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Abstract

Retrieval-based chatbots leverage human-
verified Q&A knowledge to deliver accurate,
verifiable responses, making them ideal for
customer-centric applications where compli-
ance with regulatory and operational standards
is critical. To effectively handle diverse cus-
tomer inquiries, augmenting the knowledge
base with “similar questions” that retain seman-
tic meaning while incorporating varied expres-
sions is a cost-effective strategy. In this paper,
we introduce the Similar Question Generation
(SQG) task for LLM training and inference,
proposing context-aware approaches to enable
comprehensive semantic exploration and en-
hanced alignment with source question-answer
relationships. We formulate optimization tech-
niques for constructing in-context prompts and
selecting an optimal subset of similar questions
to expand chatbot knowledge under budget con-
straints. Both quantitative and human evalua-
tions validate the effectiveness of these meth-
ods, achieving a 92% user satisfaction rate in
a deployed chatbot system, reflecting an 18%
improvement over the unaugmented baseline.
These findings highlight the practical benefits
of SQG and emphasize the potential of LLMs,
not as direct chatbot interfaces, but in support-
ing non-generative systems for hallucination-
free, compliance-guaranteed applications.

1 Introduction

Customer service automation is essential for digital
transformations, commonly deploying AI-driven
chatbots to handle diverse inbound customer in-
quiries to reduce the workload in labor-intensive
call centers and enable timely responses across
online platforms (Jiang et al., 2025). However,
popular generative language models are prone to
hallucinations, generating inconsistent or incorrect
answers (Huang et al., 2025), making LLM-driven
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Customer 我开了证明怎么还没收到？
I applied for the certificate, why haven’t I received it yet?

Source 证明开具时间要多久？
How long does it take to process the certificate? ✘

Generated 开了证明什么时候能收到？
Applied for the certificate, when can I receive? ✔

Table 1: Customer query matching with source question
(failed) and generated similar question (success).

chatbot interfaces infeasible in sectors like health-
care and finance, where reliability and verifiabil-
ity of responses are critical concerns (Singh et al.,
2018; Bharadwaj et al., 2017). To ensure compli-
ance with regulatory and operational requirements,
retrieval-based chatbot systems, a framework estab-
lished before LLMs, use human-verified question-
answer (QA) pairs from an offline knowledge base
to deliver hallucination-free responses (Wu et al.,
2018). As illustrated in Figure 1, these systems
employ a Match-and-Respond process, matching
input queries to existing questions to retrieve accu-
rate responses, eliminating generation needs.

In practice, customer queries exhibit high diver-
sity in expression, and a failure in query match-
ing may interrupt the interaction and cause user
dissatisfaction (Zhang et al., 2025; Wang et al.,
2024). Expanding chatbot knowledge offline en-
ables seamless integration into production systems,
offering a static augmentation approach to enhance
query-matching performance with minimal compu-
tational load and runtime latency, ensuring practi-
cality for lightweight industrial deployment. This
expansion can be effectively achieved through the
Similar Question Generation (SQG) task, where
each source question in the predefined knowledge
base is augmented with multiple “similar questions”
that are diverse in expression while preserving se-
mantic consistency to maintain the question-answer
relationship. As demonstrated in Table 1, a similar
question more effectively matches the user query.
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Figure 1: Schematic overview of a compliance-guaranteed chatbot with a predefined knowledge base for Match-
and-Respond. The yellow region highlights the questions augmented by the similar question generation.

Traditionally, data augmentation relies on costly
human crowdsourcing, offering limited diversity
due to its independent nature (Liu et al., 2022).
Rule-based automation methods, such as SimBERT
(Su, 2020) and RoFORMER-Sim (Su, 2021), im-
prove semantic consistency but lack contextual
awareness, producing repetitive or generic out-
comes (Feng et al., 2021). The emergence of LLMs
highlights their potential for data augmentation
through advanced language understanding and gen-
eration capabilities (Wei et al., 2022; Hong et al.,
2025a), improved by prompting (Liu et al., 2023)
and fine-tuning (Bao et al., 2023) techniques, which
frequently outperform human workers in cost effi-
ciency and performance (Gilardi et al., 2023; Törn-
berg, 2023). However, the SQG task presents
a unique challenge in requiring diversity among
generated questions, where standard sequence-to-
sequence methods struggled to produce varied ques-
tions due to limited control over the generation
process (Jiang and de Rijke, 2018), necessitating
tailored model training and inference strategies.

In this work, we propose novel approaches for
augmenting customer service chatbots with simi-
lar questions generated by LLMs, highlighting the
importance of contextual awareness in the guided
generation process. The contributions include:

1. To the best of our knowledge, we are the first
to define the SQG task for retrieval-based ser-
vice chatbot augmentation, formulating LLM
training and inference, and proposing context-
aware one-to-many generation paradigms.

2. We present budget-constrained optimization
techniques to select prompt demonstrations
and similar question subsets, facilitating
knowledge base expansion and ensuring cost-
effective, adaptable deployment across diverse
real-world application scenarios.

3. Experiments demonstrate over 120% relative
improvement in qualitative assessment, 4.74%
increase in total diversity, and 18% enhance-
ment in user satisfaction compared to unaug-
mented chatbot systems.

2 Problem Formulation and Background

2.1 Problem Formulation
Similar Question Generation aims to create a di-
verse yet semantically consistent set of questions
that can be matched to a specific answer in a knowl-
edge base. In this context, semantic consistency
refers to the preservation of the original intent and
meaning (e.g., “inquire-promotion”), ensuring the
generated questions can still be accurately matched
to the correct answer in the knowledge base (Golla-
palli and Ng, 2022; Hong et al., 2025c; Jiang et al.,
2021). Conversely, syntactic diversity pertains to
the variation in phrasing and structure of the gen-
erated questions, enabling different expressions in
the knowledge base that are essential for enhancing
query-matching (Guo et al., 2024; Ma et al., 2023).

2.2 SQG Training and Inference with LLMs
Conventional methods that utilize LLMs for simi-
lar question generation typically adhere to a naive
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Method Prompt Template

One-to-one Generation
(Standard)

Instruction: 将 “{原问题}”改写为保持相同意义但表述不同的新问句。
(Rewrite “{source question}” to maintain the same meaning but express it differently in a new sentence.)
Response: 相似问题 (similar question)

Context-Aware
Batch Generation

Instruction: 生成K条与 “{原问题}”不同且意思相近的问题。
(Generate K different yet closely related similar questions based on the question “{source question}”.)
Response: {相似问题1, . . . ,相似问题K } {(similar question 1, . . . , similar question K)}

Intention-Enhanced
Batch Generation

Instruction: 根据问题 “{原问题}”和答案 “{原答案}”，生成K个不同且意思相近的问题。
(Generate K different yet closely related similar questions based on the question “{source question}”
and the answer “{source answer}”.)
Response: {相似问题1, . . . ,相似问题K } {(similar question 1, . . . , similar question K)}

Table 2: Illustration of conventional generation and proposed methods for fine-tuning and inference of LLMs.

sequence-to-sequence approach, referred to as the
one-to-one paradigm. In this approach, the LLM
generates a single question at a time in response to a
given source question. For a set of similar questions
(q1, . . . , qK), we can construct training samples by
pairing questions, such as {(q1, q2), . . . , (q1, qK)}.
A typical prompt template is illustrated in the first
block of Table 2. Given a generative language
model PΦ(y|x) with parameters Φ, the training
objective can be formulated as maximizing the fol-
lowing language modeling objective:

Lft = −
∑

j

∑

i

log(PΦ(qj |qi)). (1)

3 Proposed Methods

3.1 Context-Aware Batch Generation
To enhance control over the generation process,
we introduce the one-to-many paradigm. This
method enables the LLM to generate multiple simi-
lar questions in response to a single source question
(see the second block of Table 2). During training,
the LLM learns to identify semantic similarities
and subtle expressive differences among multiple
target questions. In the inference phase, the auto-
regressive nature of LLMs (Vaswani et al., 2017) al-
lows for the incorporation of previously generated
questions, which helps regularize subsequent out-
puts and reduces the likelihood of generating repet-
itive or excessively divergent questions. While one-
to-many generation, or Batch Prompting (Cheng
et al., 2023), is typically used for cost-saving and
often delivers lower performance compared to stan-
dard prompting, we argue that incorporating previ-
ously generated questions into autoregressive gen-
eration is highly effective for the SQG task, which
introduces contextual guidance and leads to more
diversified questions with lower generation cost.

(a) (b)

Figure 2: Illustration of the generated questions in se-
mantic space with respect to the source question and the
corresponding answer. The blue region represents the
desired semantic space surrounding the source question.
(a) Standard one-to-one objective: generated questions
often either truncate or fall outside this desired region.
(b) Intent-Enhanced Batch Generation: the green region
indicates the expanded exploration region that meets the
semantic consistency of the source QA pair.

3.2 Intention-Enhanced Batch Generation

While the one-to-many paradigm enables a more
effective exploration of the semantic space sur-
rounding the source question, this space is con-
strained by the strict requirement for semantic con-
sistency. Since the SQG is an augmentation process
with known question-answer pairs, integrating the
source answer can also be viewed as introducing
contextual prior knowledge into the generation pro-
cess. The corresponding formulation is presented
in the third block of Table 2. When visualized in
the semantic space, as shown in the green region
of Figure 2 (b), this approach expands the explo-
ration beyond the immediate vicinity of the source
question and skews towards the desired answer.

3.3 Refined Training Objective

With the proposed one-to-many generation, we re-
fine the training objective to generate multiple sim-
ilar questions from a single QA pair. Formally,
given a set of similar questions, (q1, . . . , qN ), and
the corresponding answer a, we construct training
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Algorithm 1 Question Subset Mining
Require: Knowledge base D = {(qi, ai)}Mi=1 \ {(qs, as)},

source question qs, target K
Ensure: Question subset P ⊆ D
1: P ← ∅, L← ∅
2: for (qi, ai) ∈ D do
3: ϕ(qi)← S(qs, qi)
4: L← L ∪ {(qi, ai, ϕ(qi))}
5: end for
6: Order L by ϕ(qi) in descending sequence
7: P ← P ∪ {first triple in L}, L← L \ {first triple}
8: while |P| < K and L ̸= ∅ do
9: Select z′ ∈ L maximizing

∑
z∈P dist(qz, qz′) +

ϕ(qz′)
10: P ← P ∪ {z′}, L← L \ {z′}
11: end while
12: return P

sample as ((qi, a), (qj+1, . . . , qj+L)), where (qi, a)
is the input QA pair, and (qj+1, . . . , qj+L) are L
target questions; here, i indexes the input question
from the knowledge base (i = 1, . . . ,M ), and j
iterates over starting indices of L consecutive sim-
ilar questions (j = 1, . . . , N − L). The loss for
predicting each target question qj+l is defined as:

Lj+l(qi, a) = − log(PΦ(qj+l|qi, a, qj+1, . . . , qj+l−1)),

where the generation of the question qj+l is condi-
tioned on both the original QA pair (qi, a) and all
previously generated similar questions in the same
batch, (qj+1, . . . , qj+l−1), enabling the model to
capture contextual dependencies and improve syn-
tactic diversity while maintaining semantic consis-
tency. Consequently, the overall training objective
can be formulated as:

LIntention =
∑

i

∑

j

L∑

l=1

Lj+l(qi, a). (2)

4 Optimization Framework

4.1 Dynamic Demonstration Selection for
Contextual Prompting

To enhance contextual generation, we construct in-
context prompts using the knowledge base D =
(qi, ai)

M
i=1, where some questions qi are associated

with similar questions q∗
i . The goal is to select K

examples for a target question qs and append them
with their similar questions to enable in-context
learning. The objective is:

arg max
P⊆D,|P|=K




K∑

i=1

S(qs, qpi) +
α

K

∑

i ̸=j

dist(qpi , qpj )


 ,

(3)

Algorithm 2 Greedy Algorithm for Maximizing
Pairwise Diversity
Require: Set of candidates Q∗, budget B, cost function

cost(q), distance function dist(·, ·)
Ensure: Subset S ⊆ Q∗

1: S ← ∅, Br ← B
2: while Br > 0 and Q∗ \ S ̸= ∅ do
3: Select q∗ ∈ Q∗ \ S that maximizes:

∆f(S, q∗)

cost(q∗)
=

∑
q∈S dist(q, q∗)

cost(q∗)

4: if cost(q∗) ≤ Br then
5: S ← S ∪ {q∗}
6: Br ← Br − cost(q∗)
7: else
8: Q∗ ← Q∗ \ {q∗}
9: end if

10: end while
11: return S

where S(qs, qpi) is the cosine similarity between
BERT embeddings of qs and qpi , ensuring rele-
vance, dist(qpi , qpj ) is the Euclidean distance be-
tween question embeddings, measuring diversity
(Qian et al., 2004), and α is a tunable constant
that normalizes the diversity contribution to ap-
proximately linear scaling (α = 0.5). To solve
this optimization problem, we propose the Ques-
tion Subset Mining (QSM) algorithm, designed to
balance relevance and diversity (see Algorithm 1).

4.2 Similar Question Selection for Knowledge
Base Expansion

Instead of generating a small set of questions di-
rectly, we argue that a two-step approach, which
generates many candidate questions and then se-
lects the best subset, would offer greater flexibility
and achieve better results in industrial applications.
The constrained optimization problem is formally
defined as:

max
S⊆Q∗

∑

q
a

,q
b

∈S
q

a

̸=q
b

dist(qa, qb) s.t.
∑

q∈S

cost(q) ≤ B.
(4)

where cost(q) denotes the cost of including ques-
tion q, either by token length or a uniform cost.

With the proof of NP-hardness and submodular-
ity presented in Appendix D, we propose a greedy
algorithm that efficiently approximates the optimal
solution with a guaranteed approximation bound of
1 − 1/e. The greedy algorithm iteratively selects
the sample q∗ that provides the highest marginal
gain relative to its cost while satisfying the budget
constraint (see Algorithm 2).
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Models
Semantic relevance Character-level diversity Acceptance ratio

Precision Recall F1-Score Distinct-1 Distinct-2 Distinct-Avg
SimBERT 0.8622 0.7744 0.8160 0.1387 0.2386 0.1562 18.3%
RoFormer-Sim 0.8574 0.7704 0.8115 0.1836 0.3092 0.2073 20.0%
ChatGLM2 (Zero-Shot) 0.6804 0.7152 0.6973 0.2607 0.3889 0.3248 -
ChatGLM2 (Few-Shot) 0.5475 0.5882 0.5671 0.1752 0.2005 0.1878 -
ChatGLM2-FT 0.8576 0.8141 0.8352 0.2232 0.3589 0.2910 37.9%

Context-Aware (Ours) 0.8628 0.8377 0.8505 0.2098 0.3502 0.2800 45.0%
Intention-Enhanced (Ours) 0.8622 0.8390 0.8504 0.2041 0.3395 0.2718 84.0%

+ dynamic demo selection 0.8612 0.8527 0.8569 0.2105 0.3627 0.2866 82.0%

Improvement (%) 0.07% 4.74% 2.60% - - - 121.64%

Table 3: Performance comparison of similar question generation methods. The universal best results are bolded,
and the best results among baseline methods are underlined to compute relative improvement.

5 Experimental Setup

5.1 Dataset

To evaluate the proposed methods for generating
similar questions, we leverage a dataset sourced
from an active customer service chatbot in the finan-
cial sector, which comprises over 3,000 QA pairs
in Chinese, each with an average of 40 human-
annotated similar questions. From this, we con-
structed a training dataset of 90,000 instances by
randomly sampling the raw QA pairs, following the
format outlined in Table 2. Additional experiments
with public datasets are presented in Appendix C
for completeness and reproducibility.

5.2 Evaluation Details

For the quantitative evaluation, we utilized 90 un-
seen QA pairs, each with an average of 45 reference
questions. In the human assessment, we collected
15 new questions from the recent records of the
service chatbot, reflecting practical use cases. We
report the following performance metrics:

Semantic Relevancy Precision is the maximum
BERTScore (Zhang et al., 2020) between each gen-
erated question and reference question, measuring
semantic consistency. Recall is computed inversely,
assessing semantic diversity. The F1 score mea-
sures the harmonic mean of precision and recall,
balancing relevance and diversity.

Character-Level Diversity We use Distinct-N
(Li et al., 2016) to evaluate lexical diversity and
report the Distinct-1, Distinct-2, and their average,
Distinct-Avg score, counting unique N-grams in
generated questions. Higher values indicate greater
textual diversity.

Qualitative Evaluation Five industry experts as-
sess generated questions against source QA, mark-

ing acceptable ones based on the semantic consis-
tency and syntactic diversity criteria1.

6 Results and Discussions

6.1 Main Results

Table 3 presents results for generating 20 simi-
lar questions. Most methods achieve high pre-
cision, with generated questions closely aligning
with source semantics. However, baseline methods
show low recall, indicating limited diversity as a
key challenge in SQG. Static in-context learning
methods underperform in both precision and re-
call due to irrelevant demonstrations. Fine-tuning
with a one-to-one objective (ChatGLM2-FT) im-
proves recall while maintaining precision, demon-
strating the value of task-specific adaptation. The
proposed one-to-many training objective (Context-
Aware) enhances both precision and recall, and the
Intention-Enhanced method further improves di-
versity and relevance. The inclusion of dynamic
demonstration selection achieves state-of-the-art
performance, surpassing zero-shot methods.

Human evaluation shows that general-purpose
text-generation models, SimBERT and RoFormer-
Sim, perform poorly, with only 20% of gener-
ated questions meeting the acceptance criteria.
ChatGLM2-FT improves this to 37.9%, but still
remains largely redundant and fails to meet practi-
cal needs. While the Context-Aware method excels
in quantitative metrics, its impact on the acceptance
ratio is modest. Introducing the customer’s inten-
tion via the source answer significantly broadens
the space of exploration, resulting in the largest
number of usable similar questions. This empha-
sizes the importance of contextual information in
improving relevance and diversity.

1Metrics and evaluation criteria are detailed in Appendix
A. Implementation details are presented in Appendix B.
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Figure 3: Performance comparison of similar question
generation methods with varying number of questions.

Finally, character-level diversity shows that
ChatGLM2-FT and the proposed methods outper-
form SimBERT, RoFormer-Sim, and ChatGLM2
(Few-Shot) in Distinct scores. Although the zero-
shot ChatGLM2 achieves the highest Distinct score,
it sacrifices consistency, as reflected in its low pre-
cision score due to the unconditioned generation
process, which is not an ideal behavior.

6.2 Performance vs. the Number of
Generated Questions

In real applications, the desired quantity of similar
questions often falls within the range of several
tens to hundreds. Therefore, we systematically
examine the performance of the proposed method
by generating varying quantities of questions, up
to a maximum of 100.

As shown in Figure 3, the Intention-Enhanced
approach shows a surprising trend: precision stays
consistently high, with only a slight decrease when
generating up to 100 questions, while baseline
methods experience a significant precision drop
as the number of questions grows. This strength
comes from the approach’s ability to balance rel-
evance and variety, creating a diverse set of ques-
tions that closely match user intents and cover a
broad range of query expressions. In contrast, base-
line methods lose semantic consistency as question
volume increases, reducing relevance and lower-
ing precision. Additionally, our approach greatly
improves recall, rising from 0.82 to above 0.89 as
more questions are generated. Notably, our meth-
ods reach a recall of approximately 0.82 when gen-
erating just 10 questions, surpassing baseline meth-

Method Constrain Time Total Diversity

Random 20 choose 5 0:23 4.37
Greedy (Ours) 20 choose 5 2:27 5.15
Exhaustive 20 choose 5 6:40:12 5.78
Random 20 choose 10 1:39 20.14
Greedy (Ours) 20 choose 10 9:34 22.31
Exhaustive 20 choose 10 - -

Table 4: Comparison of random selection and greedy
algorithm in time efficiency and semantic diversity.

ods when generating 100 questions. This demon-
strates that the one-to-many training objective effec-
tively enables LLM to explore the semantic space
surrounding the source question.

For character-level diversity, the proposed meth-
ods achieve the highest Distinct scores when gener-
ating 10 questions. All methods exhibit a reduction
in distinct scores as the number of generated ques-
tions increases, which can be ascribed to the inher-
ent constraint imposed by the limited length of the
source question. For baseline methods, the declina-
tion is relatively modest, which can be attributed
to the deviation of the semantic meaning. This ob-
servation also aligns with the decreased precision
noted earlier and is further investigated through
qualitative examples presented in Table 5.

6.3 Selection of Generated Questions
To select a subset of similar questions for knowl-
edge base expansion, comparison in Table 4 high-
lights the superior diversity of the proposed greedy
selection algorithm. Given that the augmentation is
an offline process, we argue that the time invested
in greedy search is a worthwhile trade-off for the
improvement in total diversity. We also note that
the exhaustive search method, which evaluates all
possible subsets and guarantees optimality, is ineffi-
cient due to the NP-hardness of the problem, where
selecting five questions from a set of 20 generated
questions requires evaluating 15,504 combinations.

6.4 Application Performance
We evaluated the performance of our system in
realistic customer service applications within the
banking industry, deploying it for an in-app chat-
bot serving over 100,000 active users over a three-
month period. The chatbot, equipped with a knowl-
edge base augmented with the Intention-Enhanced
approach, achieved the highest service success rate,
with over 92% user satisfaction, outperforming
the unaugmented knowledge base at 74% and the
simple context-aware approach at 83.83%. These
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Source question 证明开具时间要多久？ (How long does it take to process the certificate?)

Source Answer 如您申请开具电子版证明，预计2个小时内发送至您指定的邮箱，纸质版证明开具时
间预计3-8个工作日。 (If you apply for an electronic certificate, it is expected to be sent to
your designated email address within 2 hours. The processing time for a hard copy certificate
is estimated to be 3-8 working days.)

Method High precision Low precision

SimBERT 1. 证明要多久才可以开？ (How long does it
take to obtain a certificate?) 2. 开证明一般要
多久才能拿到？ (How long does it generally
take to obtain a certificate?) 3. 一般证明需要
多久才可以开？ (How long does it generally
take to issue a certificate?)

1. 证明要多长时间？(How long does it take
for the proof?) 2.公司证明怎么开？(How do
I go about obtaining proof from the company?)
3. 证明书需要几个证明时间？ (How many
proofing sessions are required for the proofing
book?)

Context-Aware
Batch Generation

1. 证明开具一般需要多长时间？ (How
long does it typically take to obtain a certifi-
cate?) 2. 开具证明需要多久时间？(How
long does it take to issue a certificate?) 3. 证
明开具需要几日？ (How many days does it
take to issue the certificate?)

1. 我开了证明怎么还没收到？(I applied for
the certificate, why haven’t I received it yet?)
2. 当天可以开出证明吗？ (Can I get the
certificate on the same day?) 3. 什么时候才
能把证明发给我？ (When will I receive the
certificate?)

Intention-
Enhanced Batch
Generation

1. 证明开具时间需要多久？ (How long
does it take to process the certificate?) 2. 开
具证明要多长时间？ (How long does it take
to issue a certificate?) 3. 证明开具大概要多
长时间？ (How long does it typically take to
issue a certificate?)

1. 今天开通证明，明天能发我吗？(If I
request a certificate today, can it be delivered
to me tomorrow?) 2. 今天可以开具电子证
明吗？ (Can an electronic certificate be issued
today?) 3. 开纸质证明要几天？(How many
days does it take to issue a paper certificate?)

Table 5: Example demonstration of generated similar questions. For each method, we pick three questions with high
precision (left) and three questions with low precision (right) to demonstrate semantic consistency and diversity.

results reveal the effectiveness of proposed aug-
mentation strategies in enhancing service quality
through improved query matching accuracy and
more semantically consistent response retrieval.

7 Qualitative Example Demonstration

We demonstrate a typical example from customer
service support to illustrate the effectiveness of
the proposed methods, as shown in Table 5. The
high-precision examples across all methods demon-
strate strong semantic consistency with the source
question, while the low-precision examples reveal
notable distinctions. Questions generated by Sim-
BERT deviate from the source question and exhibit
a lack of fluency, exemplified by ‘How can I obtain
a certificate from the company?’ ( ‘公司证明怎
么开？’). This departure from the original ques-
tion is consistent with the significant drop in the
recall score as seen earlier in Figure 3. Conversely,
the Context-Aware Batch Generation method can
generate novel expressions, such as ‘I applied for
the certificate, why haven’t I received it yet?’ ( ‘我
开了证明怎么还没收到？’), which suggests a
more effective exploration of the semantic space
surrounding the source question. In the case of
the Intention-Enhanced Batch Generation method,

it becomes evident that information derived from
the intention, not present in the source question, is
effectively harnessed to generate similar questions,
as shown by ‘electronic certificate’ ( ‘电子证明’)
and ‘paper certificate’ (‘纸质证明’). This under-
scores the importance of the customer intention
as an effective guide to enhance the diversity of
generated questions.

8 Conclusion

This work presents an innovative approach to
expanding the knowledge base of compliance-
guaranteed service chatbots by generating simi-
lar questions with LLMs. By introducing a one-
to-many training objective and utilizing customer
intention as contextual guidance, we enhanced se-
mantic diversity while staying aligned with the cus-
tomer’s intent. The optimization framework en-
ables our method to be seamlessly integrated into
existing production systems, offering great flex-
ibility and efficiency. These promising findings
highlight LLMs’ growing role in augmenting con-
ventional system architectures in scenarios where
standalone LLMs are not directly applicable, en-
couraging further research into LLM-guided sys-
tems for industrial deployment.
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Limitations

While this work pioneers a novel strategy for
augmenting a retrieval-based chatbot system with
LLM-generated similar questions, it has two main
limitations. First, it assumes customer inquiries
are monolingual, overlooking the challenges of
multilingual query matching, increasingly common
in multinational enterprises and domains with fre-
quent code-switching (Jiang et al., 2016). Second,
human evaluations by domain experts are costly
and lack scalability. Recent studies suggest using
LLM-as-a-judge to replace human involvement in
performance evaluation, which could be better inte-
grated into the proposed method to provide human-
aligned feedback during question generation.
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A Details on Evaluation Metrics

For quantitative evaluation of the generated ques-
tions, we use the following metrics:

precision =
n∑

i=1

maxmj=1BERTScore(qi, rj))

n

recall =
m∑

i=1

maxmj=1BERTScore(ri, qj))

m

F1 = 2 · precision · recall
precision+ recall

Distinct-N =
count(unique(N -grams))

count(N -grams)

For qualitative evaluation with human experts, the
criteria can be summarized as: 1) correctness, en-
suring that the generated questions are syntactically
sound; 2) relevancy, which assesses whether the
generated questions align with the original inquiry;
and 3) coherence, which verifies whether the ques-
tion should correspond to the same answer.

B Implementation Details

We utilize the lightweight ChatGLM2-6B (Zeng
et al., 2023) as our base model for its superior per-
formance in the Chinese language (Hong et al.,
2025b). Instead of employing parameter-efficient
tuning (Ding et al., 2023), we implemented full
tuning using Nvidia A100 GPUs on 90,000 train-
ing instances, as this approach yields significantly
better performance. In the case of SimBERT and
RoFormer-Sim, we set the temperature and top-
k parameters to 0.9 and 5, respectively. For the
ChatGLM2-based methods, we adhere to the de-
fault generation settings. The number of generated
outputs, denoted as L, is set to 20, as we have
observed that increasing this number often leads
to degraded performance, which is discussed in
Section 6.2.

C More Results

In this section, we present additional experimental
results to gain further insights into industrial de-
ployment and the general applicability of the pro-
posed methods. The objective of these experiments
is to demonstrate two crucial properties: 1) Model
invariance, which ensures that the performance

remains consistent regardless of the model type or
size applied, and 2) Domain invariance, which
ensures that the performance remains consistent
across different domains or tasks.

To explore these aspects, we incorporate two
additional LLMs through the OpenAI API, GPT-
3.5 and GPT-4, which are proprietary models
with advanced capabilities. Given that these mod-
els are black-boxed, we implement the Intention-
Enhanced prompting without model finetuning. For
evaluation, we utilize three publicly available QA
datasets covering distinct domains: telecommuni-
cations (telecom), banking services for loans (loan),
and legal services (legal). For each source question,
we generate 20 similar questions.

The results presented in Table 6 demonstrate the
varying performances of different models. GPT-
4 generally outperforms GPT-3.5 due to its larger
model size. However, the fine-tuned ChatGLM2
often exhibits competitive performance, especially
with intent enhancement, attributed to task-specific
fine-tuning. This highlights the importance of do-
main adaptation in achieving better text quality.
However, larger LLMs show advantages when eval-
uated on generic domains, such as legal and law,
benefiting from extensive pretraining data.

The generation speed of the methods varies con-
siderably. Both proposed methods benefit from the
one-to-many batch generation, resulting in signif-
icantly faster generation compared to the one-to-
one approach. For instance, the average speed for
Context-Based Batch Generation using GPT-3.5 is
5.83 seconds per item (i.e., source question), while
Intention-Enhanced Batch Generation takes 6.35
seconds. In contrast, the same task using the one-
to-one paradigm requires 50.23 seconds per item,
significantly slower than the proposed methods. We
do not present results for one-to-one methods due
to their poor performance and slow generation.

Finally, we observe that the relative performance
in terms of generation quality, speed, and retrieval
capability remains consistent across different tasks
and models. The larger models tend to produce
better results, which is consistent with previous
research; however, the improvements are not sig-
nificantly large. Due to cost constraints, we still
recommend a smaller fine-tuned model for accom-
plishing the Similar Question Generation tasks.

762



Domain Model Method Precision Recall F1 Acceptance Ratio

telecom

gpt-3.5 context 0.6845 0.6908 0.6876 28%
intent 0.6327 0.6492 0.6408 62%

gpt-4 context 0.7076 0.7157 0.7116 32%
intent 0.6420 0.6526 0.6472 68%

chatglm context 0.6050 0.5890 0.5969 44%
intent 0.5836 0.5708 0.5771 76%

loan

gpt-3.5 context 0.7002 0.7645 0.7311 32%
intent 0.6278 0.6890 0.6569 68%

gpt-4 context 0.7223 0.7853 0.7526 38%
intent 0.6370 0.6990 0.6663 72%

chatglm context 0.6314 0.6324 0.6319 46%
intent 0.5801 0.6302 0.6042 88%

legal

gpt-3.5 context 0.6858 0.7416 0.7127 44%
intent 0.6337 0.7048 0.6676 64%

gpt-4 context 0.7035 0.7671 0.7341 62%
intent 0.6415 0.7187 0.6780 88%

chatglm context 0.7035 0.7671 0.7341 42%
intent 0.6800 0.7401 0.7088 72%

Table 6: Performance of different models across various domains for similar question generation.

D Similar Question Selection
Optimization

While increasing the number of similar questions
can enhance the retrieval capabilities of a knowl-
edge base, it also leads to significant redundancy.
This redundancy not only inflates maintenance
costs and increases storage requirements but also
extends retrieval times and leads to unpleasant user
experiences. This highlights the importance of se-
lecting an optimal subset of similar questions that
maximizes diversity while efficiently managing re-
source constraints. To address this, we propose an
optimization framework that incorporates semantic
relationships and a predefined budget constraint B,
which reflects the limitations of storage or retrieval
power in practical applications.

D.1 Problem Formulation

The optimization framework is designed to max-
imize semantic diversity within a constrained re-
source budget B, a key parameter representing the
system’s capacity to manage selected questions.
This budget can be interpreted as either a storage
constraint, limiting the number of questions based
on their length (e.g., number of characters), or a
retrieval power constraint, where computational
resources or time available for retrieving answers
are limited. As more similar questions are selected,
both storage and retrieval complexity are elevated,
leading to high maintenance costs and increased

system latency due to the need to compute similar-
ity measures.

Each candidate question q ∈ Q∗ is associated
with a cost cost(q), which quantifies its storage or
retrieval requirement. To simplify the optimization,
we normalize cost(q) = 1, allowing B to directly
represent the maximum number of questions that
can be selected. The selected subset of questions is
denoted as S, and the semantic distance between
any two questions, qa and qb, is represented by
dist(qa, qb). The optimization problem is formally
defined as:

max
S⊆Q∗

∑

qa,qb∈S
qa ̸=qb

dist(qa, qb)

s.t.
∑

q∈S
cost(q) ≤ B.

D.2 Practical Implications and Advantages of
Budget Constraints

The introduction of B as a budget constraint pro-
vides a practical mechanism to balance diversity
and resource efficiency in real-world systems. This
parameter enables the framework to address key
operational challenges while ensuring adaptability
and robust performance across different scenarios.

Resource Efficiency The budget B directly con-
strains the total cost of the selected questions,
which can reflect storage or computational re-
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sources. This ensures that the solution remains
feasible within the system’s operational limits:

• Storage Efficiency: In systems with limited
storage capacity, B controls the total num-
ber of questions stored, prioritizing seman-
tic diversity while minimizing redundancy.
This leads to more efficient use of storage
resources.

• Retrieval Scalability: By limiting the size
of the selected subset, B reduces the com-
putational complexity of pairwise similarity
calculations during retrieval. This improves
system responsiveness and ensures scalability
for larger datasets.

Flexibility The budget acts as a tunable param-
eter that can be adapted to specific application re-
quirements. By adjusting B, practitioners can fine-
tune the trade-off between diversity, storage, and
retrieval efficiency.

D.3 Proof of Proposed Solution
We first establish that the problem is NP-hard by
reducing it from a well-known NP-hard problem.
Next, we prove that the objective function is sub-
modular, enabling the use of the proposed greedy
algorithm as described in Algorithm 2. Finally, we
demonstrate the 1− 1/e approximation bound of
the Greedy Algorithm.

D.3.1 NP-Hardness of the Problem
Theorem D.1. The problem of selecting a subset
S ⊆ Q∗ to maximize the sum of pairwise distances

f(S) =
∑

qa,qb∈S
qa ̸=qb

dist(qa, qb),

subject to the budget constraint
∑

q∈S cost(q) ≤
B, is NP-hard.

Proof. We establish NP-hardness by reducing the
problem from the Maximum Diversity Problem
(MDP), a known NP-hard problem (Kuo et al.,
1993). The MDP involves selecting k elements
from a set to maximize the sum of pairwise dis-
tances:

f(S) =
∑

qa,qb∈S
qa ̸=qb

dist(qa, qb), |S| = k.

In our problem, consider the special case where
each element has uniform cost, i.e., cost(q) = 1

for all q ∈ Q∗, and the budget constraint is B = k.
This simplifies to selecting exactly k elements from
Q∗, equivalent to the MDP. Since the MDP is NP-
hard, and our problem generalizes it with arbitrary
costs and a flexible budget constraint, our prob-
lem is at least as hard as the MDP. Moreover, the
problem is in NP, as verifying a candidate solution
S involves checking in polynomial time whether∑

q∈S cost(q) ≤ B and computing the total diver-
sity

∑
qa,qb∈S
qa ̸=qb

dist(qa, qb). Thus, the problem is

NP-hard.

D.3.2 Submodularity of the Objective
Function

Although the problem is NP-hard, the objective
function is submodular, a property that enables
an efficient greedy algorithm to approximate the
optimal solution.

Theorem D.2. The objective function

f(S) =
∑

qa,qb∈S
qa ̸=qb

dist(qa, qb)

is submodular and non-decreasing.
Definition 1 (Submodularity). A set function f :
2N → R is submodular if, for any A ⊆ B ⊆ N
and any x /∈ B:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

This property reflects diminishing returns: the
marginal gain from adding an element decreases as
the set grows.

Proof. For f(S), the marginal gain from adding a
new element x to a set S is:

∆f(S, x) =
∑

q∈S
dist(x, q).

For A ⊆ B ⊆ Q∗ and x /∈ B:

∆f(A, x) =
∑

q∈A
dist(x, q)

∆f(B, x) =
∑

q∈B
dist(x, q).

Since A ⊆ B, the terms in ∆f(A, x) are a subset
of those in ∆f(B, x). Thus, the marginal gain
from adding x decreases as the set grows, satisfying
the submodularity condition:

∆f(A, x) ≥ ∆f(B, x).

Hence, f(S) is submodular. Additionally, f(S)
is non-decreasing, as adding an element can only
increase the sum of pairwise distances.
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D.4 Complexity and Approximation Analysis
The proposed greedy algorithm in Algorithm 2 ef-
ficiently selects a diverse subset under a budget
constraint while achieving a provable approxima-
tion guarantee.

D.4.1 Approximation Guarantee
Given the submodularity and monotonicity of the
objective function f(S), the greedy algorithm pro-
vides the following approximation bound:

f(Sgreedy) ≥
(
1− 1

e

)
f(Soptimal),

where Sgreedy is the solution from the algorithm,
and Soptimal is the optimal subset. This ensures
the algorithm achieves at least 63% of the optimal
solution.

D.4.2 Complexity Analysis
The computational complexity of the greedy al-
gorithm is analyzed as follows. Computing the
marginal gain for all n candidates in each iteration
requires O(nk) operations, where k represents the
size of the selected subset S. The algorithm exe-
cutes at most O(n) iterations, as each iteration se-
lects one element. Consequently, the total complex-
ity is O(n2k). With precomputed distances, the
complexity reduces to O(n2) at the cost of O(n2)
storage. The greedy algorithm balances solution
quality and efficiency, providing near-optimal re-
sults with manageable computational overhead for
moderate-sized datasets.
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