
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 766–774
November 4-9, 2025 ©2025 Association for Computational Linguistics

Memory-Efficient Backpropagation for Fine-Tuning LLMs on
Resource-Constrained Mobile Devices

Congzheng Song
Apple

csong4@apple.com

Xinyu Tang
Apple

xinyu_tang3@apple.com

Abstract
Fine-tuning large language models (LLMs)
with backpropagation—even for a subset of pa-
rameters such as LoRA (Hu et al., 2022)—can
be much more memory-consuming than in-
ference and is often deemed impractical for
resource-constrained mobile devices. Alterna-
tive methods, such as zeroth-order optimization
(ZO), can greatly reduce the memory footprint
but come at the cost of significantly slower
model convergence (10× to 100× more steps
than backpropagation). We propose a memory-
efficient implementation of backpropagation
(MeBP) on mobile devices that provides better
trade-off between memory usage and compute
time, while converging faster and achieving bet-
ter performance than the ZO baseline. We ver-
ify the effectiveness of MeBP on an iPhone 15
Pro Max and show that various LLMs, ranging
from 0.5B to 4B parameters, can be fine-tuned
using less than 1GB of memory. We release
an example of the MeBP implementation at
https://github.com/apple/ml-mebp.

1 Introduction

Large language models (LLMs) have been success-
fully integrated into mobile devices to run inference
on users’ private data locally (Gunter et al., 2024;
Gemini-Team et al., 2025). For applications such
as personalization or federated learning (McMahan
et al., 2017), it is also desirable to fine-tune models
on local private data on device to further improve
utility (Kairouz et al., 2021). However, fine-tuning
LLMs with backpropagation on mobile devices
remains extremely challenging due to the signifi-
cantly higher memory footprint compared to infer-
ence. These on-device training processes typically
run in the background, which further limits memory
usage due to operating system constraints (devel-
oper.apple.com; source.android.com). In addition,
total training compute time must be short to pre-
vent the OS from interrupting or rescheduling the
training process.

Existing works on memory-efficient on-device
fine-tuning of LLMs have focused on approxi-
mating gradients with zeroth-order optimization
(ZO) (Spall, 1992), such as MeZO (Malladi et al.,
2023), where the memory footprint is similar to
vanilla inference, as no backpropagation is required.
While ZO reduces memory usage in theory, ZO of-
ten suffers from slower and poorer convergence,
leading to longer compute times and degraded
model performance (Section 4). Even with ZO, ex-
isting implementations require multiple gigabytes
of memory to train a billion-scale LLM (e.g., OPT-
1.3B (Zhang et al., 2022)), that is impractical for
any production deployment (Peng et al., 2024).

In this work, we present a memory-efficient im-
plementation of backpropagation (MeBP) for fine-
tuning LLMs on mobile devices. The implemen-
tation is based on gradient checkpointing (Chen
et al., 2016), with various optimizations including
lazy weight loading and decompression, as well
as memory-mapped activation checkpoints. Our
implementation ensures that no extra intermediate
activations or uncompressed base model weights
are kept in memory—they are only loaded when
computation is needed. The total training memory
footprint is thus reduced to that of backpropagation
on a single checkpoint, which is feasible within the
DRAM constraints of mobile devices.

We implement MeBP in iOS using Swift and
evaluate its performance on an iPhone 15 Pro Max.
We focus on the language modeling task and func-
tion calling task to compare MeBP with MeZO on
a set of LLMs suitable for deployment on mobile
devices, including Gemma3 (Gemma-Team et al.,
2025) and Qwen2.5 (Qwen-Team et al., 2025). We
demonstrate that MeBP converges faster and bet-
ter than MeZO in terms of both the number of
optimization steps and total compute wall-clock
time. In addition, MeBP incurs only a slightly
higher memory footprint than MeZO, making it
more practical for on-device training.

766

https://github.com/apple/ml-mebp


2 Related Works

Memory efficient training. Training machine
learning models incurs memory costs from model
parameters, gradients, optimizer states, and inter-
mediate values like activations. Each of these com-
ponents offers opportunities for optimization to
reduce memory usage during training. Prior works
have proposed base model quantization (Dettmers
et al., 2023) and CPU offloading (Rajbhandari et al.,
2020) to reduce the memory cost of model param-
eters. To reduce the memory cost of computing
gradients, parameter-efficient fine-tuning (PEFT)
methods such as LoRA (Hu et al., 2022) reduce
trainable parameters to less than 1% of the to-
tal model parameters. These PEFT methods sig-
nificantly lower gradient-related memory usage
and achieve competitive performance compared to
full model training for fine-tuning tasks. In-place
weight updates with gradients during backpropaga-
tion—instead of updating model parameters after
completing all backpropagation steps—can also re-
duce gradient memory cost (Lv et al., 2024). Prior
works (Dettmers et al., 2022; Zhao et al., 2024)
have also studied how to reduce the GPU memory
cost for optimizer states such as AdamW (Kingma
and Ba, 2014) under full-model training.

Reducing the memory cost of gradients, opti-
mizer states, and intermediate activations can help
narrow the memory usage gap between model
training and vanilla model inference. Gradient
checkpointing (Chen et al., 2016) significantly
reduces the memory cost of intermediate activa-
tions by trading off memory usage for increased
computation time through recomputation during
backpropagation. Malladi et al. (2023) propose
a memory-efficient version of zeroth-order opti-
mization, MeZO, which estimates gradients via
seeded random perturbations and therefore incurs
only negligible additional memory cost compared
to standard vanilla inference. However, zeroth-
order fine-tuning typically requires significantly
more (10× to 100×) optimization steps than first-
order methods. Several follow-up works (Qin et al.,
2024; Zhao et al., 2025; Dang et al., 2025) have
been proposed to improve the convergence rate of
MeZO.

On-device training. On-device training enables
machine learning models to adapt to on-device data
while preserving data privacy. Lin et al. (2022)
fine-tuned a small convolutional neural network on
tiny IoT devices with limited SRAM (e.g., 256KB)

using quantization, PEFT methods, and system-
algorithm co-design. For language models with bil-
lions of parameters, PocketLLM (Peng et al., 2024)
uses MeZO for on-device fine-tuning of LLMs, but
it still incurs significant memory costs (6.5GB for
OPT-1.3B (Zhang et al., 2022)), which is impracti-
cal for mobile devices.

3 Memory-Efficient Backpropagation

We focus on fine-tuning LLMs with LoRA (Hu
et al., 2022) in this paper. Therefore, the main
memory bottlenecks lie in the model parameters
and intermediate activations. Our goal is to keep
the memory usage of fine-tuning within a reason-
able range for a modern mobile device (e.g., less
than 10% of the DRAM (Malladi et al., 2012) or
less than 1GB, as suggested by PocketLLM (Peng
et al., 2024)).

There are three steps for fine-tuning LLMs with
memory-efficient backpropagation (MeBP) on de-
vice: 1) compressing the model base weights
(frozen parameters) to reduce disk space; 2) com-
piling the training graph with backpropagation and
gradient checkpointing for memory optimization;
and 3) implementing a memory-efficient runtime
for executing the compiled training graph. We de-
scribe each step in detail below.

Base model weights compression. It is common
practice to compress base model weights to reduce
disk space usage when deploying LLMs on device.
In our implementation, we use 4-bit symmetric
mode INT4 quantization on non-LoRA parameters
including the embeddings. We leave the investi-
gation of more aggressive compression methods,
such as 2-bit quantization-aware training (Liu et al.,
2025b), to future work.

Gradient checkpointing compilation. To imple-
ment gradient checkpointing in MeBP, we begin
by splitting the LLM into blocks where the mem-
ory of backpropagation on a single block (e.g. a
transformer layer) is within the device memory
constraints. For each block F producing activa-
tions to be checkpointed, we generate the backward
graph by applying automatic differentiation (Bay-
din et al., 2018) on the output of F . For example,
let y = Fi(x,w) be the forward graph for block Fi,
for scalar s,

s =
∑

(
∂E

∂y
⊙ y)

767



Algorithm 1 Memory-Efficient Backpropagation
Inputs: input data x, number of checkpoints n, forward checkpoint subgraphs [forwardi], backward checkpoint subgraphs
[backwardi], LoRA trainable weights [lora_weightsi] for each checkpoints, compressed base model weights for each check-
points [compressed_base_weightsi]

procedure InitializeModel
Memory map (mmap) all weights in [compressed_base_weightsi]

end procedure

procedure LazyLoadAndDecompressWeights(i)
Load mmaped compressed_base_weightsi for checkpoint index i
return decompress(compressed_base_model_weightsi)

end procedure

procedure Backpropagation(x)
Initialize ckpts_storage← {x}
Load current LoRA trainable weights [lora_weightsi]
for each checkpoint index i ∈ [1, . . . , n] do ▷ Forward pass to store all checkpoints

Load base_weightsi ←LazyLoadAndDecompressWeights(i)
Load mmaped ckptsi−1 from ckpts_storage
Compute ckptsi ← forwardi(lora_weightsi, base_weightsi, ckptsi−1)
Mmap ckptsi and add to ckpts_storage

end for
Initialize lora_grads← ∅, ckpts_gradsn+1 ←nil
for each checkpoint index i ∈ [n, . . . , 1] do ▷ Backward pass in reverse order to compute gradients

Load base_weightsi ←LazyLoadAndDecompressWeights(i)
Load mmaped ckptsi−1 from ckpts_storage
Compute (lora_gradsi, ckpts_gradsi)← backwardi(lora_weightsi, base_weightsi, ckptsi−1, ckpts_gradsi+1)
Remove ckptsi from ckpts_storage
Update lora_grads← lora_grads ∪ {lora_gradsi}

end for
return lora_grads

end procedure

where E denotes the final loss to be optimized and
⊙ denotes Hardmard product, we perform auto-
matic differentiation on s:

∂s

∂x
=

∂E

∂y
· ∂y
∂x

=
∂E

∂x

We can then produce a backward graph
(∂E∂x ,

∂E
∂w ) = Bi(x,

∂E
∂y , w) where ∂E

∂y is out-
putted by the backward graph Bi+1. In other
words, the inputs to the backward graphs are the
checkpointed activations, gradients for the previ-
ous checkpoint and the corresponding trainable
weights, and the outputs are the gradients of those
inputs. The forward and backward graphs for all
blocks are then serialized into a device runtime
compatible format, e.g. Model Intermediate
Language (MIL) representation1 or MLX exported
function.2 During runtime, the serialized graphs
will be deserialized and compiled for computation.

Runtime implementation. Algorithm 1 outlines
the runtime implementation of MeBP. The model is

1https://apple.github.io/coremltools/docs-
guides/source/model-intermediate-language.html

2https://ml-explore.github.io/mlx/build/html/
python/export.html

first initialized using the InitializeModel func-
tion, after which the Backpropagation function
is invoked for each data point in the training loop.
During InitializeModel, the compressed base
model weights are memory-mapped. To mini-
mize memory footprint, the base model weights
are not decompressed before the training loop be-
gins. Instead, they are lazily decompressed and
loaded on demand whenever required for compu-
tation. Note that for device runtime frameworks
supporting computation with quantized weights,3

the decompression step can be skipped and only
the compressed weights will be loaded on demand.

In the Backpropagation function, the forward
compiled subgraphs are executed to store all neces-
sary checkpoints, followed by the backward com-
piled subgraphs, which are executed in reverse
order to compute the gradients using the stored
checkpoints. The checkpoints are memory-mapped
during the forward pass rather than kept in memory.
Before each forward and backward pass, only the
necessary base model weights are decompressed

3https://ml-explore.github.io/mlx/build/html/
python/_autosummary/mlx.core.quantized_matmul.
html

768

https://apple.github.io/coremltools/docs-guides/source/model-intermediate-language.html
https://apple.github.io/coremltools/docs-guides/source/model-intermediate-language.html
https://ml-explore.github.io/mlx/build/html/python/export.html
https://ml-explore.github.io/mlx/build/html/python/export.html
https://ml-explore.github.io/mlx/build/html/python/_autosummary/mlx.core.quantized_matmul.html
https://ml-explore.github.io/mlx/build/html/python/_autosummary/mlx.core.quantized_matmul.html
https://ml-explore.github.io/mlx/build/html/python/_autosummary/mlx.core.quantized_matmul.html


0 1000
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
Lo

ss

20000 40000 60000 80000 100000

FO | 0.5B
ZO | 0.5B

FO | 1.5B
ZO | 1.5B

FO | 3B
ZO | 3B

Qwen2.5 Loss

Number of steps
0 1000

0.44

0.46

0.48

0.50

Ac
cu

ra
cy

20000 40000 60000 80000 100000

FO | 0.5B
ZO | 0.5B

FO | 1.5B
ZO | 1.5B

FO | 3B
ZO | 3B

Qwen2.5 Accuracy

Number of steps

0 1000

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Lo
ss

20000 40000 60000 80000 100000

FO | 1B
ZO | 1B

FO | 4B
ZO | 4B

Gemma-3 Loss

Number of steps
0 1000

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

20000 40000 60000 80000 100000

FO | 1B
ZO | 1B

FO | 4B
ZO | 4B

Gemma-3 Accuracy

Number of steps

Figure 1: Convergence of Qwen2.5 (0.5B, 1.5B and 3B) and Gemma-3 (1B and 4B) fine-tuned with ZO and FO.

and loaded. As a result, the total memory usage
is limited to the size of the required base model
weights plus the peak memory usage for operations
in each subgraph which is significantly less than
the full size of the base model weights. The func-
tion describes gradient computation for a single
data point. For batched inputs, gradient accumula-
tion can be used to compute the gradient without
increasing the memory footprint.

In MeBP, only a copy of the LoRA weights and
their gradients is kept in memory for the optimizer.
For LLMs ranging from 0.5B to 4B parameters,
the size of the LoRA weights is typically in the
range of dozens of megabytes, which is reasonable
to store in memory. Optimizer states, such as mo-
mentum, can be memory-mapped and lazily loaded
in a manner similar to the base model weights.

4 Experiments

We consider MeZO as the baseline for demonstrat-
ing the performance of MeBP, as it is the only
known optimization approach applied to LLM fine-
tuning on mobile devices (Peng et al., 2024). We
evaluate the utility of MeZO and MeBP through
simulation on the server side and compare their
performance on a mobile device, as detailed in the
sections below.

4.1 Utility Comparison

Setup. We compare the utility of first-order (FO)
optimization (i.e., gradients via backpropagation)
and zeroth-order (ZO) optimization on models in
Gemma-3 and Qwen-2.5 with no more than 4B
parameters, as mobile devices have constrained
computing resources. For language modeling task,
we use WikiText-2 dataset (Merity et al., 2017) and
use loss and next token accuracy on the evaluation
set for evaluation. For function calling task, we
use ToolACE (Liu et al., 2025a) as the training
set and Berkeley Function Calling (BFCL) (Patil
et al., 2025) for evaluation. For simplicity, we
consider single-turn task and we only use one user-
assistant turn from each sample in ToolACE. We
use the single-turn live split in BFCL v4 because
this live set is a user-contributed function documen-
tation and queries and therefore more aligned with
real-world scenarios. We use models before the
instruction tuning for language model task and the
instruction tuned model for function calling task.
The sequence length is 256 for WikiText-2 and 512
for ToolACE. We ues 2, 048 samples as training set
for WikiText-2 and 2, 672 samples as training set
for ToolACE. LoRA fine-tuning is applied to all
linear layers in all transformer blocks, with a rank
of 8. The total number of training steps is 1,000 for
FO experiments and 100,000 for ZO experiments.

769



These experiments are run on the server side as a
simulation to compare utility only.

Results. Figure 1 presents the results for
WikiText-2. While the loss and next token accuracy
for ZO exhibit a convergence trend, ZO converges
significantly more slowly than FO. The FO method
improves both metrics substantially within the first
100 steps, whereas ZO shows only a slight improve-
ment after 1,000 steps. Even after 100,000 steps
(i.e. 100× more optimization steps than FO), ZO
still yields higher test loss and lower test accuracy
than FO for the same model.

Model FO ZO baseline

Gemma3 1B 33.01% 15.10% 11.92%

Table 1: Evaluation results on BFCLv4 live split for
gemma-3-1b-it fine-tuned on ToolACE.

Table 1 shows that fine-tuning on function call-
ing data could improve the model function calling
capability as both ZO and FO fine-tuned model
achieve better performance than the no fine-tuned
baseline (11.92%). However, similar to results
in WikiText-2, even we use 100k steps for ZO
and only 1k steps for FO, the improvements by
FO is 7× compared to the improvement by ZO
(21% vs 3%). We also run full parameter fine-
tuning (FFT) on gemma-3-1b-it for the function
calling and evaluate the fine-tuned model using the
same evaluation setup. The FFT performance is
31.31%, that is not better than the LoRA fine-tuned
result. This justifies our design choice with a fo-
cus on on-device fine-tuning LLMs with LoRA, as
LoRA can achieve comparable performance as FFT
on several tasks with less memory cost, that has
been observed in previous works (Hu et al., 2022).

Several methods have been proposed to improve
the convergence rate of ZO (Qin et al., 2024; Zhao
et al., 2025; Dang et al., 2025). We also ran ex-
periments using these improved ZO methods on
WikiText-2 using Qwen2.5-0.5B and summarize
the results in Figure 3 in Appendix A. While these
methods achieve faster convergence than vanilla
ZO, the loss and next token accuracy remain worse
than those of FO fine-tuned models. Moreover,
these methods typically require more computation
time per iteration due to additional forward passes
needed for more accurate gradient estimation.

The utility results demonstrate that backpropaga-
tion converges significantly faster than ZO methods

for fine-tuning LLMs on language modeling tasks
and function calling tasks, on a per-step basis. This
makes it more suitable for mobile deployment in
terms of compute time, provided that each FO opti-
mization step is implemented efficiently.

4.2 Performance Comparison
Setup. We implement MeBP in iOS using Swift
and evaluate its performance on an iPhone 15 Pro
Max, which has 8GB of DRAM. For the MeZO
baseline implementation, the forward graph is split
into multiple subgraphs, and lazy decompression
is applied to reduce the total memory usage of the
base model weights. Each MeZO optimization step
involves two forward passes. We set the batch size
to 1 and the sequence length to 256. We check-
point the model at every transformer layer, the fi-
nal linear layer, and the cross-entropy loss layer.
Memory usage is recorded using the iOS native
function task_vm_info_data_t, which provides
the peak memory footprint of the running process
via phys_footprint. We repeat the training pro-
cess 10 times and report the average runtime and
peak memory usage.

Results. Table 2 summarizes the performance re-
sults. Overall, MeBP incurs 43% to 94% more
computation time per gradient step compared to
MeZO. However, given that MeZO requires more
than 10× to 100× the number of steps compared
to first-order optimization as shown in the previous
utility comparison, MeBP converges much faster
in terms of wall-clock time. MeBP uses up to
20% more memory than MeZO in the worst case,
while the total memory usage for training is ap-
proximately 10× smaller than in previous mobile
device implementations (Peng et al., 2024). All
tested LLMs can be efficiently fine-tuned within
1GB of memory, making them suitable for back-
ground training on a mobile phone.

Decompression overhead. Table 3 shows the de-
compression overhead for the forward and back-
ward passes across different LLMs. Decompres-
sion accounts for 32% to 42% of the time in the
forward pass, and 13% to 24% in the backward
pass, as the backward pass involves additional oper-
ations for gradient computation. Although the over-
all compute time increases due to decompression in
each pass, the memory savings are more significant
as there is no need to store the uncompressed base
model weights in memory, which range from 1 to
8GB for the LLMs evaluated.

770



Time (s) Memory (MB)
Model # of trainable params MeZO MeBP MeZO MeBP

Qwen2.5 0.5B 4.39M 2.68 3.85 318.93 320.17
Qwen2.5 1.5B 9.23M 5.47 9.09 451.57 460.24
Qwen2.5 3B 14.97M 10.28 17.96 554.10 661.78

Gemma3 1B 6.52M 4.88 9.48 563.64 569.00
Gemma3 4B 14.90M 16.86 28.58 961.54 1029.49

Table 2: Per-gradient-step compute time and peak memory of MeZO and MeBP.

Model Forward Backward

Qwen2.5 0.5B 34.91% 15.80%
Qwen2.5 1.5B 32.77% 17.86%
Qwen2.5 3B 36.15% 21.15%
Gemma3 1B 32.37% 13.27%
Gemma3 4B 42.87% 24.18%

Table 3: Ratio of decompression time during each for-
ward and backward pass.

Impact of sequence lengths. Sequence length
can also impact performance metrics. We experi-
ment with Qwen2.5 1.5B using sequence lengths
of 128, 256, 512, and 1024, and summarize the re-
sults in Table 4. As sequence length increases, both
compute time and memory footprint also increase
due to the heavier computation workload. This
suggests that data sources with shorter sequences,
such as messages, brief emails, and user instruction
prompts, are more suitable for fine-tuning on mo-
bile devices. We leave the investigation of efficient
fine-tuning on longer sequences on mobile devices
to future work.

Sequence Time (s) Memory (MB)
length MeZO MeBP MeZO MeBP

128 4.81 6.92 367.49 405.14
256 5.47 9.09 451.57 460.24
512 9.61 17.14 617.82 624.62
1024 18.18 34.40 986.00 994.09

Table 4: Impact of sequence length.

Per layer performance. Figure 2 reports the
per-layer(-checkpoint) performance metrics on
Qwen2.5-1.5B. For the transformer layers, the
backward pass uses approximately 50% more mem-
ory and is 30% slower than the corresponding
forward pass. The memory bottleneck occurs at

the final linear layer and the loss layer, consistent
with observations in previous work (Wijmans et al.,
2025). The compute time bottleneck is also at the
final linear layer, where computing the logits and
their gradients involves matrix multiplication be-
tween two very large matrices (the embeddings
and the sequence logits). Both the compute time
and memory footprint of the loss function and fi-
nal linear layer can potentially be optimized using
fused kernels (Wijmans et al., 2025) or techniques
such as sampled softmax (Jean et al., 2015). An-
other promising direction is hardware-specific im-
plementation, such as the 1.58-bit LLM (Ma et al.,
2024), which replaces floating-point addition and
multiplication with integer addition. We leave the
exploration of these techniques to future work.

For fine-tuning non-generative tasks, where the
final layer does not involve heavy matrix multipli-
cation, both compute time and memory footprint
can be further reduced, shifting the bottleneck to
the transformer layers instead.

5 Conclusion

We propose MeBP, a memory-efficient backprop-
agation method for fine-tuning LoRA adapters of
LLMs on device. Built on gradient checkpoint-
ing, MeBP incorporates memory optimizations
such as lazy weight decompression and memory-
mapped activations to enable exact gradient com-
putation with better memory–compute trade-offs.
Compared to ZO methods, MeBP achieves signifi-
cantly faster convergence and better model utility,
while maintaining a memory footprint comparable
to MeZO on mobile devices. We validate MeBP on
LLMs suitable for on-device deployment, demon-
strating the feasibility of practical first-order fine-
tuning of LLMs under tight memory constraints.

771



em
b

f_
la

ye
r_

1
f_

la
ye

r_
2

f_
la

ye
r_

3
f_

la
ye

r_
4

f_
la

ye
r_

5
f_

la
ye

r_
6

f_
la

ye
r_

7
f_

la
ye

r_
8

f_
la

ye
r_

9
f_

la
ye

r_
10

f_
la

ye
r_

11
f_

la
ye

r_
12

f_
la

ye
r_

13
f_

la
ye

r_
14

f_
la

ye
r_

15
f_

la
ye

r_
16

f_
la

ye
r_

17
f_

la
ye

r_
18

f_
la

ye
r_

19
f_

la
ye

r_
20

f_
la

ye
r_

21
f_

la
ye

r_
22

f_
la

ye
r_

23
f_

la
ye

r_
24

f_
la

ye
r_

25
f_

la
ye

r_
26

f_
la

ye
r_

27
f_

la
ye

r_
28

f_
lo

gi
ts

lo
ss

b_
lo

gi
ts

b_
la

ye
r_

28
b_

la
ye

r_
27

b_
la

ye
r_

26
b_

la
ye

r_
25

b_
la

ye
r_

24
b_

la
ye

r_
23

b_
la

ye
r_

22
b_

la
ye

r_
21

b_
la

ye
r_

20
b_

la
ye

r_
19

b_
la

ye
r_

18
b_

la
ye

r_
17

b_
la

ye
r_

16
b_

la
ye

r_
15

b_
la

ye
r_

14
b_

la
ye

r_
13

b_
la

ye
r_

12
b_

la
ye

r_
11

b_
la

ye
r_

10
b_

la
ye

r_
9

b_
la

ye
r_

8
b_

la
ye

r_
7

b_
la

ye
r_

6
b_

la
ye

r_
5

b_
la

ye
r_

4
b_

la
ye

r_
3

b_
la

ye
r_

2
b_

la
ye

r_
10

100

200

300

400

M
em

or
y 

(M
B)

Memory Per Layer (Qwen2.5-1.5B)

em
b

f_
la

ye
r_

1
f_

la
ye

r_
2

f_
la

ye
r_

3
f_

la
ye

r_
4

f_
la

ye
r_

5
f_

la
ye

r_
6

f_
la

ye
r_

7
f_

la
ye

r_
8

f_
la

ye
r_

9
f_

la
ye

r_
10

f_
la

ye
r_

11
f_

la
ye

r_
12

f_
la

ye
r_

13
f_

la
ye

r_
14

f_
la

ye
r_

15
f_

la
ye

r_
16

f_
la

ye
r_

17
f_

la
ye

r_
18

f_
la

ye
r_

19
f_

la
ye

r_
20

f_
la

ye
r_

21
f_

la
ye

r_
22

f_
la

ye
r_

23
f_

la
ye

r_
24

f_
la

ye
r_

25
f_

la
ye

r_
26

f_
la

ye
r_

27
f_

la
ye

r_
28

f_
lo

gi
ts

lo
ss

b_
lo

gi
ts

b_
la

ye
r_

28
b_

la
ye

r_
27

b_
la

ye
r_

26
b_

la
ye

r_
25

b_
la

ye
r_

24
b_

la
ye

r_
23

b_
la

ye
r_

22
b_

la
ye

r_
21

b_
la

ye
r_

20
b_

la
ye

r_
19

b_
la

ye
r_

18
b_

la
ye

r_
17

b_
la

ye
r_

16
b_

la
ye

r_
15

b_
la

ye
r_

14
b_

la
ye

r_
13

b_
la

ye
r_

12
b_

la
ye

r_
11

b_
la

ye
r_

10
b_

la
ye

r_
9

b_
la

ye
r_

8
b_

la
ye

r_
7

b_
la

ye
r_

6
b_

la
ye

r_
5

b_
la

ye
r_

4
b_

la
ye

r_
3

b_
la

ye
r_

2
b_

la
ye

r_
10

250

500

750

1000

1250

1500

1750

2000

W
al

l-c
lo

ck
 T

im
e 

(m
s)

Wall-clock Time Per Layer (Qwen2.5-1.5B)

Figure 2: Per-layer memory footprint and wall-clock time. On the x-axis, emb stands for the embedding layer; layer
name starts with f stands for forward and b for backward.

Limitations

Due to limited device availability, MeBP has only
been verified on iOS using an iPhone 15 Pro Max.
It requires the capabilities of the A17 Pro chip or
newer. Performance metrics may vary on other mo-
bile operating systems or hardware configurations.

For language modeling tasks, MeBP encounters
a bottleneck at the final layer due to a large matrix
multiplication, resulting in increased training time.
Additionally, the current implementation does not
scale well with sequence length, limiting its appli-
cability to data types that inherently involve shorter
inputs.

References

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. 2018.
Automatic differentiation in machine learning: a

survey. Journal of Machine Learning Research,
18(153):1–43.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Sizhe Dang, Yangyang Guo, Yanjun Zhao, Haishan
Ye, Xiaodong Zheng, Guang Dai, and Ivor Tsang.
2025. Fzoo: Fast zeroth-order optimizer for fine-
tuning large language models towards adam-scale
speed. arXiv preprint arXiv:2506.09034.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2022. 8-bit optimizers via block-wise
quantization. In International Conference on Learn-
ing Representations.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Thirty-seventh Confer-
ence on Neural Information Processing Systems.

developer.apple.com. Identifying high-memory
use with jetsam event reports. https:

772

https://developer.apple.com/documentation/xcode/identifying-high-memory-use-with-jetsam-event-reports


//developer.apple.com/documentation/
xcode/identifying-high-memory-use-with-
jetsam-event-reports. Accessed: 2025-07-01.

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, and 1332 others. 2025. Gemini: A
family of highly capable multimodal models.

Gemma-Team, Aishwarya Kamath, Johan Ferret,
Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé,
Morgane Rivière, Louis Rouillard, Thomas Mesnard,
Geoffrey Cideron, Jean bastien Grill, Sabela Ramos,
Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo
Penchev, and 197 others. 2025. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang,
Andy Narayanan, Aonan Zhang, Bowen Zhang, Chen
Chen, Chung-Cheng Chiu, David Qiu, and 1 others.
2024. Apple intelligence foundation language mod-
els. arXiv preprint arXiv:2407.21075.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, and 1 others. 2021. Ad-
vances and open problems in federated learning.
Foundations and trends® in machine learning, 14(1–
2):1–210.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang,
Chuang Gan, and Song Han. 2022. On-device train-
ing under 256kb memory. In Annual Conference on
Neural Information Processing Systems (NeurIPS).

Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, and 8
others. 2025a. ToolACE: Winning the points of LLM
function calling. In The Thirteenth International
Conference on Learning Representations.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia
Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin,
Yunyang Xiong, Yangyang Shi, and 1 others. 2025b.
Paretoq: Scaling laws in extremely low-bit llm quan-
tization. arXiv preprint arXiv:2502.02631.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and
Xipeng Qiu. 2024. Full parameter fine-tuning for
large language models with limited resources. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 8187–8198. Association for Compu-
tational Linguistics.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024. The era of
1-bit llms: All large language models are in 1.58 bits.
arXiv preprint arXiv:2402.17764.

Krishna T. Malladi, Frank A. Nothaft, Karthika Periy-
athambi, Benjamin C. Lee, Christos Kozyrakis, and
Mark Horowitz. 2012. Towards energy-proportional
datacenter memory with mobile dram. In 2012 39th
Annual International Symposium on Computer Archi-
tecture (ISCA), pages 37–48.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D. Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. In Advances in Neural Information
Processing Systems.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji,
Fanjia Yan, Vishnu Suresh, Ion Stoica, and Joseph
E. Gonzalez. 2025. The berkeley function calling
leaderboard (bfcl): From tool use to agentic eval-
uation of large language models. In Forty-second
International Conference on Machine Learning.

Dan Peng, Zhihui Fu, and Jun Wang. 2024. Pocketllm:
Enabling on-device fine-tuning for personalized llms.
arXiv preprint arXiv:2407.01031.

Zhen Qin, Daoyuan Chen, Bingchen Qian, Bolin Ding,
Yaliang Li, and Shuiguang Deng. 2024. Federated
full-parameter tuning of billion-sized language mod-
els with communication cost under 18 kilobytes.
In Forty-first International Conference on Machine
Learning.

Qwen-Team, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,

773

https://developer.apple.com/documentation/xcode/identifying-high-memory-use-with-jetsam-event-reports
https://developer.apple.com/documentation/xcode/identifying-high-memory-use-with-jetsam-event-reports
https://developer.apple.com/documentation/xcode/identifying-high-memory-use-with-jetsam-event-reports
https://doi.org/10.3115/v1/P15-1001
https://doi.org/10.3115/v1/P15-1001
https://doi.org/10.18653/v1/2024.acl-long.445
https://doi.org/10.18653/v1/2024.acl-long.445
https://doi.org/10.1109/ISCA.2012.6237004
https://doi.org/10.1109/ISCA.2012.6237004
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=cit0hg4sEz
https://openreview.net/forum?id=cit0hg4sEz
https://openreview.net/forum?id=cit0hg4sEz


Jiaxi Yang, Jingren Zhou, Junyang Lin, and 24 others.
2025. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press.

source.android.com. Low memory killer dae-
mon. https://source.android.com/docs/core/
perf/lmkd. Accessed: 2025-07-01.

James C. Spall. 1992. Multivariate stochastic approx-
imation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic
Control, 37:332–341.

Erik Wijmans, Brody Huval, Alexander Hertzberg,
Vladlen Koltun, and Philipp Kraehenbuehl. 2025.
Cut your losses in large-vocabulary language mod-
els. In The Thirteenth International Conference on
Learning Representations.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1
others. 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient LLM training by
gradient low-rank projection. In Forty-first Interna-
tional Conference on Machine Learning.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai,
Yi Qian, and Ivor Tsang. 2025. Second-order fine-
tuning without pain for LLMs: A hessian informed
zeroth-order optimizer. In The Thirteenth Interna-
tional Conference on Learning Representations.

0 20000 40000 60000 80000 100000
2.875

2.900

2.925

2.950

2.975

3.000

3.025

3.050

3.075
Qwen2.5-0.5b ZO Loss

ZO
KZOO
HiZOO
FZOO

0 20000 40000 60000 80000 100000

0.428

0.430

0.432

0.434

0.436

0.438

0.440

Qwen2.5-0.5b ZO Accuracy
ZO
KZOO
HiZOO
FZOO

Figure 3: The performance of improved ZO meth-
ods (ZO (Malladi et al., 2023), KZOO (Qin et al., 2024),
HiZOO (Zhao et al., 2025), FZOO (Dang et al., 2025)).

A Improved ZO Methods

For improved ZO methods, Qin et al. (2024) use
more than one seed per iteration to provide better
gradient estimation (KZOO). Zhao et al. (2025)
leverage second-order information via the Hessian
matrix (HiZOO), while Dang et al. (2025) use more
gradient estimations per iteration, with each esti-
mation requiring only one forward pass rather than
two (FZOO). For fair comparison, we consider 4
gradient estimations per iteration for KZOO and 8
for FZOO. Both of them use 8 forward passes per
iteration. For HiZOO, we follow the same setting
as Malladi et al. (2023), using 1 gradient estimation
(i.e., two forward passes). All other experimental
settings are the same as those described in Sec-
tion 4.1. We present the results in Figure 3. While
these methods improve the convergence rate com-
pared to vanilla ZO, they still exhibit a much slower
convergence trend than the first-order (FO) method
shown in Figure 1.

774

https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://openreview.net/forum?id=E4Fk3YuG56
https://openreview.net/forum?id=E4Fk3YuG56
https://openreview.net/forum?id=bEqI61iBue
https://openreview.net/forum?id=bEqI61iBue
https://openreview.net/forum?id=bEqI61iBue

