A Multi-Agent Framework for Quantitative Finance : An Application to
Portfolio Management Analytics

Sayani Kundu!, Dushyant Sahoo!, Victor Li2, Jennifer Rabowsky?, Amit Varshney!

1JPMorgan Machine Learning Center of Excellence, 2JPMorgan Asset and Wealth Management

Correspondence: amit.varshney @jpmchase.com

Abstract

Machine learning and artificial intelligence
have been used widely within quantitative fi-
nance. However there is a scarcity of Al
frameworks capable of autonomously perform-
ing complex tasks and quantitative analysis
on structured data. This paper introduces a
novel Multi-Agent framework tailored for such
tasks which are routinely performed by portfo-
lio managers and researchers within the asset
management industry. Our framework facili-
tates mathematical modeling and data analyt-
ics by dynamically generating executable code.
The framework’s innovative multi-agent archi-
tecture includes specialized components and
agents for reflection, summarization, and fi-
nancial expertise which coordinate to enhance
problem solving abilities. We present a com-
prehensive empirical evaluation on portfolio
management-specific tasks, addressing a crit-
ical gap in current research. Our findings re-
veal that the proposed Multi-Agent framework
vastly outperforms Single-Agent frameworks,
demonstrating its practical utility across vari-
ous task categories. By using dynamic code
generation with the agent’s multi-step reason-
ing capabilities, we broaden the range of tasks
that can be successfully addressed.

1 Introduction

The rapid advancements in machine learning and
artificial intelligence have significantly transformed
the field of quantitative finance, particularly in port-
folio management. Machine learning techniques
have been successfully applied to various aspects
such as alpha signal generation (Ma et al., 2021),
portfolio construction (Jaeger et al., 2021), and
factor modeling (Giglio et al., 2022), among oth-
ers. Building on these foundations, recent devel-
opments in Large Language Models (LLMs) have
opened up promising new avenues by enhancing
reasoning and inference capabilities across diverse
data and information sources. This paper intro-
duces a multi-agent framework that integrates these

advancements, enabling the execution of complex
quantitative tasks relevant to portfolio management
and research, including statistical analysis, portfo-
lio modeling, backtesting, and scenario analysis.
By leveraging LLMs, the framework comprises a
network of specialized agents that collaborate to
perform tasks efficiently. The mathematical model-
ing and data analytics required for these tasks are fa-
cilitated by the generation of executable code by the
model. Our framework addresses key challenges
in financial modeling, such as domain understand-
ing, logical code generation, and finance-specific
query interpretation. Through instruction-based
fine-tuning, we demonstrate the framework’s abil-
ity to surpass standard LLM models and provide
human-readable explanations for its predictions,
thereby bridging the gap between machine learning
advancements and practical applications in quanti-
tative finance.

LLM agents have demonstrated remarkable suc-
cess in areas such as summarization, where they
distill complex information into concise and coher-
ent narratives; code generation, where they produce
executable scripts to automate analytical processes;
and sentiment analysis, where they evaluate textual
data to gauge public opinion and market sentiment,
highlighting their potential to enhance efficiency
and accuracy across various domains (Guo et al.,
2024). Despite these successes, the deployment of
LLM-powered data analysis tools in real-world sce-
narios has exposed several reliability issues, includ-
ing hallucinations (Martino et al., 2023; Liu et al.,
2024), subtle bugs (Wu et al., 2024; Yang et al.,
2021), and a disconnect between the LLM’s under-
standing of tasks and the user’s under-articulated
intents (Li et al., 2024; Wang et al., 2018). These
shortcomings necessitate human oversight to ver-
ify and correct the data analysis process (Chopra
et al., 2023; Gu et al., 2024; Olausson et al., 2024).
Although some approaches have attempted to use
self-reflection to improve the reliability of code

812

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 812-824
November 4-9, 2025 ©2025 Association for Computational Linguistics

amit.varshney@jpmchase.com

Issue Type

Detailed Behaviors of an LLM Agent

Incomplete workflow

Misses some important steps, e.g., not excluding missing values when

computing statistical quantities such as means

Wrong columns

Incorrect portfolio calculations
Incorrect financial ratios calcu-
lation

Misinterpretation of financial
statements

Selects the wrong column(s)

Does not consider cash in the portfolio

Miscalculates financial ratios such as P/E ratio due to incorrect formula
application or data misinterpretation.

Fails to accurately interpret balance sheets, or cash flow statements

Table 1: Common issues in the code generated by OpenAl’s GPT-4o for data analysis tasks.

generation, our findings indicate that this is not a
comprehensive solution. Current models struggle
to provide accurate and useful feedback on code
errors, often resulting in tools that present raw data
analysis code. This shifts the user’s focus to low-
level details rather than the overarching data analy-
sis process (Olausson et al., 2024). Interviews with
ChatGPT users reveal that individuals, especially
those with limited coding skills, find it difficult to
thoroughly review the code produced by LLMs,
leading to undetected errors and potentially incor-
rect results. Additionally, rectifying code through
conversation can become a cumbersome exchange,
adding to inefficiency and frustration.

In particular, the performance of LLMs in port-
folio and asset management analytics has not met
expectations. Our initial research question was
straightforward: how accurately do state-of-the-art
LLMs comprehend basic analytical tasks common
in investing, which are routinely performed by port-
folio managers? To investigate this, we developed a
benchmark consisting of 100 questions that a port-
folio manager might pose to an analyst, expecting
quick and accurate responses. Examples include
inquiries like “get the return or Sharpe ratio”, “the
total value of those acquisitions”, and “the number
of targets headquartered in a specific country”. We
then tasked a mainstream LLM, OpenAI’s GPT-40
(OpenAl, 2024), with answering these questions.

The results revealed that while the answers were
often partially correct, the overall accuracy was sur-
prisingly low, with LLM not being able to answer
more than 60 percent of the questions correctly.
This poor performance was not due to a lack of ac-
cess to necessary information, but rather the LLMs’
inability to correctly process and reason with this
information. Furthermore, LLMs frequently strug-
gled with the nuances of financial modeling, such
as distinguishing between business days and cal-

endar days, handling missing or sparse data, and
performing portfolio analytics. As illustrated in
Table 1, common issues in the code generated by
GPT-40 for data analysis tasks include incomplete
workflows, wrong column selections, unreasonable
portfolio calculations, incorrect financial metrics
calculation, and misinterpretation of financial state-
ments. To address these challenges, our framework
employs multiple agents to enable reasoning and
provide explainable insights into financial decision-
making processes, thereby enhancing the reliability
and accuracy of LLM-powered tools in quantitative
finance.
Our contributions are multifold:

* We present innovative multi-agent framework
for quantitative portfolio management tasks.

* We provide an empirical evaluation on portfo-
lio management specific tasks, filling a critical
gap in current research.

* We analyze the success rate of LLM across
different task categories, offering insights into
their practical utility in portfolio management.

* We highlight the challenges and limitations of
LLMs in this domain, providing a foundation
for future improvements and research.

2 Related Work

In the realm of quantitative finance, code genera-
tion using Large Language Models (LLMs) has
emerged as a powerful tool, facilitating the au-
tomation of complex modeling and data analyt-
ics tasks and enhancing decision-making processes
(Nie et al., 2024). Recent studies have explored
the use of LLMs for generating code that evalu-
ates the semantic correctness of machine-generated
outputs, exemplified by frameworks like CODE-
JUDGE (Tong and Zhang, 2024). These models

813

employ “slow thinking” techniques to conduct in-
depth analyses and provide reliable evaluations
without relying on test cases. Additionally, agentic
frameworks have been utilized to bolster reason-
ing capabilities in financial question answering, as
demonstrated by the use of critic agents to refine
and improve the accuracy of responses (Fatemi and
Hu, 2024). These approaches underscore the poten-
tial of LLMs in managing complex financial tasks,
laying the groundwork for developing more robust
and interpretable financial analytics solutions.

Among proprietary models, Codex is arguably
the most widely deployed, integrated within
GitHub Copilot (Chen et al., 2021). Open-source
alternatives like CodeBert (Feng et al., 2020) and
PolyCoder (Xu et al., 2022) exist, though their
functional correctness in code completion tasks
is notably lower compared to Codex. To assess the
functional correctness of code generation, (Chen
et al., 2021) introduced the HumanEval framework,
which includes a Python dataset of hand-written
programming problems and unit tests. Generated
code is deemed correct when it passes the associ-
ated unit tests, with the fraction of passed samples
reported as a quantitative measure.

Our paper builds upon these foundations, ad-
dressing the limitations observed in LLM perfor-
mance for portfolio management analytics and
highlighting the necessity for human oversight
and improved interpretability in financial decision-
making processes.

3 Methodology

In this paper, we introduce a novel multi-agent
framework designed to enhance and automate port-
folio management analytics by leveraging the capa-
bilities of Large Language Models (LLMs). This
framework addresses key challenges in financial
modeling, such as data integration, risk assessment,
and decision-making transparency.

Our Multi-Agent framework consists of a struc-
tured combination of multiple LLM-powered
agents, each assigned a specific task. The user
provides the Multi-Agent with a data file and a
query to be answered in relation to the data. The
core agent responsible for solving the problem is
the Base-Agent, a ReAct agent (Yao et al., 2023),
which serves as the decision-making hub, evaluat-
ing aggregated data to determine the appropriate
course of action. Equipped with a Python code
execution tool, the Base-Agent generates relevant

[X X i Inputsto
- i Agent

User query Data

N

f

« Analyzes the structure ‘ (G}

and contents of the data « Studies the user query
« Generate column \ﬂ

« Generates a list of
descriptions, data types finance questions for
Data Summarizer and data summary

&
B

domain knowledge

|
|
|
|
|
|
Question Generator }
|

- | <. Insights
N] ’ Agents

+ Add more context from & : [©]
N2 data and add specificity * Gives thorough
« Mentions any financial r: answers for any
finance specific
Finance Expert _questions asked

considerations and
Query Refiner jimitations

[
|
|
|
|
|
|
|
Il

_/

Multiple
- lterations "~

Multiple l
. lterations -
g « Multistep reasoning R
ﬁ « Data understanding ~ Generated code
=’ «Eror handling
« Incorporating human
suggestions

Output from tool
Pythonicode
execitor

: Foy, i

1 low ;

] -~y i

L Ang, ® Quegy; {
3 TS o us""”s @ﬂ
‘Ser ﬁ.

Base Agent
e H

« Checks logic of
implementation L
« Suggests code and
thought process
Reflection Agent improvements

@r

Tools provided
Output Data to Agent

Figure 1: High-level schematic pipeline of Multi Agent

Python code to obtain the final answer to the user
query. The tool receives this generated code and
returns back the output of the code execution to the
Base Agent. If there is an error encountered dur-
ing execution, the error message will be returned
to the agent. Depending on the tool’s output, the
agent can choose to continue the analysis with ad-
ditional code generation, fix buggy code and retry,
interrupt the process for human oversight via the
Ask Human option, or conclude the process if the
analysis is complete. The Ask Human tool offers
an additional layer of validation, allowing human
intervention to review and correct the analysis, en-
suring reliability and accuracy. The Base-Agent
can call the Ask Human tool to request clarification
or feedback from the user in cases such as missing
input files, absent columns, or other incomplete
queries. This step is crucial in addressing the limi-
tations observed in LLM performance for portfolio
management analytics, where processing and rea-
soning with information have been a significant
challenge.

Ahead of the Base-Agent’s execution, we incor-
porate key components to enhance the informa-
tion it receives. These components are the Data
Summarizer, Question Generator, Finance Expert,
and Query Refiner, collectively known as “Insights”
Agents. Each plays a crucial role in processing
and refining input data to ensure accurate and rele-
vant outputs. The Question Generator and Finance

814

Expert work together to produce a compact and pre-
cise domain-specific knowledge base, identifying
relevant financial definitions, formulae, and infor-
mation needed by the Base-Agent. The Question
Generator takes the user query as input and decides
the most relevant financial definitions, formulae
and information that the Base-Agent would need to
answer the user query. The output from this Ques-
tion Generator is a list of questions which then
goes to the Finance Expert. This is turn answers
these questions, including all important informa-
tion, ensuring alignment with financial principles
and practices. The two components generate the
questions and answer them respectively to add con-
text for the Base-Agent. The Data Summarizer
analyzes the uploaded data file, deriving patterns
and condensing large volumes of financial data into
concise summaries, adding missing values and col-
umn definitions as needed. It operates similarly
to the Base-Agent, with access to a Python code
execution tool for inspecting the data file and draw-
ing insights. The Query Refiner agent not only
takes the user query as input but also utilizes the
output of the Data Summarizer to generate a bet-
ter quality query for the Base-Agent. It rephrases
the original user query, enhancing clarity and fo-
cus, incorporating data-specific jargon, and adding
disclaimers and recommendations. It produces an
improved user query for the Base-Agent to answer.
Appendix A.1 offers a detailed illustration of this
process through a specific example. All the out-
puts from these agents are consolidated together
to form a comprehensive user query with detailed
information about data and domain. This is then
sent to the Base Agent to answer the query using
code generation.

Each of Insights components were introduced to
improve the multi-agent’s problem-solving capa-
bilities. They were added to address the different
categories of issues that were identified in the de-
velopment set. The Data Summarizer, among other
issues, helps to identify missing values in the data
which can often be overlooked by the Base Agent
because it only investigates the starting rows of
a dataset before proceeding with any calculations.
The input from the Data Summarizer helps the Base
Agent be aware of the missing values and handle it
in an appropriate manner. The Query Refiner adds
value to our Agent when it encounters real-life, in-
formally written queries from Portfolio Managers.
Often PMs will not write complete and correct
queries but write in a language that is more infor-

mal or colloquial. As an example, let’s consider
a dataset from a global trading organization that
has Profit and Loss amounts and the corresponding
trading desk and the desk’s geographical region. A
question from the user could be “what is the pnl
from corporates na?”. This question has no capital-
ization or explanation of the abbreviations. If this
question is asked to the Base Agent it may try to
find the total Profit and Loss (pnl) for a sector/desk
called “corporates na” (which it may not find in
the data), or it will ignore the word “corporates”
and may try to find any row where the region is
North America (na). However, the Query Refiner
looks at the data summary and reconstructs the user
query such that any ambiguity is removed. It will
refine the query to be something like - “What is the
total profit and loss of the Corporates desk in the
Americas region?”. This will allow the Base Agent
to extract the correct rows and columns for the cal-
culation. Similarly, the Question Generator and
Finance Expert (acting as one component) improve
performance when the user query involves complex
and nuanced financial knowledge. The example
presented in appendix A.3 about the “spot-prompt
correlation” is an example where this component
adds value. It was our observation that when finan-
cial knowledge was not separately added, the Base
Agent tends to solve the problem incorrectly. Over-
all, the idea was to add components that are crucial
in Portfolio analytics and management usecase —
data interpretation, clarity of problem and financial
knowledge. The selection of the Insights compo-
nents was also influenced by the explainability and
user experience on the Ul for portfolio managers
to not only get a solution to the problem but also
be able to see a breakdown of reasoning of their
choice.

Our framework also includes a Reflection Agent,
which significantly enhances the robustness and
accuracy of the Base-Agent’s outputs. This agent
iteratively validates and critiques the solutions gen-
erated, identifying potential errors or omissions and
suggesting corrections and alternative approaches.
By serving as an additional layer of scrutiny, the
Reflection Agent acts as a supplementary check,
ensuring the precision and completeness of the gen-
erated answers. Figure 1 illustrates the high-level
schematic diagram of the framework, showing how
the data flows along the pipeline.

Our multi-agent framework not only enhances
the accuracy and interpretability of financial and
investment analytics but also ensures that the

815

decision-making process is robust and reliable. By
integrating sophisticated multiple agents and hu-
man oversight, the framework provides a compre-
hensive solution for complex task resolution. This
approach not only improves modeling accuracy
but also enhances the interpretability of quantita-
tive analytics, paving the way for more informed
and strategic investment decisions. Through this
methodology, we aim to provide a robust and inter-
pretable analytics solution that addresses the short-
comings of current LLM-powered tools, ultimately
contributing to more effective portfolio and asset
management modeling.

4 Evaluation

4.1 Data

Due to the highly domain-specific vocabulary
prevalent in the field of portfolio and asset manage-
ment, leveraging public datasets was not feasible.
As aresult, we chose to gather data internally and
create synthetic data using template questions. This
data generation was performed manually, with valu-
able input from portfolio managers and researchers
to ensure the synthetic data was both realistic and
pertinent. This approach involved crafting ques-
tions such as:

* Determine the average monthly conditional
VaR (CVaR) at a 99% confidence level for the
Relative Value strategy over 2010-2011.

* Calculate total return of a strategy where we
invest 1 at the beginning and liquidate 1% of
portfolio every month

More examples can be found in Appendix A.2.
Overall, our evaluation dataset contains 100 do-
main specific questions which were further catego-
rized by their difficulty levels (namely, easy and
hard) and the nature of analysis requested by the
query (namely, finance or statistical). Out of the
100 questions, 63 were labeled as “hard” and 37
were labeled as “easy”. Questions that either re-
quired complex or multi-step reasoning or deep
finance expertise were labeled as “hard” and the
rest were labeled as “easy”. Similarly, 62 queries
were labeled as “finance” as their focus was topics
related to quantitative finance and and 38 were la-
beled as “statistics” as they focused on statistical
analysis of data.

We used a separate development set of questions
and analyses to refine the prompts and agent ar-
chitecture. Throughout the research process, we

iterated on both the prompts and the architecture.
These refinements were made exclusively using the
development set. The above evaluation set was
used solely for testing and reporting benchmarks.

4.2 Evaluation Strategy

In our experiments, we compared the final answers
of 100 curated questions in our dataset with outputs
from agentic frameworks. To facilitate quantitative
comparison, we structured the questions to yield de-
terministic single or multi-valued numeric or string
solutions, thereby avoiding subjective analysis. We
determined the correctness of a solution by check-
ing for exact matches to these values or strings in
the agent’s response. We did not evaluate the inter-
mediate code generated by the agent to solve the
primary question, as it can vary and is stochastic.
For multi-valued answers, we ensured the questions
required the answers to be in a specific order. This
evaluation strategy was effective, as all our ques-
tions had fixed answers that needed to be present
in the agent’s output to be marked as correct.

To ensure a robust comparison, we evaluate four
distinct models: (i) the Base-Agent, which uti-
lizes a single tool-calling ReAct-based agent; (ii)
the Base-Agent + Reflection, which enhances the
Base-Agent with reflection capabilities; (iii) the
Base-Agent + Insights, which augments the Base-
Agent with “Insights”; and (iv) the Multi-Agent,
our proposed model. Each agent is tasked with
answering each question ten times, allowing us to
measure both consistency and accuracy across mul-
tiple trials. This repeated testing provides insights
into the reliability and precision of each model’s
responses. For each agent, we compute Pass@k
metrics for k=1, 2, 5, and 10 (Kulal et al., 2019).
We keep the underlying LLM constant across all
our internal agents and across the 4 frameworks
being compared, using OpenAI’s GPT-40 model.

5 Results and Discussion

5.1 Opverall Performance on the Full Dataset

Table 2 presents the evaluation of our models
against the dataset. The overall Pass@]1 score gen-
erally improves as we add more intelligence to the
model (i.e. the Refection and Insights components),
with the Multi-Agent achieving the highest accu-
racy at 0.46, followed by the Base-Agent+Insights
at 0.4389, Base-Agent+Refection at 0.39 and Base-
Agent at 0.3959. We observe a similar trend for
all other evaluation metrics as well with the Multi-

816

Framework Pass@1 Pass@2 Pass@S5 Pass@10
Base-Agent 39.59 45.55 51.85 55.0
Base-Agent + Reflection 39.00 46.62 53.13 56.0
Base-Agent + Insights 43.89 53.84 64.87 72.0
Multi-Agent 46.00 57.16 67.69 72.0

Table 2: Pass@k metrics for proposed Multi-Agent compared to Base solutions

Agent outperforming the Base-Agent for Pass@2
(0.5716 vs 0.4555), Pass@5 (0.6769 vs 0.5185)
and Pass@10 (0.72 vs 0.55). These results high-
light the effectiveness of our proposed Multi-Agent
model in addressing the needs of portfolio man-
agers, demonstrating a commendable improvement
over the other models tested.

5.2 Performance Analysis by Question Type
and Difficulty

Table 3 presents the breakdown of the evaluation
by different categories. We first focus on the dif-
ficulty level of the query. It is clearly evident that
Multi-Agent achieves the highest score for all met-
rics compared to all other frameworks on queries
that were labeled as “hard”. Specifically, the Multi-
Agent achieved 34% higher Pass@1 score com-
pared to the Base-Agent (0.295 vs 0.222) and 58%
higher Pass@10 score (0.603 vs 0.381). Significant
improvement by Multi-Agent on hard queries is ex-
pected because these queries require either complex
and multi-step reasoning or deep finance expertise
or both for a successful solution and hence benefit
from the Insights and the Reflection Agents. We
explain how this is achieved by the Multi-Agent
through an illustrative example in Appendix A.3.

We observe a similar trend during the evaluation
on “easy” queries. The Multi-Agent framework
has the highest performance among all other frame-
works based on the Pass@ 1 and Pass @2 metrics,
although the relative improvement is not as large as
in the case of “hard” queries. This is primarily due
to the fact that the Base-Agent already scores rela-
tively high on these queries. Interestingly, the in-
corporation of Reflection in our Multi-Agent frame-
work results in a nuanced impact, as evidenced by
the higher Pass@5 and Pass@10 scores of the Base-
Agent + Insights framework over Multi-Agent. Re-
flection’s influence on LLM-Agents has been var-
ied in prior studies (Huang et al., 2023), suggesting
that its effects can be context-dependent, offering
unique advantages in certain scenarios.

Next, we analyze the performance of various

frameworks when grouped by the corresponding
topics, i.e., “finance” vs. “statistics”. Here, we
observe a similar trend where the Multi-Agent
achieves the highest performance, followed by the
Base-Agent + Insights, then the Base-Agent + Re-
flection, while the Base-Agent has the worst per-
formance. Similar to “easy” queries, we note that
the Base-Agent + Insights has a slightly higher
Pass@10 score compared to the Multi-Agent for
“finance” queries. We attribute this to the fact that
Reflection can occasionally have a mixed impact
on the agent’s performance.

The Multi-Agent model achieved an overall
Pass@1 score of 46% which is quite significant
in practical applications. This figure is influenced
by the presence of numerous hard questions in
the dataset, which affects the overall accuracy.
However, when focusing on easier questions, the
model’s Pass@1 score (or accuracy) is notably
higher, highlighting its effectiveness in real-world
scenarios. Most inquiries posed by portfolio man-
agers are on the easier side, making the framework
highly applicable and valuable in practice. The
inclusion of a human-in-the-loop approach further
enhances the framework’s utility, allowing for ex-
pert oversight and intervention when necessary, en-
suring solutions are both accurate and actionable.
This results in a substantial productivity boost for
portfolio managers and researchers, as they can
accomplish tasks with minor edits to the output
produced by the framework.

5.3 Evaluation using alternative models

As a next step, we compare the robustness of the
Multi-Agent model with respect to the choice of
LLM being used by replacing GPT-40 with the
OpenAl 03-mini model. Subsequently, in Table
4, we compare the performance of the base agent
against the multi-agent framework on the evalua-
tion dataset.

We observe that while the improvement is
smaller, our multi-agent framework still outper-
forms base agent across all metrics when the un-

817

Category #questions Framework Pass@1 Pass@2 Pass@5 Pass@10
Base Agent 0.692 0.754 0.820 0.838
Easy 37 Base-Agent + Reflection ~ 0.735 0.828 0.885 0.919
Base-Agent + Insights 0.727 0.831 0.921 0.973
Multi-Agent 0.740 0.850 0.912 0.919
Base Agent 0.222 0.280 0.341 0.381
Hard 63 Base-Agent + Reflection ~ 0.187 0.254 0.324 0.349
Base-Agent + Insights 0.270 0.367 0.489 0.571
Multi-Agent 0.295 0.408 0.539 0.603
Base Agent 0411 0.486 0.563 0.597
Finance 62 Base-Agent + Reflection 0.410 0.497 0.575 0.613
Base-Agent + Insights 0.479 0.598 0.727 0.806
Multi-Agent 0.498 0.623 0.733 0.774
Base Agent 0.371 0.406 0.447 0.474
Statistics 38 Base-Agent + Reflection ~ 0.358 0.416 0.46 0.474
Base-Agent + Insights 0.374 0.442 0.521 0.579
Multi-Agent 0.397 0.488 0.585 0.632

Table 3: Performance of 4 different agentic frameworks based on the difficulty level of the question[Easy/Hard] and
type of problem to be solved [Statistical/Financial]. The frameworks being evaluated are - Base-Agent, Base-Agent
with Reflection, Base-Agent with Insights and the Multi-Agent[Base-Agent + Insights + Reflection]

Framework Pass@1 Pass@2 Pass@5 Pass@10

35.60
36.70

Base-Agent
Multi-Agent

46.02
49.51

58.48
61.70

65.0
68.0

Table 4: Pass@k metric for proposed Multi-Agent compared to Base Agent with 03-mini model

derlying LLLM is 03-mini instead of GPT-40. We
did not modify the prompt between GPT-40 and 03-
mini models, so any differences can be attributed
to the inherent capabilities of the two models. The
results show that GPT-40 provides stronger perfor-
mance and greater relevance to real-world quantita-
tive tasks. We believe that prompt iteration using a
development set could further enhance the perfor-
mance for both models and we will explore this as
part of our future work.

6 Implementation & Deployment

Our framework is built upon LangGraph, an
agent workflow framework officially launched by
LangChain (Chase, 2022). LangGraph defines
workflows using graph structures, supports com-
plex loops and conditional branches. This robust
framework has been successfully deployed for port-
folio managers, enhancing their data analysis capa-
bilities. Figure 4 and 5 in Appendix A.4 provides
a visual demonstration of the User Interface of the
Mutli-Agent in action. More details can be found in
Appendix A.4. We have used Python 3.10 for our
development and set the temperature for GPT-40

experiments to be 0.

7 Conclusions

In this paper, we introduce a novel multi-agent
framework designed to autonomously execute a
wide variety of quantitative and analytics tasks per-
formed by portfolio managers and researchers in
the Asset Management industry. The framework
leverages the capabilities of LLMs and comprises
of an innovative multi-agent architecture that pro-
duces task specific code on the fly. Our approach
addresses key challenges in portfolio management
analytics, such as domain understanding, logical
code generation, complex multi-step reasoning and
financial-specific query interpretation. The key
components of the framework are specifically de-
signed and tuned for portfolio management analyt-
ics. We demonstrate the superiority of the multi-
agent framework on a dataset comprising of a wide
range of tasks collected from the experts and prac-
titioners of the field, where it outperforms out-of-
the-box agentic frameworks by 15-50% depending
on the difficulty or the category of the task.

818

Limitations

Improving the proposed agent’s performance on
hard questions is essential, requiring advancements
in data manipulation, cleaning, and understanding.
These enhancements are vital for thorough finan-
cial data analysis and will boost the agent’s versa-
tility, robustness, and effectiveness in real-world
applications, thereby advancing portfolio manage-
ment analytics. The current dataset, limited to 100
questions, constrains the ability to capture the full
diversity and complexity of real-world portfolio
management inquiries. Expanding the dataset will
broaden the evaluation scope. Additionally, we
plan to explore the capabilities and limitations of
Large Language Models (LLMs) in complex fi-
nancial analytics tasks beyond this study’s scope.
Furthermore, understanding the Reflection Agent’s
role and improving its functionality is crucial, as
its impact appears context-dependent.

Disclaimer

The views expressed here are those of the authors
alone and not of JPMorgan Chase & Co. and its
affiliates.

References
Harrison Chase. 2022. LangChain.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit
Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z
Henley. 2023. Conversational challenges in ai-
powered data science: Obstacles, needs, and design
opportunities. CoRR.

Sorouralsadat Fatemi and Yuheng Hu. 2024. Enhancing
financial question answering with a multi-agent re-
flection framework. In Proceedings of the 5th ACM
International Conference on Al in Finance, pages
530-537.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and 1 others. 2020. Codebert:
A pre-trained model for programming and natural
languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1536—
1547.

Stefano Giglio, Bryan Kelly, and Dacheng Xiu. 2022.
Factor models, machine learning, and asset pricing.

Annual Review of Financial Economics, 14(1):337-

368.

Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang,
and Steven M Drucker. 2024. How do analysts un-
derstand and verify ai-assisted data analyses? In
Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems, pages 1-22.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: a survey of progress and challenges. In
Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, pages 8048—
8057.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Markus Jaeger, Stephan Kriigel, Dimitri Marinelli,
Jochen Papenbrock, and Peter Schwendner. 2021. In-
terpretable machine learning for diversified portfolio
construction. The Journal of Financial Data Science.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024. The dawn of natural language
to sql: Are we fully ready? Proceedings of the VLDB
Endowment, 17(11):3318-3331.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, and Li Zhang. 2024. Exploring
and evaluating hallucinations in llm-powered code
generation. CoRR.

Yilin Ma, Ruizhu Han, and Weizhong Wang. 2021. Port-
folio optimization with return prediction using deep
learning and machine learning. Expert Systems with
Applications, 165:113973.

Ariana Martino, Michael Iannelli, and Coleen Truong.
2023. Knowledge injection to counter large language
model (1lm) hallucination. In European Semantic
Web Conference, pages 182—185. Springer.

Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M Mul-
vey, H Vincent Poor, Qingsong Wen, and Stefan
Zohren. 2024. A survey of large language models
for financial applications: Progress, prospects and
challenges. arXiv preprint arXiv:2406.11903.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In ICLR.

OpenAl. 2024. Model release blog: Gpt-4o. Technical
report, OpenAl. Accessed: 2025-06-23.

819

https://github.com/langchain-ai/langchain

Weixi Tong and Tianyi Zhang. 2024. Codejudge: Eval-
uating code generation with large language models.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
20032-20051.

April Y Wang, Ryan Mitts, Philip J Guo, and Parmit K
Chilana. 2018. Mismatch of expectations: How mod-
ern learning resources fail conversational program-
mers. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1-13.

Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai
Wei, Wei Zhao, Guandong Xu, and Hai Jin. 2024.
Automated data visualization from natural language
via large language models: An exploratory study.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN international symposium on
machine programming, pages 1-10.

Chenyang Yang, Shurui Zhou, Jin LC Guo, and Chris-
tian Késtner. 2021. Subtle bugs everywhere: Generat-
ing documentation for data wrangling code. In 2021
36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 304-316.
IEEE.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

820

A Appendix
A.1 Overview of Multi-Agent Execution

In the section, we present how different compo-
nents of the Multi-Agent framework interact and
coordinate to produce the correct response to a user
query. We consider the following query as an ex-
ample: "Calculate the 3-month rolling correlation
between stocks A and B". Figure 2 provides the
sample output from each component. For brevity,
we do not provide the entirety of the output but
only present the important segments. For the above
query, the “Data Summarizer” adds crucial infor-
mation about the dataset such as the size of data, the
frequency of the observations and also summarizes
statistics of individual columns. Subsequently, the
“Query Refiner” augments the query most notably
by adding the directive that the analysis should
be consistent with the temporal frequency of the
dataset, i.e. daily. Finally, the “Question Generator’
and the “Finance Expert” highlight that the query
requires rolling correlation analysis and provide
guidance on how to do so.

bl

A.2 Dataset
In the below section, we give some examples of

the questions in our dataset based on type and diffi-
culty.

A.2.1 “Easy” Questions
¢ Calculate the variance of the NFLX Equity.

* What is the correlation coefficient between
Convertible Arbitrage and Fixed Income Ar-
bitrage returns from 2010 to 20157

A.2.2 “Hard” Questions

* What is the average annualized tracking error
between the Long/Short Equity and Equity
Market Neutral strategies over 2011-2012?

* Calculate the division based risk-adjusted op-
erating margin for AAPL, using the standard
deviation of operating margins as a measure
of risk.

A23

¢ Calculate the debt-to-income ratio over the
entire dataset.

“Finance” Questions

* Calculate the risk-adjusted performance of
CVX by determining its Treynor Ratio, using
the average annual percentage change as the
return, the standard deviation of its 52-week

high and low as the risk, and the average Fed-
eral Debt as a Percent of GDP as the market
risk. Assuming the risk-free rate is 0.

A24

* Calculate the 3-month rolling correlation be-
tween 2 stocks.

“Statistics” Questions

* Perform regression analysis between the time-
series of a stock’s returns and a macro-
economic factor.

A.3 How Multi-Agent framework adds value

In this section, we demonstrate why the “Insights”
component of the Multi-Agent framework is cru-
cial to get the correct response for queries that are
either too complex or require deep expertise in
finance. We consider the following task: For a syn-
thetic dataset containing prices of spot Oil prices
and Oil futures contracts, calculate the correlation
between spot and the closest futures contract. Here,
the key nuance that the agent needs to consider is
that the closest futures contract changes as current
date changes from one month to another. For exam-
ple, during the month of May-2022 the June-2022
futures contract will be the closest contract and
for the month of June-2022 the July-2022 contract
would be the closest futures contract. As illustrated
in Figure 3, this nuance is completely missed by the
Base-Agent. However, the “Insights” component
of the Multi-Agent provides the right definition
and the methodology to compute the price of the
prompt contract which subsequently is crucial for
the Multi-Agent to produce the right code (see Fig-
ure 3).

A.4 Deployment

The figure 4 & 5 illustrates user interaction with the
system, offering a clear view of the interface. The
demo highlights the intuitive design and functional-
ity of the Multi-Agent, facilitating user engagement
and oversight in the data analysis process. In pro-
duction, it is essential that users receive the final
code and answer, enabling them to verify results
if they suspect inaccuracies. Error analysis has re-
vealed that, at times, the system produces results
that do not align with expected answers, and oc-
casionally, the agent struggles to determine which
columns to use. These discrepancies typically arise
when the system fails to recognize or resolve one
of the entities mentioned by the user and match it
with the data to generate code.

821

Component Name

Output

Original Query

Calculate the 3-month rolling correlation between stocks A and B

Data Summarizer

Data Structure Overview:

Number of Rows: 668 **Number of Columns**:
Column Details:

Column name - index

17

Data Frequency: Daily

Data Relationships and Transformation:

- The dataset contains daily price data for various equities and indices.
Recommendations:

- Ensure the 'index' column is set as the datetime index for time series analysis.

Unique Column: The 'index' column is unique for each row, serving as a unique identifier.
Brief Summary of Data: This dataset represents daily price data for various equities and
indices from January 4, 2022, to August 30, 2024. Each row corresponds to a specific date,
capturing the prices of different financial instruments on that day.

Query Refiner

please calculate the 3-month rolling correlation between the price or value of asset A and
the price or value of asset B. The dataset consists of daily price data for various equities
and indices, spanning from January 4, 2022, to August 30, 2024. Ensure that the 'index'
column, which contains the date of the recorded data, is set as the datetime index to
facilitate accurate time series analysis. The calculation should consider the daily frequency
of the data and account for the temporal relationships inherent in the dataset.

Question Generator

1. What is the definition of rolling correlation in financial terms, and how is it
typically calculated?

2. What is the significance of using a 3-month period for calculating rolling correlation
in financial analysis?

3. Are there specific financial formulas or models used to calculate rolling correlation
between two assets?

4, What factors or data points are necessary to accurately calculate the rolling
correlation between two assets?

5. Are there any industry standards or best practices for calculating rolling correlation
in financial datasets?

Finance Expert

1. **pefinition of Rolling Correlation in Financial Terms:**

Rolling correlation is a statistical measure used to assess the relationship between two
time series data sets over a specified rolling window period. It helps in understanding how
the correlation between two assets changes over time. This is particularly useful in
financial markets where relationships between assets can vary due to changing market
conditions. The rolling correlation is typically calculated by taking a fixed-size window of
data points, computing the correlation for that window, and then moving the window forward
by one period to repeat the process.

2.
3.

Figure 2: Outputs of different Insights components highlighting the added information received by the Base-Agent

Original query : Prices of spot oil and futures contract are at path in “oil.csv”, calculate correlation between spot and the closest futures price

Framework

Additional information
from Insight Agents

Code generated

Final output

Base-Agent Multi-Agent

From Financial Expert:

Identifying the Closest Futures Contract to a Spot Price in 0il Trading:**

In oil trading, the closest futures contract to a spot price is typically
the front-month contract, which is the nearest contract to expiration. Traders
often look at the futures curve to identify this contract. The front-month
contract is usually the most liquid and actively traded, making it a good
proxy for the spot price. Traders can use platforms like CME Group or ICE to
find the current front-month contract for oil.

N/A

def find_closest_futures_date(spot_date, futures_dates):

Calculate the difference in days between the spot date and each futures
date

differences = [(futures_date - spot_date).days for futures_date in
futures_dates]

Find the index of the minimum positive difference

closest_index = np.argmin([diff if diff > @ else np.inf for diff in
differences])

correlation = 5
return futures_dates[closest_index]

data['spot'].corr(data['2/1/22'])

Extract futures dates from the column names
futures_dates = pd.to_datetime(data.columns[2:], format='%m/%d/%y')

Find the closest futures date for each spot date
data['closest_futures_date'] = data['index'].apply(lambda x:
find_closest_futures_date(x, futures_dates))

0.0255 0.049

Figure 3: Illustration of how the Multi-Agent’s Insights are crucial for complex tasks

To mitigate these issues, we employ a “human

822

in the loop” approach, presenting users with sim-

Prompt Template [% _ Refinement

prices_data_file.xlkx

> Multi-step Reasoning:

* User Intention: The user wants to visualize the pr f “AAPL US Equity” along with its er bands ba

Moving average.

* ldentifying Relevant Data Set Load the dataset from the spi d location 1o retrieve the ne ry financial data for

cal ns.
* Tool Selection and Orchestration: Use Python libranes to calculate the moving average and standard deviations to denive
Bollinger bands. ensuring all calculatio rounded to tw al points.
Visualization: Plot the price L US Equity”. the 3 average, and Bollinger bands. Save this information into

file with metadata for future reference and analysis.

AAPL US EQUITY PRICE AND BOLLINGER BANDS

" Upper Band

Generared Code

Seif-Reflection/Validation

Figure 4: User Interface demo of proposed Multi Agent in action

plified parsing results, as demonstrated in the ap-
pendix. This approach allows users to identify in-
stances where the system has incorrectly addressed
their query. By incorporating user feedback, we
aim to enhance the reliability and precision of the
system, ensuring it meets the high standards re-
quired for practical applications in portfolio man-
agement.

The results emphasize the importance of continu-
ous refinement and user involvement in the develop-
ment process. Even the most accurate models can
benefit from human oversight to ensure the high-
est level of accuracy and reliability in real-world
scenarios.

823

Content Stare
Agents

p) MAS Rasnarch Pods

o and csv Analyses

e Fessarch & Transcrpts

bt e the atest

Excel and CSV Analyser

ererate ap,
gve me the at

Plot th: price time sevies of
"MAETA US Gty songaide I
two Simle Moving Averages

220 day and a 80-day
ot moving average price. s b
Round 3l rumbers 10.2 decimal A s Sl vtk

i decimal points

Figure 5: User Interface demo of proposed Multi Agent in action

824

