

Can Cui, Yunsheng Ma, Zichong Yang, Yupeng Zhou,
Peiran Liu, Juanwu Lu, Lingxi Li, Yaobin Chen,
Jitesh H. Panchal, Amr Abdelraouf, Rohit Gupta,
Kyungtae Han, and Ziran Wang. 2024c. Large lan-
guage models for autonomous driving (Ilm4ad): Con-
cept, benchmark, simulation, and real-vehicle experi-
ment. Preprint, arXiv:2410.15281.

Can Cui, Zichong Yang, Yupeng Zhou, Juntong
Peng, Sung-Yeon Park, Cong Zhang, Yunsheng Ma,
Xu Cao, Wengian Ye, Yiheng Feng, Jitesh Panchal,
Lingxi Li, Yaobin Chen, and Ziran Wang. 2024d. On-
board vision-language models for personalized au-
tonomous vehicle motion control: System design and
real-world validation. Preprint, arXiv:2411.11913.

Hala Elrofai, Dani€l Worm, and Olaf Op den Camp.
2016. Scenario identification for validation of auto-
mated driving functions. In Advanced Microsystems
for Automotive Applications 2016: Smart Systems
for the Automobile of the Future, pages 153—163.
Springer.

Philip Elspas, Yannick Klose, Simon T Isele, Johannes
Bach, and Eric Sax. 2021. Time series segmenta-
tion for driving scenario detection with fully convo-
lutional networks. In VEHITS, pages 56—64.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Jinkyu Kim, Teruhisa Misu, Yi-Ting Chen, Ashish
Tawari, and John Canny. 2019. Grounding human-
to-vehicle advice for self-driving vehicles. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Thomas Kreutz, Ousama Esbel, Max Muhlhauser,
and Alejandro Sanchez Guinea. 2022. Unsuper-
vised driving event discovery based on vehicle can-
data. In 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC), page
4169—4174. IEEE.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024. Awq: Activation-aware weight quantization
for llm compression and acceleration. Preprint,
arXiv:2306.00978.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Yunsheng Ma, Burhaneddin Yaman, Xin Ye, Feng Tao,
Abhirup Mallik, Ziran Wang, and Liu Ren. 2024.

856


https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2106.11810
https://arxiv.org/abs/2106.11810
https://arxiv.org/abs/2106.11810
https://doi.org/10.1109/WACVW60836.2024.00101
https://doi.org/10.1109/WACVW60836.2024.00101
https://doi.org/10.1109/WACVW60836.2024.00101
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2411.11913
https://arxiv.org/abs/2411.11913
https://arxiv.org/abs/2411.11913
https://arxiv.org/abs/2411.11913
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1109/itsc55140.2022.9922158
https://doi.org/10.1109/itsc55140.2022.9922158
https://doi.org/10.1109/itsc55140.2022.9922158
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2304.08485

Mta: Multimodal task alignment for bev perception
and captioning. Preprint, arXiv:2411.10639.

Srikanth Malla, Chiho Choi, Isht Dwivedi, Joon Hee
Choti, and Jiachen Li. 2023. Drama: Joint risk local-
ization and captioning in driving. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 1043—-1052.

Francesco Montanari, Reinhard German, and Anatoli
Djanatliev. 2020a. Pattern recognition for driving
scenario detection in real driving data. In 2020 IEEE
Intelligent Vehicles Symposium (IV), pages 590-597.
IEEE.

Francesco Montanari, Reinhard German, and Anatoli
Djanatliev. 2020b. Pattern recognition for driving
scenario detection in real driving data. In 2020 IEEE
Intelligent Vehicles Symposium (IV), pages 590-597.

Ming Nie, Renyuan Peng, Chunwei Wang, Xinyue
Cai, Jianhua Han, Hang Xu, and Li Zhang. 2024.
Reason2drive: Towards interpretable and chain-
based reasoning for autonomous driving. Preprint,
arXiv:2312.03661.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, fLukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal

Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerdn Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
‘Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenWeather API. 2023. Openweather mobile applica-
tion.

Sung-Yeon Park, Can Cui, Yunsheng Ma, Ahmadreza
Moradipari, Rohit Gupta, Kyungtae Han, and Ziran
Wang. 2025. Nuplanga: A large-scale dataset and
benchmark for multi-view driving scene understand-
ing in multi-modal large language models. Preprint,
arXiv:2503.12772.

SungYeon Park, MinJae Lee, JiHyuk Kang, Hahyeon
Choi, Yoonah Park, Juhwan Cho, Adam Lee, and
DongKyu Kim. 2024. Vlaad: Vision and language
assistant for autonomous driving. In Proceedings of

857


https://arxiv.org/abs/2411.10639
https://arxiv.org/abs/2411.10639
https://doi.org/10.1109/IV47402.2020.9304560
https://doi.org/10.1109/IV47402.2020.9304560
https://arxiv.org/abs/2312.03661
https://arxiv.org/abs/2312.03661
https://arxiv.org/abs/2303.08774
https://openweathermap. org/api
https://openweathermap. org/api
https://arxiv.org/abs/2503.12772
https://arxiv.org/abs/2503.12772
https://arxiv.org/abs/2503.12772

the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV) Workshops, pages 980—
987.

Zhangyang Qi, Zhixiong Zhang, Ye Fang, Jiaqi Wang,
and Hengshuang Zhao. 2025. GPT4Scene: Under-
stand 3D Scenes from Videos with Vision-Language
Models. arXiv preprint. ArXiv:2501.01428.

Tianwen Qian, Jingjing Chen, Linhai Zhuo, Yang
Jiao, and Yu-Gang Jiang. 2024. Nuscenes-qa:
A multi-modal visual question answering bench-
mark for autonomous driving scenario. Preprint,
arXiv:2305.14836.

Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Chenxu
Hu, Yang Wang, Kun Zhan, Peng Jia, Xianpeng Lang,
and Hang Zhao. 2024. DriveVLM: The Convergence
of Autonomous Driving and Large Vision-Language
Models. arXiv.

TomTom. 2023. “real-time traffic data”.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin,
Jungong Han, and Guiguang Ding. 2024a. Yolov10:
Real-time end-to-end object detection. Preprint,
arXiv:2405.14458.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024b.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. Preprint,
arXiv:2409.12191.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

858


http://arxiv.org/abs/2501.01428
http://arxiv.org/abs/2501.01428
http://arxiv.org/abs/2501.01428
https://arxiv.org/abs/2305.14836
https://arxiv.org/abs/2305.14836
https://arxiv.org/abs/2305.14836
https://doi.org/10.48550/arXiv.2402.12289
https://doi.org/10.48550/arXiv.2402.12289
https://doi.org/10.48550/arXiv.2402.12289
https://www.tomtom.com/products/real-time-traffic/
https://arxiv.org/abs/2405.14458
https://arxiv.org/abs/2405.14458
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

