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Abstract

LLMs often fail to meet the needs of diverse
user groups due to their one-size-fits-all ap-
proach, and it’s unclear when personalization
is truly necessary. To address this, we pro-
pose Group Preference Alignment (GPA), a
group-aware personalization framework that
both detects when personalization is needed
and adapts LLM responses accordingly. Our
approach involves: (1) Group-Aware Prefer-
ence Extraction, which distills divergent pref-
erences from real-world conversation logs into
interpretable rubrics, and (2) Tailored Response
Generation, using (a) GPA-CT, which adapts re-
sponses using learnt rubrics, and (b) GPA-FT,
which finetunes models using rubric-guided
synthetic data. Automatic and human evalu-
ations confirm that GPAimproves group align-
ment without compromising perfomance on
standard instruction-following benchmarks.

1 Introduction

Large Language Models (LLMs) power a wide
range of NLP applications, including conversa-
tional agents and content generation (Liu et al.,
2024; Tian et al., 2024; Mondal et al., 2024). How-
ever, their one-size-fits-all training paradigm
often fails to serve specialized needs of diverse user
populations (Lucy et al., 2024). Most alignment
methods rely on paired preference labels assigned
by annotators (Ji et al., 2024), which reflect anno-
tator biases rather than those of actual target users,
hence causing dissatisfaction (Fig. 1).

This mismatch leads to suboptimal outputs for
two main reasons. First, the preference distribution
of annotators may differ significantly from that of
the target user group. For instance, expert users
may expect technical precision while novices prefer
explanatory detail; Japanese audiences may favor
family-centric narratives, whereas U.S. audiences
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tend to prefer individualistic themes. Second, user
intent modulates preferences even within the same
group: in education, experts may value concise
rigor, while novices seek step-by-step analogies; in
programming, experts prefer terse debugging tips,
while novices need visual scaffolds /explanations.

Existing methods for group-aware adapta-
tion (Balepur et al., 2025; Li et al., 2024a) primar-
ily address the first issue by using personas as ab-
stract user profiles or by incorporating group-level
norms like culture to represent preferences. How-
ever, such proxies often lack fidelity and fail to cap-
ture the diverse range of preferences expressed in
real-world in-situ conversational logs. Prior meth-
ods assume fixed groups and rarely check if group
customization is indeed necessary.

To fill these gaps, we propose Group Prefer-
ence Alignment (GPA)—a framework that learns
preferences from real-world conversations. Un-
like prior work (Balepur et al., 2025; Li et al.,
2024a), GPA can be applied to arbitrarily defined
groups and it can detect when personalization is
needed. First, GPA extracts group-level preferences
by analyzing large-scale interactions and summa-
rizes them as interpretable, intent-specific rubrics
(e.g., students prefer analogies; experts prefer tech-
nical terms). It then analyzes the extracted pref-
erences for meaningful across-group differences.
If no group difference is found (e.g., syntax error
fixes are preferred by both novices and experts) the
returned rubric is empty, which indicates there is no
need for personalization. Second, when personal-
ization is required, we introduce two ways to tailor
responses: (1) GPA-CT, a training-free method that
dynamically adjusts prompts during inference us-
ing retrieved rubrics, and (2) GPA-FT aligns group-
specific models with synthetic data generated with
intent-specific rubric-based guidance. Specifically,
each contrastive example pair highlights responses
that align or misalign with a group’s preferences.

We evaluate GPAon two multi-group conversa-
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Figure 1: Illustration group-specific response adaptation in GPA, which improves performance by 25%.

tional datasets—WildChat (Zhao et al., 2024) and
Microsoft Copilot logs—using both binary (ex-
pert vs. novice) and pluralistic (U.S., India, China)
group settings. Using LLM-based persona evalua-
tions (Koutcheme et al., 2024; Dong et al., 2024),
we show that GPAoutperforms zero-shot, persona-
based, and static-rubric baselines in aligning to
group preferences, while maintaining strong gen-
eral performance on standard benchmarks (Zheng
et al., 2023; Li et al., 2024b).

2 Related Work

Customization of user interactions to better serve
both individual and group preferences has a long
history of research in fields that leverage language
technology (see e.g., (Cho et al., 2002; Zhou et al.,
2012; Teevan et al., 2005; Tabrizi et al., 2018)).
Personalized LLM systems have also been applied
to diverse applications, such as contextual query
suggestion (Baek et al., 2024) and document cre-
ation (Mondal et al., 2024). While recent efforts
have modeled individual preferences (Lee et al.,
2025) and synthetic personas (Ge et al., 2024),
group preference modeling remains underexplored.

Recently some attempts have been made at mod-
eling a large number of individual characteristics
at scale, such as with a thousand preferences (Lee
et al., 2025) or a million personas (Ge et al., 2024).
However, the focus on modeling group prefer-
ences has been limited to a few recent research ef-
forts (Feng et al., 2024; Zhao et al., 2023; Ramesh
et al., 2024). Crucially, none of these methods
leverage real-world conversational data at scale to
learn these group preferences. While some recent
work has begun to incorporate feedback from in-
situ user-AI interactions in order to improve mod-
els (Shi et al., 2024; Li et al., 2024c), their focus has
been different from modeling group preferences.
Thus, to the best of our knowledge, our paper is
the first attempt at using large-scale satisfaction sig-
nals from human-AI conversation logs to customize
LLM responses with group preference alignment.

In this paper, we use LLMs as evaluators. De-
spite prior work pointing to some pitfalls with this
approach, such as bias (Koo et al., 2023) and pref-
erential scoring (Liu et al., 2023), using LLMs with
judicious prompting for evaluation of language and
information systems has become common prac-
tice (Zheng et al., 2023; Koutcheme et al., 2024).
Recent efforts have applied the LLM-as-a-judge
paradigm to evaluating a variety of applications
such as translation (Kocmi and Federmann, 2023)
and summarization (Jain et al., 2023); notably these
also include personalization (Dong et al., 2024).

3 Group Preference Alignment (GPA)

Our GPA framework (see Fig.2) enables context-
aware, group-specific adaptation, ensuring more
precise and effective model alignment beyond more
conventional preference optimization using auxil-
iary annotators. Specifically, we hypothesize that
intent-driven user preferences can be automatically
extracted from real-world conversation logs be-
tween human and AI agents, enabling more ef-
fective model alignment than traditional methods
that do not incorporate direct user feedback. Un-
like RLHF (Ouyang et al., 2022) and RLAIF (Bai
et al., 2022), which optimize for majority prefer-
ences in the general population P , our approach
leverages in-situ user judgments in a specific group
G to achieve fine-grained, group-specific alignment.
This will be of particular use when user needs devi-
ate significantly from broader norms.

First, we consider two user groups G,G′. To
make the idea of ‘groups’ concrete, we consider
examples that highlight how our framework can be
applied. In particular, we focus on cases where pref-
erence divergences are (a) well-documented and
(b) evident in in-situ conversational logs—such as
experts vs. novices prioritizing technical depth vs.
step-by-step scaffolds, or U.S. vs. Chinese users
favoring individualistic vs. culturally symbolic nar-
ratives. Importantly, we do not assume preferences
are static or homogeneous; our methodology ac-
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Intent specific preference extraction from conversations based on 
satisfaction judgements

Summarize group differences observed across preference minibatches into 
aspects, construct final rubric from significant aspects

E = Prefers more detailed explanation 
beyond the obvious suggestions.

E = Expects deeper analysis rather than 
generic debugging tips

User: My Python script throws a 
KeyError, but I’m sure the key exists in 
the dictionary.

AI: A KeyError occurs when you try to 
access a key that isn’t in the dictionary. 
Make sure the key exists before 
accessing it. 

User: I already checked that. I even 
printed dict.keys() and the key is there.

User: My C++ program crashes with a 
segmentation fault when accessing an 
array. What could be wrong?

AI: Segmentation faults usually occur 
due to out-of-bounds access or 
accessing uninitialized memory. Are you 
sure your indices are within range? 

User: I already checked that. I was 
expecting something more specific.

G = expert, I = code debugging G = novice, I = code debugging

User: I’m trying to set up Docker for the 
first time for a small project and I don’t 
understand how to use the .env file with 
Docker Compose.

AI: No worries! The .env file is where 
you can store environment variables, 
like settings or configurations, that 
Docker can use. 

User: I made a file that says .env and 
put some settings in it like 
DATABASE_USER=root

G = novice

Context-Tuned Inference (GPA-CT) Rubric Finetuning Inference (GPA-FT)

Retrieve group-specific FT model, use to generate 
tailored response

Classify intent, retrieve relevant rubric, augment system 
prompt to include rubric to generate tailored response

Code debugging
Verification
Simplicity
Step-by-step 
guidance
Technical depth

AI: To integrate your 
.env file with your 
docker-compose.yml
, start by ensuring both 
files are located in the 
same directory; this is 
crucial for them to 
interact properly. In your 
.env file, you should list 
environment settings 
such as DATABASE_USER= 
root, placing each 
setting on a new line. 

# Task: You are a helpful 
assistant…
# Conversation History: …

# User Input: I made a file 
that says .env and put 
some settings in it like 
DATABASE_USER=root

# Output Rules to Follow
Use basic explanations 
and give step-by-step 
guidance…

LLM

Expert Novice

Novice

AI: To integrate your .env file 
with your 
docker-compose.yml file, 
follow these steps:

1. Place Both Files in the 
Same Directory: Make sure 
your .env file and 
docker-compose.yml file are 
located in the same 
directory. This is...

2. Create Your .env File: 
In your .env file, list …
. 

# Task: You are a 
helpful 
assistant…
# Conversation 
History: …

# User Input: I 
made a file that 
says .env and put 
some settings in 
it like 
DATABASE_USE
R=root

Novice

(a)

(b)

Figure 2: Illustration of (a) GPARubric Extraction (Sec. 3.1) showing how user preferences differ by group for same
intent (e.g., debugging) and how we extract rubrics capturing these differences and (b) Response-Tailoring (Sec. 3.2)
using learned rubrics to generate tailored responses: prompt-based (GPA-CT) and fine-tuned (GPA-FT).

commodates any group definition and detects di-
vergence only when it arises in a meaningful way.

Next, consider that the groups generate queries
for a specific intent I . The LLM responses may re-
ceive user judgments JG ,JG′ in the form of thumb
feedback or implicit textual feedback (eg. thanking
the AI). When these preferences diverge from the
general population’s judgments JP , aligning the
model with group-specific signals will improve re-
sponse relevance and user satisfaction. Note that
if JG ≈ JP , alignment to JG will simply rein-
force existing preferences in the general population
without degrading performance.

The overall GPA approach involves two main
steps. First, we generate rubrics with group-
aware preference extraction (Section 3.1). Our
automatic rubric construction is guided by three
principles: (a) interpretability—rubrics must
clearly describe group-specific preferences so
users and developers can understand them, (b)
intent-specificity—rubrics must capture divergence
within the same task/intent (e.g., debugging) to
avoid over-generalization, and (c) groundedness—
rubrics are extracted from real SAT/DSAT judg-
ments rather than intuition. Second, we tailor re-
sponses based on extracted rubrics (Section 3.2).

3.1 Group-Aware Preference Extraction

We extract intent-specific group preferences from
multi-turn human-AI conversations using satis-
faction judgments. Let C = {C1, . . . , Cn} de-
note a set of conversations, where each Ci =

[U1, A1, . . . , Ut, At] contains alternating user and
AI turns. Each conversation is annotated with an
intent label1 Ii (e.g., Code Debugging), a user
satisfaction judgment Ji ∈ [−1,+1] at one or
more turns, and group label G or G′ (e.g., Expert
or Novice). As shown in Figure 2.a-left and ex-
plained briefly in Algorithm 1 (see Alg 2 for more
details), we start by identifying user preferences
at each turn using the observed satisfaction (SAT)
or dissatisfaction (DSAT) judgments. For each
rated turn, we prompt LLM to infer a preference
explanation E , capturing what the user expected
(prompts in Table 15- 16). For example, group G
(expert) user may prefer ‘more detailed explanation
beyond the obvious suggestions,’ whereas group G′

(novice) prefer ‘deeper analysis rather than generic
debugging tips.’ These inferred explanations are
recorded as tuples (I,J , E) (see yellow and green
boxes).

Next (see Figure 2.a-right), we group preference
explanations by intent and user group, then parti-
tion each group into minibatches. We prompt the
LLM to summarize group differences by com-
paring each pair of group minibatches, identifying
divergent preference aspects. Each aspect is as-
signed a significance score (Likert-style) by the
LLM (prompt in Table 17). These preference as-
pects are incrementally refined across batches. The
LLM updates previously extracted aspects with dis-
tinctions observed in new minibatches. Finally,

1To simplify notation, we use intent to encode both domain
(eg. education) and task (eg. summarization).
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Algorithm 1 Group-Aware Preference Extraction
Input: Intent-specific (I) conversations from user groups
G,G′, with user satisfaction judgments
for each group G,G′ do

for each conversation C do
Extract explanation E of user preference based on

feedback J
end for
Partition preference explanations into minibatches EM

end for
Initialize rubric aspects A = ∅
for each pair of minibatches EMG , EMG′ do

Considering EMG , EMG′ ,A, update contrastive aspects
of preferences and score each Ai ∈ A wrt significance
end for
returnRI = {Ai} with score > threshold ℓ

aspects with scores above a threshold ℓ are re-
tained and aggregated into an intent-specific rubric.
These rubrics capture interpretable dimensions of
preference divergence across user groups for a
given intent, such as ‘Verification’, ‘Step-by-step
guidance’, or ‘Technical depth’. These rubrics
form the foundation for our personalized response
generation approaches (Table 3.b and A.8).

3.2 Response Tailoring

Building on the extracted rubrics, we propose two
methods for response tailoring below.

A) GPA-CT-Dynamic Context-Tuning. Unlike
traditional finetuning methods that require updating
model weights, GPA-CT adapts the LLM’s behavior
on-the-fly using dynamic intent-specific prompt en-
gineering. As illustrated in Figure 2.b-left and in
Algorithm 3, the system first classifies the user’s
group label G (e.g., novice) and intent I (e.g., set-
ting up Docker). Based on this context, it retrieves
a relevant rubric RI (e.g., ‘Use basic explana-
tions’ and ‘give step-by-step guidance’), which en-
codes preferred response attributes for that user
group and task type. Next, we augment the LLM
prompt with the retrieved rubric (prompt in Ta-
ble 18). This enables LLM to generate a tailored
response grounded in group-specific guidance. As
as example, in Figure 2, the LLM responds with
simplified, actionable instructions for using a .env
file with docker-compose.yml.

B) GPA-FT: Rubric-Guided Contrastive Data
Generation and Finetuning. Since it’s unlikely
the data will contain matched pairs of queries with
both positive and negative judgments, we use the
learned rubrics to generate a synthetic matched
output for each sample that reflects the opposite

preference. We then use this augmented dataset
in GPA-FT to align separate LLMs for each group.
This ensures the models internalize each group’s
stylistic differences, enabling preference-aligned
inference without prompt overhead (See Alg. 4 for
training details).
GPA-FT first constructs matched training pairs

using the rubrics RIi tailored to each group-intent
combination. For each turn [Uj , Aj ] with a pref-
erence judgment Jj , we generate an alternative
response Aj

′ for the same query to reflect the op-
posite judgment. I.e., if the user prefers Aj , we
synthesize a dispreferred response using the other
group’s rubric (and vice versa) (see A.11 for qual-
ity assurance). For instance, if the user is a novice
and prefers Aj , then we will use the expert rubrics
to generate Aj

′, assuming it will be dispreferred by
the novice. These pairs (A+, A−) are added to a
synthetic dataset Daug used for contrastive prefer-
ence learning.
GPA-FT then trains group-specific models on the

augmented data to favor the preferred responses us-
ing the DPO loss (Rafailov et al., 2024): LDPO =

log efθ(S,A+)

efθ(S,A+)+efθ(S,A−) . This yields one model PθG

per group G, aligned with group-specific prefer-
ences. As depicted in Fig. 2.b-right, inference pro-
ceeds in three steps (see Algorithm 6): (i) clas-
sify the user group, (ii) retrieve the corresponding
fine-tuned model, and (iii) generate a response us-
ing that model. As an example, in Figure 2, the
novice group model produces a step-by-step ex-
planation tailored to beginners. The generated re-
sponse clearly reflects rubric dimensions like ‘Veri-
fication’ and ‘Step-by-step guidance’ drawn from
the novice rubric.

4 Experimental Setup

We evaluate GPA using real-world conversational
logs from Microsoft Copilot and Wildchat (Zhao
et al. (2024)). For programming and software
intent, we use 8000 Copilot conversations and 8200
WildChat conversations. We group conversations
into expert (i.e., G; Copilot: 2200, WildChat: 6000)
and novice (i.e., G′; Copilot: 5800, WildChat:
2000) groups by using an auxiliary expertise
classifier.2 Next, we consider Creative writing

2Prompt in Table 19, Appendix. We manually inspected
100 random conversations and found that the classification
was reliable (κ = 0.88 agreement computed between the first
author and GPT-4o). Location-based groups were derived
from metadata. We acknowledge possible misgroupings and
show in Fig. 5 that misassigned labels reduce rubric quality,
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Model LLM Pref (W/L/T) LLM conf ≥ 75 LLM Pref (W/L/T) LLM conf ≥ 75

Intent=Programming/Group=Novice Intent=Programming/Group=Expert

GPA-CT vs Base 65.82 / 25.00 / 9.18 67.53 / 32.47 57.10 / 42.04 / 0.86 57.46 / 42.54
GPA-CT vs Persona 60.44 / 31.96 / 7.60 73.97 / 26.3 61.10 / 38.30 / 0.6 61.91 / 38.09
GPA-CT vs Static 56.43 / 37.43 / 6.14 80.00 / 20.00 57.38 / 41.47 / 1.6 59.05 / 40.95

GPA-FT vs Base 71.29 / 25.87 / 2.84 68.05 / 31.95 53.17 / 40.62 / 5.56 56.15 / 43.84
GPA-FT vs Persona 70.98 / 27.76 / 1.26 68.84 / 31.16 58.80 / 40.62 / 5.0 59.62 / 40.37
GPA-FT vs Static 66.88 / 32.18 / 0.95 60.64 / 39.36 59.65 / 39.77 / 0.56 57.72 / 42.27

GPA-FT vs GPA-CT 63.09 / 36.59 / 0.32 57.59 / 42.41 53.12 / 38.35 / 0.28 58.99 / 41.00

Intent=Writing/Group=USA Intent=Writing/Group=China

GPA-CT vs Base 45.5 / 53.5 / 1.0 54.1 / 45.9 58.5 / 23.9 / 17.6 88.57 / 11.42
GPA-CT vs Persona 55.5 / 42.5 / 2.0 59.5 / 40.5 53.6 / 28.73 / 17.60 60.0 / 40.00
GPA-CT vs Static 67.02 / 31.00 / 1.98 67.10 / 32.90 52.11 / 32.3 / 15.59 68.57 / 31.43

GPA-FT vs Base 55 / 26.5 / 18.5 62.2 / 37.8 55.22 / 20.84 / 23.94 60.95 / 39.04
GPA-FT vs Persona 77 / 21.5 / 1.5 82.4 / 17.5 35.21 / 40.84 / 23.95 32.38 / 67.62
GPA-FT vs Static 85 / 14.5 / 0.5 88.5 / 11.5 28.16 / 54.92 / 16.92 47.61 / 52.39

GPA-FT vs GPA-CT 85.5 / 14 / 0.5 71.4 / 28.6 39.43 / 40.84 / 19.73 40.95 / 59.05

(a) Results on Wildchat Creative Writing and Copilot Programming using LLama-8b.
W/L/T = win/lose/tie rates; Confidence by LLM score ≥ 75 (Dong et al., 2024).

Intent Rubric / Aspect

Programming Domain (Expert vs. Novice)
Info Requests Detail and Specificity
Info Requests Clarity and Directness
Info Requests Comprehensiveness
Info Seeking Specificity
Info Seeking Error Handling
Program Inquiry Accuracy
Program Inquiry Critical Analysis
Info Requests Visual Aids / Examples
Info Seeking Use of Examples
Program Inquiry Conciseness

(b) Rubric aspects with high sig-
nificance (e.g., specificity, error
handling) reflect strong divergence
in expert vs. novice expectations,
while low-significant aspects (e.g.,
use of examples, visual aids) indi-
cate non-discriminative preferences.
Green = High (≥ 4), Yellow = Mod-
erate (3), Red = Low (≤ 2).

Figure 3: GPA results. (a) LLM preference-based WR evaluation and (b) Examples of learned rubrics with significance.

Model LLM Pref (W/L/T) LLM conf ≥ 75 LLM Pref (W/L/T) LLM conf ≥ 75

Intent=Programming/Group=Novice Intent=Programming/Group=Expert

GPA-CT vs Base 69.30 / 30.41 / 0.29 57.97 / 42.03 44.89 / 54.26 / 0.85 46.96 / 53.04
GPA-CT vs Persona 57.02 / 42.98 / 0 54.30 / 45.70 58.24 / 40.63 / 1.13 59.24 / 40.76
GPA-CT vs Static 57.54 / 41.87 / 0.58 53.00 / 47.00 56.25 / 42.90 / 0.85 63.64 / 36.36

GPA-FT vs Base 68.42 / 29.53 / 2.05 64.26 / 35.74 59.66 / 40.34/ 0 56.76 / 43.24
GPA-FT vs Persona 64.39 / 45.61/ 0 52.90 / 47.10 66.76 / 32.95 / 0.28 69.39 / 30.61
GPA-FT vs Static 64.33 / 34.80 / 0.88 58.07 / 41.93 67.61 / 32.10 / 0.28 68.42 / 31.58

GPA-FT vs GPA-CT 53.51 / 46.49 / 0 54.26 / 45.74 69.03 / 30.97 / 0 67.64 / 32.36

Table 1: GPA-CTand GPA-FTresults on the Microsoft Copilot dataset for Gemma for the Novice and Expert groups.
The LLM expected confidence ≥ 75 is reported (as suggested by Dong et al. (2024)) and W/L/T=win/lose/tie.

and editing intent in WildChat and form user
groups based on metadata, specifically location,
partitioning users into USA (8000 conversations)
and China (800 conversations). We partitioned the
above datasets into 90:10 train:test splits to ensure
no training signal leakage. Next, we use predicted
Satisfaction (SAT) and Dissatisfaction (DSAT)
judgments to learn divergent preferences on
training data. Following Lin et al. (2024) and the
taxonomy proposed by Shi et al. (2024), we used
GPT-4o to classify bot responses resulting in a sub-
sequent user SAT, DSAT, or NA. We finetune using
synthetic data constructed from the full training set.

Models and GPA Baselines. For rubric extrac-
tion, we use GPT-4o and for tailored response
generation (GPA-CTand GPA-FT), we use two base
LLMs (M ): gemma-2-9b-it3 (Team et al., 2024)
and Meta-Llama-3-8B4 (Grattafiori et al., 2024).

emphasizing the importance of reliable group inference.
3
https://huggingface.co/google/gemma-2-9b-it

4
https://huggingface.co/meta-llama/Meta-Llama-3-8B

We compare GPA-CTand GPA-FTagainst several
baselines: a) Zero-shot (Base) responses, b)
Persona-Aware (Persona-G): which augments in-
put prompt (Table 20) with group-aware persona
(G) information to mimic responses from specific
groups through role-playing behavior, c) Persona-
Criteria-Aware (Static-G): which uses model M
to first generate preference criteria for G and G′,
and then append the generated criteria to prompt in
Table 21. We discuss two more finetuned-baselines,
training details, and choice of hyperparameters in
Appendix A.9, A.1, and A.2 respectively.

5 Automatic Evaluation

To evaluate GPA, we pose five research questions.
Each is designed to test a distinct aspect of our sys-
tem’s ability to align with diverse user preferences
while preserving general instruction-following per-
formance which we describe below.

RQ1: Does GPAeffectively align responses with
the preferences of different user groups? We
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measure alignment with group-specific preferences
using Win–Tie–Lose (WTR) comparisons, judged
by GPT-4o via Persona Role-Playing (Dong et al.,
2024). We incorporate judgments with and with-
out confidence estimation (Prompts in Tables 22,
23). To mitigate positional bias, we average win
rates by swapping response positions. Observa-
tions: Experimental Results in Table 3a show
that GPA-FToutperforms all baselines in high-data
settings (e.g., Novice and US Writing), while
GPA-CTexcels in low-data regimes (e.g., China
and Expert groups), outperforming GPA-FT. This
demonstrates that while fine-tuning is more pow-
erful when data is plentiful, GPA-CToffers robust
customization even with minimal supervision. We
highlight a clear trade-off between sample effi-
ciency and customization power: GPA-FTis prefer-
able in data-rich contexts, while GPA-CTis better
suited for sparse group data or cold-start settings.
Observations are generalizable across LLMs and
domains (See A.7).

RQ2: Are base LMs inherently aligned with cer-
tain user groups more than others? We analyze
the relative difficulty of outperforming base LLMs
across demographic groups in Wildchat (Creative
Writing) and Copilot (Programming). Observa-
tions: Expert and US groups are hardest to improve
upon—e.g., GPA-FTachieves only 53.17% WinRate
for Experts vs 71.29% for Novices (Table 3a). This
suggests that base LMs, like LLaMA and Gemma
(Table 1), are implicitly aligned toward expert-like
and Western preferences. This underlines the need
for group-aware adaptation methods to close pref-
erence gaps in inclusive AI systems.

RQ3: How data-efficient is GPA-CTin learning
group preferences? We vary the number of train-
ing samples used for rubric extraction (100–2000
samples) in the Wildhat Programming domain and
plot the learning curve (Figure 6). We evaluate
performance via WR on a held-out test set us-
ing Prompt 24. Observations: GPA-CTachieves
stable WR with 1000 training examples, suggest-
ing that GPA-CTis data-efficient which reinforces
rubric-based preference modeling for real-world
deployment in diverse settings where user data is
limited.

RQ4: Can GPAreduce dissatisfaction in known
problematic responses? We use DSAT (dissatis-
faction) signals from real interactions in test set as a
form of oracle-guided supervision. For each DSAT-

Setup Win (%) Lose (%) Tie (%)

GPA-CT vs Base 69.61% 29.41% 0.98%
GPA-CT vs Persona 65.69% 33.33% 0.98%
GPA-CT vs Static 76.70% 21.36% 1.94%

Table 2: WTR against baselines using Llama on Wild-
chat Programming, compared against reference DSAT
indicating that our method can provide better responses.

labeled example, we test whether GPA-CTcan gen-
erate a less dissatisfactory response using Prompt
24, given the same conversational context. We
report the results using WTR rates against base-
lines using LLaMA-generated outputs in Table 2.
Observations: GPA-CTachieves the highest win
rates over all baselines—76.70% over Static,
69.61% over Base, and 65.69% over Persona.
DSAT-based evaluation provides a real-world sig-
nal of alignment failure. The consistent gains of
GPA-CTdemonstrate its utility as a corrective mech-
anism for dissatisfaction-prone generation.

Figure 4: Illustrates how random shuffling of expertise
labels impacts rubric generation. It reveals that, for
most intents, randomization of the group labels results
in extraction of fewer rubric items indicating robustness.

RQ5: Does GPA-FTmaintain general instruction-
following ability on standard benchmarks? To
ensure group-specific alignment does not come at
the cost of general usability, we evaluate GPA-FTon
MT-Bench (Zheng et al., 2023) and Arena-Hard (Li
et al., 2024b), using their default win-rate setting.
Observations: As shown in Table 3,
GPA-FTmaintains strong performance on both the
benchmarks. On MT-Bench, Novice GPA-FT(8.33)
slightly outperforms base model (8.32). On Arena-
Hard, all groups show positive win–loss deltas,
with China (+10.15%) and Novice (+10.01%)
groups achieving highest gains. These results show
that GPA-FTimproves group alignment without
compromising general instruction-following,
indicating no trade-off between personalization
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Model WR LR TR ∆ (%) MT-B
Base 8.32
Novice GPA-FT 49.11 39.10 8.62 +10.01 8.33
Expert GPA-FT 47.89 42.88 6.41 +5.01 8.21
US GPA-FT 47.56 43.80 8.64 +3.76 8.26
China GPA-FT 48.49 38.34 9.02 +10.15 8.30

Table 3: Comparison against LLama Base on Arena-
Hard Benchmark (Win/Lose/Tie, and Win-Lose ∆) and
evaluation on MT-Bench (MT-B). It signifies that our
fine-tuned models do not compromise the performances
on standard instruction-following tasks.

G Model WR v Base WR v G′ Rubrics

India GPA-India 64.5% –
USA GPA-India 42.0% 58.0% (G′ =USA)
China GPA-India 39.2% 60.8% (G′ =China)

Table 4: One-vs-All Evaluation: GPA model trained
only with India rubric evaluated across all groups, signi-
fying the robustness of our approach.

and generalization.

6 Results Based on Human Evaluation

To validate the reliability of GPT-4o as an au-
tomatic evaluator and assess whether its judg-
ments align with real user preferences, we con-
duct targeted human evaluations across cultural
and expertise-based user groups. In the WildChat
Creative Writing domain, four annotators (two each
from India and the USA) rated 40 anonymized
conversations for response preference. In Pro-
gramming, six participants (2 novices, 4 experts)
evaluated 30 interactions, each comparing novice-
and expert-targeted responses (Instructions in Ap-
pendix A.10). We report inter-annotator agreement
and GPT-4o’s alignment with human judgments
using Cohen’s κ (Table 5), finding moderate-to-
strong agreement in both domains—supporting
GPT-4o’s reliability and the effectiveness of our
group-specific alignment.

In Programming Domain, Human–GPT-4o
agreement is the strongest, with 82% “better” out-
comes, only 7% disagreements, and 10% ties; Hu-
man–Human results are nearly identical (79% / 9%
/ 13%), with = 0.77 and r = 0.71. For Program-
ming (Expert), agreement is slightly lower but still
solid (69% / 16% / 15%), again closely mirroring
Human–Human agreement (73% / 14% / 13%),
with = 0.72 and r = 0.68. Overall, Human–GPT-
4o agreement tracks closely with Human–Human
agreement across all groups, with highest reliabil-
ity for novices, and most disagreements confined to

Culture Human-GPT-4o Human-Human

India 78.5% 0.79
USA 68.5% 0.65
Novice 81.2% 0.77
Expert 73.5% 0.72

Table 5: Average agreement between GPT-4o and hu-
man preferences, and inter-rater agreement within hu-
mans on Writing and Programming Samples.

tie cases rather than strong preference judgments.

7 Robustness and Generalizability

GPAis generalizable beyond pre-determined, bi-
nary group boundaries. To test generalizability
beyond binary groups, we ran a tri-group study
on WildChat Creative Writing samples with users
from USA, India, and China. GPA-CT, evaluated on
50 prompts per group with GPT-4o as judge, out-
performed base model using group-specific rubrics,
while groups learned for one group, then applied
to another underperformed (e.g., India→USA:
42.0%). This confirms that group specific pref-
erences are not-transferable (Table 7). Next, to
assess GPA’s performance under partial group super-
vision, we conduct a one-vs-all evaluation where
rubrics are extracted only for India group. GPAis
then tested across prompts originating from India,
USA, and China groups. Results (Table 4) shows
that GPAimproves alignment for India (64.5% WR
vs. base), demonstrating scalability.

Preference rubrics degrade significantly when
expertise labels are randomly flipped, indicating
robustness. To test whether GPAcaptures mean-
ingful group distinctions, we randomly perturb ex-
pertise labels and compare the resulting rubrics
to those generated with correct labels (GPA). As
shown in Figure 4, rubric validity—measured via a
self-correcting evaluation prompt—drops sharply
under randomization (rand), confirming GPA’s ro-
bustness. We observe that valid rubric generation
is most successful under the original setting (GPA).
(More experiments on Reliability of Rubrics in Ap-
pendix A.2 and Appendix A.3).

8 Conclusion

We propose GPA, a framework that enables the
development of more personalized and contextu-
ally aware LLMs by leveraging in-situ interaction
logs and interpretable rubrics. Due to increased
transparency, this approach can be scaled up in
legal/healthcare and other such high-stake domains.
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Limitations

The present GPA framework has three main limita-
tions that we will address in future work. First, our
rubric extraction algorithm is linear in the num-
ber of intents, but quadratic in the group mini-
batches. To scale this to larger datasets the mini-
batch sizes will need to be increased proportionally
or a subquadratic number of minibatches should
be selected for comparison. Second, the process
assumes that conversational preferences remain sta-
ble within each group, which may not always be
the case. Rubrics may need to be periodically re-
freshed to reflect evolving tastes. Third, we have
currently tested GPA in education, programming,
and writing domains. There is still a need to test its
effectiveness in highly specialized domains such as
law or medicine, as well as in hyper-personalized
scenarios (e.g., single person groups).
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A Appendix

We organize the appendix section into subsections
to furnish additional details supporting our claims:

– Hyperparameters and Training Details for Repro-
ducibility (Appendix A.1)

– Ablation of Threshold-Based Divergence (Ap-
pendix A.2)

– How reliable are the rubrics in Aligning the
model outputs towards the target persona in
GPA-CT(Appendix A.3)

– Additional Related Work (Appendix A.4)
– Why do we choose Intent-Specific Rubrics com-

pared to Generic ones? (Appendix A.5)
– Algorithms and Pseudocode (Appendix A.6)
– Generalizability of Findings across different

LLMs (Appendix A.7)
– Qualitative Examples of Extracted Rubrics (Ap-

pendix A.8)
– Choice of DPO over other preference-

optimization algorithms (Appendix A.9)
– Human Evaluation Instructions and Other De-

tails (Appendix A.10)
– Quality Assurance of Contrastive Responses

(Appendix A.11)
– Prompts (Appendix A.12)

A.1 Training Details

For DPO training, we used both LLama-3-8B-
Instruct5 and Gemma-2-9b-it6 with finetuning ap-
plied to all layers, a sigmoid-based preference loss
with beta = 0.1, and a learning rate of 5e-7 with
cosine decay and a 10% warmup. Training was
conducted for 3 epochs with a batch size of 1 and
gradient accumulation steps of 8, using bfloat16
precision and DeepSpeed ZeRO Stage 3 for effi-
ciency. We evaluated the model every 100 steps
and logged every 10 steps to monitor convergence.
To ensure a fair comparison, the exact same hy-
perparameter settings and infrastructure were used
for KTO-based finetuning experiments across all
groups. This parity guarantees that observed per-
formance differences arise from the alignment ob-
jectives (DPO vs. KTO), not from confounding
implementation or tuning discrepancies. These set-
tings, combined with intent-specific rubrics and
separate group-wise runs, helped ensure stable op-
timization and prevent overfitting.

5http://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

6https://huggingface.co/google/gemma-2-9b-it

A.2 How to Choose Divergence Threshold in
Rubric-Extraction Algorithm?

Personalization is the most effective when there
are meaningful differences in the expectations or
preferences of user groups. However, applying per-
sonalization indiscriminately can lead to overfitting
and degraded performance. We hypothesize that
rubric divergence—the degree of disagreement
between group-specific rubric ratings—can be used
as a reliable signal for when personalization should
be applied.

To test this hypothesis, we conducted an ablation
study using 10 programming-related prompts from
the WildChat dataset. For each prompt, we com-
puted a rubric divergence score between novice
and expert responses, based on Likert-scale ratings
(ranging from 1 to 5) across rubric dimensions. We
then varied a threshold for applying personalization
based on this divergence score: personalization was
applied only if the score exceeded the threshold.

To evaluate the quality of personalized versus
general (non-personalized) responses, the first au-
thor, acting as a Programming-Expert Judge, com-
pared both versions for each prompt. A response
was considered aligned if: (a) the expert preferred
the personalized version when personalization was
applied, or (b) preferred the base version when per-
sonalization was not applied. We report the align-
ment accuracy across different divergence thresh-
olds in Table 6.

We observe that applying personalization for all
prompts (i.e., threshold = 5) resulted in over-
personalization, lowering alignment with expert
preferences. In contrast, setting the threshold at
moderate levels (e.g., 3 or 4) led to perfect align-
ment, indicating optimal application of personal-
ization. However, applying personalization too con-
servatively (e.g., threshold = 2) caused under-
personalization, where useful personalization was
omitted, thus reducing overall performance. These
results support our hypothesis that rubric diver-
gence is an effective signal for selectively trigger-
ing personalization.

A.3 How Reliable are the Rubrics in Aligning
Model Outputs in GPA-CT?

While GPA-CTrelies on rubric-guided prompts to
align model outputs with group-specific prefer-
ences, it is important to assess whether these
rubrics consistently and reliably steer the model
toward the intended persona. Moreover, it remains
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Likert Personalization Applied (%) Alignment (%) Over-Personalization (%) Under-Personalization (%)

5 100.0 70.0 30.0 0.0
4 70.0 100.0 0.0 0.0
3 60.0 100.0 0.0 0.0
2 20.0 60.0 0.0 40.0

Table 6: Impact of varying rubric divergence thresholds on when personalization is applied. Moderate thresholds
(3-4) maximize alignment while avoiding over- or under-personalization.

Eval Group Rubric Used Win Rate vs. Base Win Rate vs. Other Groups’ Rubrics

USA USA Rubric 64.1% India: 42.3%, China: 39.5%
India India Rubric 61.8% China: 48.3%, USA: 28.8%
China China Rubric 58.2% India: 51.3%, USA: 41.8%

Table 7: GPA-CT evaluation using group-specific rubric prompts. Each model is evaluated on 50 samples per group,
judged by GPT-4o. Results show that group-specific rubrics yield better alignment than rubrics from other groups.

unclear whether rubric prompts generalize across
user groups or whether alignment is inherently
group-sensitive.

To evaluate the robustness and specificity of
rubric-guided alignment in GPA-CT, we performed
a group-wise evaluation using context-tuned mod-
els trained for each target group: USA, India, and
China. For each group, we applied three types
of rubric prompts: a) The group’s own rubric
(e.g., USA model with USA rubric), b) Rubrics
from other groups (e.g., USA model with India
or China rubrics), c) A baseline with no rubric
(base model). Each model was evaluated on 50
representative prompts per group. We used GPT-4o
as an automatic evaluator to judge which output
better aligned with the group’s preferences. We
report the pairwise win rates in Table 7. The results
reveal two key insights: a) Models consistently per-
formed best when paired with their own group’s
rubric prompt. For example, the USA-tuned model
achieved a 64.1% win rate over the base when
prompted with the USA rubric. b) Applying rubric
prompts from other groups resulted in degraded
performance. For instance, the USA model scored
only 42.3% and 39.5% when conditioned on India
and China rubrics, respectively.

This pattern was consistent across all groups,
confirming that rubric-guided alignment is both ef-
fective and highly group-specific. These findings
underscore the importance of pluralistic, context-
aware preference modeling in instruction-tuned sys-
tems and caution against assuming that a single
rubric generalizes across diverse user groups.

A.4 Additional Related Work

In this paper, we use LLMs as evaluators to mea-
sure the quality of system generations. Despite
prior work pointing to some pitfalls with this ap-
proach, such as bias (Koo et al., 2023) and prefer-
ential scoring (Liu et al., 2023), using LLMs with
judicious prompting for evaluation of language and
information systems has become common prac-
tice (Zheng et al., 2023; Koutcheme et al., 2024).
Recent efforts have applied the LLM-as-a-judge
paradigm to evaluating a variety of applications
such as translation (Kocmi and Federmann, 2023)
and summarization (Jain et al., 2023); notably these
also include personalization (Dong et al., 2024).

Recently some attempts have been made at mod-
eling a large number of individual characteristics
at scale, such as with a thousand preferences (Lee
et al., 2025) or a million personas (Ge et al., 2024).
However, the focus on modeling group prefer-
ences has been limited to a few recent research ef-
forts (Feng et al., 2024; Zhao et al., 2023; Ramesh
et al., 2024). Crucially, none of these methods
leverage real-world conversational data at scale to
learn these group preferences. While some recent
work has begun to incorporate feedback from in-
situ user-AI interactions in order to improve mod-
els (Shi et al., 2024; Li et al., 2024c), their focus has
been different from modeling group preferences.
Thus, to the best of our knowledge, our paper is
the first attempt at using large-scale satisfaction sig-
nals from human-AI conversation logs to customize
LLM responses with group preference alignment.
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Figure 5: Bar plot evaluating Gemma outputs from
intent-aware rubric creation vs intent-unaware rubric
creation using GPA-CT. Results shows that intent heav-
ily impacts performance when GPAapproach is used to
personalize responses on Microsoft Copilot test set.

A.5 Why do we choose Intent-Specific
Rubrics compared to Generic ones?

To investigate the impact of intents in preference
learning, we extracted rubrics from the Microsoft
Copilot expertise groups in two ways: without con-
sidering intent and with intent-awareness. These
rubrics were then used for context-tuning on a held-
out test set, followed by WTR evaluation using
Persona-based evaluation. The results in Figure 5
show a notable drop in WR when intent was not
used, demonstrating that intent-aware rubric ex-
traction leads to more personalized, contextually
aligned responses.

A.6 Algorithms and Pseudocode

This section summarizes the pseudocode for
GPA-CTand GPA-FTmethods. Algorithm 2 depicts
the procedure for extracting the group-aware pref-
erence rubric which is used in both methods. Infer-
ence for GPA-CTis next summarized in Algorithm 3.
For GPA-FT, we next describe the training proce-
dure in Algorithm 4, and the pseudocode for gener-
ating the augmentented training examples for fine-
tuning using the rubric is shown in Algorithm 5.
Finally, Algorithm 6 applies the fine tuned mod-
els for GPA-FTinference. We simply need to look
up the appropriate group-aware model to use for
generation.

A.7 Generalizability of Findings across
different LLMs and Domains

Many of the results presented in Section 5 are
computed with LLaMA. In Table 1, we report
GPA-CTand GPA-FTresults for the Gemma model.
The results demonstrate that both the GPA-CTand
GPA-FTmethods perform well when Gemma is used
as the base model.

GPAis generalizable across domain and user-
groups. Results in Table 13 and Table 14 provide
insights into GPA-CT’s generalization across differ-
ent cultural and expertise-based user groups, evalu-
ated at varying EC (confidence) thresholds (65, 70,
75). The results compare GPA-CT against Base,
Persona, and Static setups in two domains: India vs.
US (Cultural Evaluation) and Education (Novice
vs. Expert Evaluation).

A.8 Qualitative Examples of Rubrics
Rubrics extracted for US/China groups for Creative
Writing and Editing can be found in Table 9.

A.9 Comparing DPO and KTO Variants for
GPA-FT

To optimize group-specific alignment in GPA-FT,
we explore different fine-tuning strategies. While
KTO (Ethayarajh et al., 2024) has been proposed
as a general approach for aligning language mod-
els using SAT/DSAT feedback, it remains unclear
how it performs relative to preference-optimized
methods like DPO—particularly when enhanced
with contrastive rubric-based augmentation.

We compare three strategies for each group. The
first, KTO-G, fine-tunes the LLM on group-specific
SAT and DSAT samples using the original KTO ob-
jective. The second, KTO-Augmented (G+), builds
on this by augmenting the training set with con-
trastive pairs generated from group rubrics to rein-
force stylistic distinctions. The third strategy, DPO-
G, fine-tunes the model using Direct Preference
Optimization (DPO) on group-specific preference-
labeled pairs.

Each model is evaluated on its ability to generate
outputs aligned with group preferences. We con-
duct pairwise win-rate comparisons using GPT-4o
as an automatic evaluator. Specifically, we com-
pare DPO against the base model, against KTO-G,
and against KTO-Augmented. We also evaluate
the improvements of KTO-Augmented and KTO-
G over the base model. Results are reported in
Table 11.

DPO consistently achieves the highest win rate,
establishing itself as the most effective fine-tuning
method for GPA-FT. It outperforms the base model
with a 73.36% win rate and maintains strong
advantages over KTO-based models, achieving
70.61% against KTO-G and 61.46% against KTO-
Augmented. Notably, rubric-based augmentation
improves the performance of KTO (with KTO-
Augmented vs. Base reaching 67.63%), compared

838



Algorithm 2 Group-Aware Preference Extraction
Require: Conversation set C; User groups G and G′; Intent labels I; User judgments J
Require: Likert scale threshold ℓ; Minibatch size m
Ensure: RubricR
1: Step 1: Preference Extraction
2: E+ = []; E− = [] ▷ Initialize explanation sets for positive and negative judgments
3: for each conversation Ci ∈ C with ti turns do
4: for j = [1..ti] do
5: Sj = [U1, A1, . . . , Uj ]Ci ▷ Get dialogue history up to turn j
6: if J (Sj) == +1 then
7: E+ = E+∪ { LLM.InferUserPreference (Sj ,J (Sj))} ▷ If user expressed satisfaction, extract a positive

preference explanation
8: end if
9: if J (Sj) == -1 then

10: E− = E−∪ { LLM.InferUserPreference (Sj ,J (Sj))} ▷ If user expressed dissatisfaction, extract a negative
preference explanation

11: end if
12: end for
13: end for
14: # Group preferences E+ and E− by intent Ik for each group
15: EG,Ik = {E+ | Ci ∈ G, Ci matches Ik} ∪ {E− | Ci ∈ G, Ci matches Ik} ▷ Collect positive and negative preferences for

group G for each intent Ik
16: EG′,Ik

= {E+ | Ci ∈ G′, Ci matches Ik} ∪ {E− | Ci ∈ G′, Ci matches Ik} ▷ Repeat for group G′
17: Step 2: Aspect-Based Rubric Construction
18: R = [] ▷ Initialize empty rubric to store divergent aspects per intent
19: for each intent Ik ∈ I do
20: # Uniformly partition each explanation set into minibatches
21: EG,Ik = {E1G,Ik

, . . . , En1
G,Ik
} s.t. ∀a |EaG,Ik

| = m ▷ Chunk group G’s explanations for intent Ik into minibatches of
size m

22: EG′,Ik
= {E1G′,Ik

, . . . , En2
G′,Ik

} s.t. ∀b |EbG′,Ik
| = m ▷ Do the same for group G′

23: AIk = []; rIk = {} ▷ Initialize aspect set and rating map for this intent
24: for each pair of minibatches (EaG,Ik

, EbG′,Ik
) do

25: [Aab, rab] = LLM.ExtractAspectsAndLikert (EaG,Ik
, EbG′,Ik

,AIk ) ▷ LLM identifies divergent aspects and Likert
ratings from a pair of explanation batches

26: AIk = Aab; rIk [Aab] = rab ▷ Update the aspect list and score mapping
27: end for
28: RIk = [] ▷ Initialize rubric for this intent
29: for each aspect Ak ∈ AIk do
30: if rIk [Ak] > ℓ then
31: RIk ←RIk ∪ {Ak} ▷ Keep only those aspects with strong group divergence (above threshold ℓ)
32: end if
33: end for
34: R← R∪ {RIk} ▷ Add rubric for this intent to global rubric
35: end for
36: returnR ▷ Return final set of intent-specific group-aware rubrics

Algorithm 3 GPA-CT: Inference
Require: Partial conversation Si = [U1, A1, . . . , Uj ] up to jth user utterance
Require: RubricR
Ensure: LLM answer Aj

1: Step 1: Classify user group and intent
2: Ii = Intent(Si)
3: Gi = Group(Si)
4: Step 2: Retrieve Rubric and Augment Prompt
5: Ri = RIi

6: Aj = LLM.ModifyPromptWithRubrics(Si,Gi,Ri)
7: return Aj

to 53.41% for KTO-G alone. However, even
with augmentation, KTO falls short of DPO’s
effectiveness. These results demonstrate that
while rubric augmentation enhances alignment,
preference-optimized fine-tuning through DPO re-

mains the most robust approach for tailoring re-
sponses to group-specific expectations.
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Algorithm 4 GPA-FT Training
Require: Conversation set C; User groups G and G′; Intent labels I; User judgments J ; RubricsR
Require: ModelBase is the base LLM model
Ensure: ModelFT is fine-tuned model dictionary per group
1: Step 1: Generate Synthetic Data
2: for each group G,G′ do
3: Taug,G = []
4: end for
5: for each conversation Ci ∈ C do
6: Ii = Intent(Ci)
7: Gi = Group(Ci)
8: for j = [1..ti] do
9: Sj = [U1, A1, . . . , Uj ]Ci

10: Sj,aug = RubricGuidedDataGeneration(Sj , Ii,Gi,R[Ii])
11: Taug,Gi = Taug,Gi ∪ {Sj,aug}
12: end for
13: end for
14: Step 2: FineTune LLM for each group
15: ModelFT = {}
16: for each group G,G′ do
17: ModelFT [Gi] = FineTuneLlm(ModelBase, Taug,Gi , J )
18: end for

Algorithm 5 Rubric-Guided Data Generation
Require: Training example T = [Si, Aj ,J (Si)], where Si = [U1, A1, . . . , Uj ] is a conversation up to jth user utterance, Aj

is the AI response, and J (Si) is the user’s preference judgement for Aj

Require: Intent Ii, Group Gi, RubricRIi

Ensure: Augmented training data Taug

1: # Generate Augmented Training Example with Rubric
2: if J (Si) == +1 then
3: # Output is preferred by user, modify to include dispreferred group aspects
4: Aaug = LLM.ModifyPromptWithRubrics(Si,G′,Ri)
5: Taug = [Si, Aj ,J (Si), Aaug,−1]
6: end if
7: if J (Si) == -1 then
8: # Output is dispreferred by user, modify to include preferred group aspects
9: Aaug = LLM.ModifyPromptWithRubrics(Si,Gi,Ri)

10: Taug = [Si, Aj ,J (Si), Aaug,+1]
11: end if
12: return Taug

Algorithm 6 GPA-FT: Inference
Require: Partial conversation Si = [U1, A1, . . . , Uj ] up to jth user utterance
Require: Per-group, fine-tuned model dictionary ModelFT

Ensure: LLM answer Aj

1: Step 1: Classify user group
2: Gi = Group(Si)
3: Step 2: Retrieve Group-Aware Model and generate response
4: ModelFT = ModelFT [Gi]
5: Aj = ModelFT,Di(Si)
6: return Aj

A.10 Human Evaluation Details: Instructions
and Consent Form

To assess the alignment of responses with user ex-
pertise, we conducted a human evaluation with
participants categorized as either novice or expert
programmers. Participants were recruited based on
self-reported programming experience and famil-
iarity with foundational concepts (e.g., variables,
loops, functions). We asked 6 participants—2

novices and 4 experts. Novices were selected from
introductory programming courses in the Univer-
sity, with less than one year of coding experience,
and they were asked about familiarity of program-
ming questions. Experts were drawn from graduate-
level computer science programs (Computer Sci-
ence PhD Students) with over 3 years of program-
ming experience, and they were asked about famil-
iarity of programming questions. Each participant
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Model Novice Expert

GPA-CT vs Base 84.3 / 15.6 65.77 / 34.22
GPA-CT vs Persona 73.4 / 26.5 61.74 / 38.25
GPA-CT vs Static 76.5 / 23.4 55.03 / 44.91

GPA-FT vs Base 64.51 / 35.48 54.12 / 45.88
GPA-FT vs Persona 51.62 / 48.38 63.54 / 36.45
GPA-FT vs Static 45.12 / 54.83 58.86 / 41.13

GPA-FT vs GPA-CT 44.22 / 55.78 56.16 / 43.84

Table 8: Results for Wildchat with LLama. LLM expected confidence (EC) [LLM conf ≥ 75] W/L/T=win/lose/tie

was shown 30 programming-related interactions.
For each prompt, two system-generated responses
were presented: one tailored for novices and one for
experts. The order was randomized to avoid bias.
Participants were asked to choose the response they
found more helpful and intuitive. Specifically, they
rated Which response better fits their needs?

We measured the proportion of participants in
each group who preferred responses aligned with
their declared expertise. A higher alignment rate in-
dicates effective personalization. Additionally, mis-
matches were analyzed to understand cross-group
interpretability and potential generalization of ex-
planations.

As shown in Table 5, both novice and expert
participants predominantly preferred the responses
tailored to their experience level, validating the
rubric-driven contrastive response design.

Task Overview. You have been invited to partic-
ipate in a human evaluation study that compares
different AI-generated responses to programming-
related questions. The goal of this study is to assess
how well each response aligns with your own ex-
perience level and informational needs.

What You Will Do. You will be shown 30 short
programming prompts (e.g., "What is a loop in
Python?"). For each prompt, you will see two re-
sponses—labeled Response A and Response B.
These responses are generated by AI models that
attempt to cater to users with different levels of
programming expertise.

Your task is simple:

Select the response that better fits your own
understanding and experience.

Important Notes.

• There are no right or wrong answers—please
select based on your personal preference.

• The order of the responses (A/B) is randomized
to avoid bias.

• You will not be told which response was gener-
ated for which profile.

• Please read carefully and make your selections
thoughtfully.

Duration. The entire study takes approximately
20–25 minutes.

Confidentiality. Your responses are anonymous
and will be used only for research purposes.

Thank you for your participation!

Appendix: Participant Consent Form

Title of Study: Evaluating AI-Generated Pro-
gramming Responses for Different User Profiles

Purpose of the Study. You are invited to take
part in a research study designed to evaluate how
well AI-generated responses align with the infor-
mational needs of users with different levels of
programming experience (e.g., novice vs. expert).
Your input will help us better understand how to
build more personalized and useful AI systems.

What You Will Be Asked to Do. You will review
30 programming prompts, each followed by two
AI-generated responses. You will be asked to select
the response that better suits your understanding
or preference. The study will take approximately
20–25 minutes.

Voluntary Participation. Your participation is
entirely voluntary. You may withdraw at any time
without penalty or loss of benefits.
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User Groups Intent Rubric Item Description

US vs China Writing Assistance

Personal Connection and Passion Western users seek vivid, personal en-
gagement, while Eastern users prefer
clear and concise communication, em-
phasizing empathy and understanding.

Historical and Anecdotal Content Western users favor detailed historical
accounts with personal anecdotes, while
Eastern users prefer straightforward sum-
maries with clear information.

Perspective and Tone Western users prefer second-person per-
spective, addressing the audience di-
rectly, while Eastern users expect the bot
to acknowledge and appreciate their con-
tributions.

Refinement in Narrative Style Western users prefer advanced vocabu-
lary and polished narrative styles, while
Eastern users value clarity, conciseness,
and brevity.

US vs China Creative Content Creation

Story Continuation US users prefer detailed and struc-
tured script outlines, while Eastern users
expect more imaginative and action-
packed continuations.

Role-Playing Engagement US users may expect the assistant to ask
for specifications, while Eastern users
expect immediate role-play engagement.

Humour and Creative Titles Both groups enjoy humorous and cre-
ative titles, but Eastern users emphasize
playful and whimsical text more.

Cultural Resonance and Poetic Elements Both groups value cultural resonance,
but Eastern users place more emphasis
on poetic elements.

US vs India Writing Assistance
Acknowledgment and Appreciation Indian users expect explicit appreciation

and acknowledgment of their contribu-
tions, while US users do not emphasize
this as much.

Personal Connection and Passion US users prefer vivid engagement with
emotions and enthusiasm, while Indian
users prioritize shared goals and inclu-
sive language.

Engaging and Descriptive Style US users prefer engaging and descriptive
styles with coherence, while Indian users
focus on vivid and friendly tones.

US vs India Creative Content Creation Story Continuation US users prefer structured and detailed
script outlines, while Indian users expect
more imaginative and action-packed sto-
ries.

Bedtime Story Personalization US users expect generic stories, while
Indian users prefer more personalized
and interactive bedtime storytelling.

Table 9: Rubric Items Differentiating the Preferences Across User Groups (Separated by Country/Cultural Context)
in the domain of Creative Writing and Editing.
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Win Rates Lose Rates Tie Rates

GPA-FT 0.4848 0.2504 0.2648
GPA-CT 0.4877 0.2470 0.2653
Static 0.4283 0.3014 0.2703
Persona 0.4252 0.2491 0.3257
Base 0.4333 0.5167 0.0500

Table 10: Normalized Win, Lose, and Tie Rates

Comparison Win % Lose %

DPO vs Base 73.36% 26.64%
DPO vs KTO-Augmented 61.46% 38.54%
DPO vs KTO-Only 70.61% 29.39%
KTO vs Base 53.41% 46.59%
KTO-Augmented vs Base 67.63% 32.37%

Table 11: Win/Loss Percentages of Different Finetuning
Methods on Copilot Test Set justifying our best choice
of DPO for our remaining GPA-FT experiments.
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Figure 6: Learning Curve to show that GPA-CTis a data-
efficient algorithm. We vary the training data size for
extracting our preference rubrics on Wildhat Program-
ming Domain and observe the WR over the base model
on a held-out test set using Prompt 23

.

Confidentiality. Your responses will be recorded
anonymously. No personal identifying information
will be collected. Data will be stored securely and
used solely for academic research and publication
purposes.

Potential Risks and Benefits. There are no
known risks associated with this study. You may
not receive direct benefits, but your participation
will contribute to research on improving AI-based
communication systems.

Consent. By clicking “I Agree” or continuing
with the survey, you indicate that:

• You have read and understood the information

above.

• You are at least 18 years old.

• You voluntarily agree to participate in the study.

A.11 Ensuring the Quality of Synthetic
Contrastive Responses

To ensure the quality of the synthetic contrastive
responses (Aaug) used for rubric-guided fine-tuning
(GPA-FT), we adopt both extrinsic and intrinsic
validation strategies. First, we evaluate the util-
ity of Aaug through post-finetuning performance
on standard instruction-following benchmarks. As
shown in Table 12, GPA-FT models trained on
Aaug match or outperform the base model on both
general-purpose tasks (e.g., MT-Bench: 8.334 vs.
8.320) and group-specific tasks (e.g., Novice Win
Rate: +10.01%, China Win Rate: +10.15%). These
gains demonstrate that synthetic responses mean-
ingfully support preference adaptation across di-
verse user intents and profiles.

Second, we conduct an intrinsic audit using a
rubric-consistency filtering experiment. We prompt
an LLM evaluator to label each Aaug response as
either VALID or INVALID based on whether it (i)
satisfies at least two rubric aspects and (ii) con-
tains no toxic content. Retraining GPA-FT with
only the filtered, high-quality subset yields results
that closely mirror the unfiltered setup (e.g., MT-
Bench: 8.26 vs. 8.26; Creative Writing Win Rate:
82.4% vs. 82.5%). This suggests that the majority
of unfiltered Aaug responses already meet rubric
criteria and contribute positively to model align-
ment. Overall, both benchmark-based and rubric-
based evaluations affirm the high quality of Aaug
and its effectiveness in enabling group-preference
alignment without degrading general instruction-
following abilities.

A.12 Prompts
The GPA-CTand GPA-FTmethods use a number of
LLM prompts which we describe in this appendix.
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Evaluation Setting Metric Unfiltered Aaug Filtered Aaug

MT-Bench (General) Avg. Score 8.26 8.26
Creative Writing (US) Win Rate vs. Base 62.2% 61.9%
Creative Writing (US) Win Rate vs. Persona 82.4% 82.5%
Group-Specific (Novice) Win Rate vs. Base +10.01% –
Group-Specific (China) Win Rate vs. Base +10.15% –

Table 12: Evaluation of unfiltered vs. rubric-filtered synthetic responses (Aaug) used in GPA-FT. Metrics show
comparable performance, indicating that most unfiltered responses are already high-quality.

Model EC = 65 EC = 70 EC = 75

Llama-India and US

GPA-CT vs Base 0.6057 / 0.3942 0.6038 / 0.3961 0.6352 / 0.3647
GPA-CT vs Persona 0.6490 / 0.3509 0.6473 / 0.3526 0.6666 / 0.3333
GPA-CT vs Static 0.6473 / 0.3526 0.7222 / 0.2661 0.6666 / 0.3333

Table 13: Performance comparison of GPA-CT models prompt-tuned with India and US Persona at different EC
levels

User preferences are inferred for both satisfaction
and dissatisfaction judgments. The prompt for
inferring user preference for satisfaction in line 8
of Algorithm 2 can be found in the prompt in Ta-
ble 15 titled LLM.InferUserPreference (for SAT
judgment). Similarly, inferring the user preference
in line 10 of Algorithm 2 under the dissatisfac-
tion condition can be accomplished using the
prompt titled LLM.InferUserPreference
(for DSAT judgment). The aspects and
likert rating are computed using the
LLM.ExtractAspectsAndLikert prompt in
Table 17. The LLM.ModifyPromptWithRubrics
in Table 18 is used to generate a response from the
LLM. This prompt is used for GPA-CTinference
in Algorithm 3 and Rubric-Guided Data
Generation in Algorithm 5. The Persona results
are generated with the LLM.PersonaEvaluation
prompt presented in Table 22 and Table 23.
The win-lose-tie rates for the results pre-
sented in Section 5 are computed from
the prompt in Table 22. Table 24 pro-
vides the LLM.IndividualDSATEvaluation
prompt. Finally, labeling a user’s expertise
in a conversation is accomplished using the
LLM.ExpertiseLabellingPrompt prompt in
Table 19.

sections/qualexamples
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Model EC = 65 EC = 70 EC = 75

Education Domain

GPA-CT vs Base 0.5259 / 0.4740 0.5259 / 0.4740 0.5229 / 0.4771
GPA-CT vs Persona 0.5140 / 0.5259 0.5140 / 0.5259 0.5271 / 0.5229
GPA-CT vs Static 0.5519 / 0.4481 0.5519 / 0.4481 0.5490 / 0.4599

Table 14: Performance comparison of models in the Education Domain at different EC thresholds.

LLM.InferUserPreference (for SAT judgment)
# OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to assess the reasons
of user’s happiness based on the conversation history and the bot response.
# TASK:
Classify the user’s intent from the conversation {conversation history}. Also determine what the
user expects from the bot and why the user finds the bot’s response {user remarks} useful.
Determine based on whatever the user remarks after the bot’s response {user remarks}.
# ANSWER FORMAT
Format your output as JSON Object where the keys are user-intent, user-expectation-from-bot and
reasons-for-happiness. Do not output anything else except this.

Table 15: LLM.InferUserPreference (for SAT judgment)

LLM.InferUserPreference (for DSAT judgment)
# OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to assess the reasons
of user’s frustration based on the conversation history and the bot response.
# TASK:
Classify the user’s intent from the conversation {conversation history}. Also determine what the
user expects from the bot and why the user finds the bot’s response {user remarks} frustrating.
Determine based on whatever the user remarks after the bot’s response {user remarks}.
# ANSWER FORMAT
Format your output as JSON Object where the keys are user-intent, user-expectation-from-bot and
reasons-for-frustration. Do not output anything else except this.

Table 16: LLM.InferUserPreference (for DSAT judgment)
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LLM.ExtractAspectsAndLikert
# OVERVIEW
# Task Overview:
You have to compare preference explanations of two user groups based on some aspects in
{intent-name}, and provide ratings of 1-5 depending on how much different are their preference
from the bot while interaction. You have to update the comparison output based on what was
observed previously {previous-aspects} and the current observed differences in preference
explanations between group 1 and group 2 described below. Make sure that if there is no observed
datapoints for an aspect in either group, provide the least rating in that case.
# Primary Intent
Intent : {intent}
# Preference explanations of Group 1
{preferences-of-group 1}
# Preference explanations of Group 2
{preference-of-group 2}
# Annotation Guidelines on a scale of 1-5
1 : It indicates there is no observed difference between the preferences of two groups on this aspect,
2 : It indicates there is a minor difference between the preferences of two groups on this aspect,
3 : It indicates moderate difference between the preferences of two groups on this aspect,
4 : It indicates remarkable difference between the preferences of two groups on this aspect,
5 : It indicates undoubetedly stark difference between the preferences of two groups on this aspect.
# Output Format
Format your output as JSON where keys are aspects and values are 1) ratings from 1-5 and 2)
Interpretation of the rating in 2-3 sentences.

Table 17: LLM.ExtractAspectsAndLikert

LLM.ModifyPromptWithRubrics
# OVERVIEW
# Task
You will be provided with a conversation between a user and bot. Based on the conversation history,
you have to generate a suitable response. Make sure that you follow some rules while generating the
response.
# Conversation History
{conversation-history}
# User Input
{user-input}
# Some Rules to Follow
{rubrics-for-intent-and-group}
# Output Format
Format your output as a JSON Object with response as key. Do not output anything else except this
JSON.

Table 18: LLM.ModifyPromptWithRubrics
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LLM.ExpertiseLabeling
# OVERVIEW
# OVERVIEW
You will be given a conversation history between a User and an AI agent. Your task is to determine
user’s expertise in the subject of the conversation.
# USER EXPERTISE
User expertise levels in a conversation subject range from novice, indicating a lack of familiarity
with fundamental concepts, to expert or master, denoting a deep understanding of relevant
vocabulary, concepts, and principles.
- Novice: A subject novice is a person who has little or no familiarity with a specific topic or domain.
A subject novice may ask questions that are vague, general, irrelevant, or based on incorrect
assumptions. A subject novice may also have difficulty understanding the terminology, concepts, or
arguments of experts or more knowledgeable people in the subject. They may ask basic or general
questions that can be answered by simple definitions, examples, or facts. They may not be aware of
the sources, methods, concepts, or terminology that are relevant to the subject.
- Intermediate: A subject intermediate is someone who has some basic knowledge or familiarity with
a certain topic, but not enough to be considered an expert or a novice. A subject intermediate can ask
general questions that reflect their curiosity or interest in the topic, but not very specific or complex
ones that require deeper understanding or analysis. A subject intermediate might have learned some
terms or concepts related to the topic, but not how to apply them in different contexts or situations.
- Expert: A subject expert is someone who can apply relevant concepts and terminology to different
scenarios and problems. They can analyze and interpret data, compare and contrast different
methods or approaches, and justify their reasoning with evidence. The user also demonstrates
curiosity and interest in the subject by asking questions that go beyond the surface level and explore
the deeper implications and connections of the topic. He has a deep and comprehensive
understanding of a specific topic or field, and can use specialized terms and references to
communicate their knowledge. A subject expert can state accurate facts, provide relevant examples,
and cite authoritative sources related to their topic or field.
- Unknown: There is not enough information to determine the user’s expertise.
## OUTPUT FORMAT ##
Format your output as JSON Object with key as Expertise-label and values as either Novice,
Intermediate, Expert or Unknown.
## INPUT ##
Conversation History
## OUTPUT ##

Table 19: Prompt to Classify Expertise

LLM.PersonaRole-Playing
# OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to generate response
that would tailor to a {group} user in the {intent.domain} domain.

Table 20: Persona-Role Playing Response Generation

LLM.StaticPrompting
# Overview
Tell me the expectations of a {group} user in a {intent.domain} domain from the chatbot. Answer in
a few sentences.

Table 21: Static
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LLM.PersonaEvaluation
# OVERVIEW
# Task
Imagine yourself as a group user in the {intent.domain} domain. Based on your persona and the
conversation history, you have to judge which response would you prefer among Option A and
Option B along with the step-by-step reasoning.
# Conversation History
{conversation-history}
# Option A
option1
# Option B
option2
# Output Format
Format your output as a JSON Object with key as Reason and Output. Output the step-by-step
reasoning and then Option A or Option B or can’t decide. You should not output anything except the
JSON.

Table 22: Prompt used for LLM-as-a-Personalized-Judge

LLM.PersonaEvaluationwithEC
# OVERVIEW
# Task
Imagine yourself as a {group} user in the {intent.domain} domain. Based on your persona and the
conversation history, you have to judge which response would you prefer among Option A and
Option B along with the step-by-step reasoning.
Additionally, assess your confidence in this decision by assigning a certainty level from 1 to 100.
Use the following guidelines to assign the certainty level:
1–20 (Uncertain): The user profile provides insufficient or minimal evidence. The decision is largely
based on weak or indirect hints.
21–40 (Moderately Confident): There is noticeable evidence supporting a preference, though it is
not comprehensive, and other interpretations are possible. 41–60 (Quite Confident): You find clear
and convincing evidence that supports your prediction, though it is not entirely decisive.
61–80 (Confident): The user profile contains strong evidence that clearly supports your prediction,
with very little ambiguity.
81–100 (Highly Confident): The user profile provides direct and explicit evidence that decisively
supports your prediction
# Conversation History
{conversation-history}
# Option A
option1
# Option B
option2
# Output Format
Format your output as a JSON Object with keys as Reason, Output, Confidence. Output the
step-by-step reasoning and then Option A or Option B and the confidence value from 1-100. You
should not output anything except the JSON.

Table 23: Prompt used for LLM-as-a-Personalized-Judge with confidence (Dong et al., 2024)
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LLM.IndividualDSATEvaluation
# OVERVIEW
# Task
In the conversation context between user and assistant: {conversation_history}, based on user
utterance : {user_utterance}, when the bot responds : {bot_response}, the user felt
{judgment_label}, then he provides a feedback by commenting {feedback_comment}.
You have to compare Option A and Option B and judge which response is very different from
reference bot response {bot_response}, such that the user will not provide a followup comment
{feedback_comment}.
# Option A
{optionA}
# Option B
{optionB}
# Output Format
Format your output as a JSON Object with keys as Option and reasoning. Output either Option A or
Option B or can’t decide. You should not output anything except the JSON. Do not judge based on
user expertise. Judge only based on which response is very different from reference bot response
{bot_response}.

Table 24: Individual DSAT Evaluation
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