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Abstract

Knowledge of the medical decision process,
which can be modeled as medical decision
trees (MDTs), is critical to building clinical
decision support systems. However, current
MDT construction methods rely heavily on
time-consuming and laborious manual anno-
tation. To address this challenge, we propose
PI-LoRA (Path-Integrated LoRA), a novel low-
rank adaptation method for automatically ex-
tracting MDTs from clinical guidelines and
textbooks. We integrate gradient path infor-
mation to capture synergistic effects between
different modules, enabling more effective and
reliable rank allocation. This framework en-
sures that the most critical modules receive
appropriate rank allocations while less impor-
tant ones are pruned, resulting in a more effi-
cient and accurate model for extracting med-
ical decision trees from clinical texts. Exten-
sive experiments on medical guideline datasets
demonstrate that our PI-LoRA method signifi-
cantly outperforms existing parameter-efficient
fine-tuning approaches for the Text2MDT task,
achieving better accuracy with substantially re-
duced model complexity. The proposed method
achieves state-of-the-art results while maintain-
ing a lightweight architecture, making it par-
ticularly suitable for clinical decision support
systems where computational resources may be
limited.

1 Introduction

Medical decision processes are critical to build-
ing effective clinical decision support systems, and
these processes can be effectively modeled as med-
ical decision trees (MDTs). The ability to automat-
ically extract MDTs from clinical guidelines and
textbooks would significantly reduce the reliance
on time-consuming manual annotation while en-
abling the development of more robust decision
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support tools. However, the complex hierarchical
nature of medical decision-making presents unique
challenges for automated extraction, requiring so-
phisticated natural language processing techniques
that can capture both the structural and semantic
aspects of clinical guidelines.

Previous research (Zhu et al., 2024a) on the
Text2MDT task has primarily focused on either
end-to-end frameworks using large language mod-
els or pipeline approaches, without fully investigat-
ing parameter-efficient fine-tuning (PEFT) meth-
ods (Ding et al., 2022) for this specific application.
In addition, while PEFT methods like LoRA (Hu
et al., 2021) have shown promise in reducing model
complexity, existing LoRA-based approaches for
Text2MDT suffer from critical limitations in rank
allocation. Methods such as AdaLoRA (Zhang
et al., 2023a) rely on sensitivity-based importance
scores that are unreliable as they only consider how
a single parameter change affects the model under
the assumption that no other parameters change.
Similarly, approaches like SoRA (Ding et al., 2023)
and SaLoRA (Hu et al., 2023) use architectural pa-
rameters that cannot reliably reflect the quality or
importance of LoRA ranks, leading to suboptimal
performance in the context of medical decision tree
extraction where precise structural representation
is essential.

To address these limitations, we propose PI-
LoRA (Path-Integrated LoRA), a novel low-rank
adaptation method that overcomes the deficien-
cies of existing rank allocation techniques for the
Text2MDT task. Our approach draws inspiration
from Shapley value theory, treating each LoRA
module as an independent participant in a cooper-
ative game to measure its contribution to overall
model performance. Additionally, we integrate gra-
dient path information to capture synergistic effects
between different modules, enabling more effec-
tive and reliable rank allocation. This framework
ensures that the most critical modules receive ap-
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propriate rank allocations while less important ones
are pruned, resulting in a more efficient and accu-
rate model for extracting medical decision trees
from clinical texts.

Extensive experiments on medical guideline
datasets demonstrate that our PI-LoRA method sig-
nificantly outperforms existing PEFT approaches
for the Text2MDT task, achieving better accuracy
with substantially reduced model complexity. The
proposed method achieves state-of-the-art results
while maintaining a lightweight architecture, mak-
ing it particularly suitable for clinical decision
support systems where computational resources
may be limited. Our contributions include the first
comprehensive exploration of PEFT methods for
Text2MDT, a novel PI-LoRA framework that over-
comes limitations in existing rank allocation meth-
ods, and empirical evidence showing that our ap-
proach achieves superior performance compared to
both pipeline and end-to-end LLM-based methods
while requiring significantly fewer parameters.

2 Related works

2.1 Tree data extraction from text

There is a rich history of NLP tasks that aim to
extract tree structures from a given text. The most
fundamental task in NLP is syntax analysis, which
aims to express the syntactic structure of a sen-
tence into a syntactic tree (Zhang, 2020). Parsing
often relies on a specific grammar, which is used
to refine the output structures of syntax and seman-
tics. Two of the most popular grammars are con-
stituent parsing and dependency parsing. Text2Tree
is also seen in many application scenarios. Math
word problems (MWPs) (Zhang et al., 2022b; Zhao
et al., 2023) extract mathematical expressions from
the unstructured texts and try to improve the neu-
ral networks’ capabilities in math problem solving
by asking the model to understand the tree struc-
ture. Semantic parsing (Kamath and Das, 2018),
which transforms unstructured text into an SQL
query, has promising application potential in areas
like dialogue systems, search engines, and busi-
ness intelligence. Text2MDT (Zhu et al., 2024a;
al., 2022; Zhu et al., 2023a,b) aims to automati-
cally extract medical decision trees from clinical
guidelines and textbooks to support the develop-
ment of clinical decision support systems without
relying on time-consuming manual annotation. It
proposes two different approaches for Text2MDT
- an end-to-end framework using large language

models and a pipeline framework - demonstrat-
ing that the LLM-based method outperforms the
pipeline approach while a lightweight pipelined
method achieves comparable performance with sig-
nificantly smaller model complexity.

2.2 Parameter efficient fine-tuning

Parameter-efficient fine-tuning (PEFT) opti-
mizes only a small subset of new parameters while
freezing the backbone model during LLM adap-
tation (Ding et al., 2022; Zhang et al., 2023b).
Contemporary approaches fall into three cate-
gories: (a) Addition-based methods that incorporate
supplementary modules (e.g., Adapters (Houlsby
et al., 2019), Prefix/Prompt tuning (Li and Liang,
2021; Lester et al., 2021)); (b) Specification-based
methods that selectively adjust or prune inter-
nal parameters (Ben-Zaken et al., 2021); and (c)
Reparameterization-based methods that project
adaptive parameters into low-dimensional sub-
spaces (Aghajanyan et al., 2021), building on the
intrinsic dimensionality concept.

LoRA (Hu et al., 2021) exemplifies reparameter-
ization by optimizing low-rank decompositions of
weight updates, showing strong performance across
models (Dettmers et al., 2023). However, its fixed-
rank design lacks guidance for module-specific
rank allocation. Subsequent methods address this
by dynamically adapting LoRA parameters: (a) Dy-
LoRA (Valipour et al., 2023) trains multi-rank mod-
ules simultaneously via random rank sampling. (b)
AdaLoRA (Zhang et al., 2023a) allocates weights
using SVD (∆W = PΛQ) and importance-based
pruning. (c) SoRA (Ding et al., 2023) reduces re-
dundancy via l0 regularization and proximal gradi-
ents. (d) SaLoRA (Hu et al., 2023) enables module-
differentiated ranks using Lagrange multipliers.

3 Method

3.1 Task formulation

The Text2MDT task involves the systematic
reconstruction of medical decision trees from
clinical documentation. Given a textual input
X = [x1, x2, ......, xntext ] comprising ntext lexi-
cal units, the objective is to synthesize the pre-order
traversal sequence T = [N1, N2, ......, Nnnode

]
representing nnode structural elements within the
medical decision tree. This encoding uniquely cap-
tures the hierarchical decision logic embedded in
clinical guidelines.
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Each decision node integrates three functional
components as formalized below:

Node = {Role, Triplets, Logical_Rel},
Role = 3 or 2,

Triplets = (t1, t2, ..., tntri),

Logical_Rel = and, or, null, (1)

with critical specifications: (a) Role distinguishes
node functionality—3 indicates conditional as-
sessment nodes, whereas 2 designates therapeu-
tic decision nodes. (b) Triplets aggregates ntri

subject-relation-object constructs (t1, t2, ..., tntri),
each t = (sub, rel, obj) encoding clinical entities
or procedural instructions. (c) Logical_Rel estab-
lishes inter-triplet connectivity, defaulting to null
when ntri ≤ 1.

3.2 Prompt template
According to (Zhu et al., 2024a), the Text2MDT

task contains three sub-tasks: (a) triplet extraction;
(b) node grouping; (c) tree assembling. The prompt
templates and introductions to these sub-tasks are
presented in Appendix A.

We also consider utilizing the LLMs for the end-
to-end framework. Since this task is complex, it
is natural that the idea of chain-of-thought (COT)
(Wei et al., 2022) could benefit our task. (Zhu et al.,
2024a) constructs a series of different COT-style
prompts and responses, and they find that a set
of prompt-response template referred to as COT-
Gen-3 performs the best. The prompt and response
template are presented in Appendix A.

3.3 PI-LoRA: Path-Integrated LoRA
Note that the previous works on Text2MDT only

considers the vanilla LoRA method for fine-tuning
LLMs, neglecting the other PEFT methods or more
advanced variants of LoRA. Thus, in this work, we
first analyze the limitations of the current LoRA
methods, and then propose a novel LoRA method
to enhance the fine-tuning performance.

3.3.1 Analysis of Problems in Existing
Methods

We now reflect on the previous representative
works on LoRA rank allocation. AdaLoRA (Zhang
et al., 2023a) first consider re-arrage the rank distri-
butions of LoRA modules on the LLM backbone.
It achieve this objective by first initialize all the
LoRA modules with a large number of ranks, and
prune the less important ranks gradually along with

the training procedure. AdaLoRA utilize a sensitiv-
ity based importance score (Michel et al., 2019),

ipt(w) = ∥w∇wL∥ (2)

which measures how much the training loss will
change if the LoRA parameters change. However,
(Zhang et al., 2022a) pointed out that this impor-
tance measure is unreliable, since it only considers
how one parameter change affects the model un-
der the hypothesis that no other parameter changes
occur, and have not consider its importance under
different model statuses.

AutoLoRA (Zhang et al., 2024) builds upon the
methodology of differentable neural architecture
search and bi-level optimization (Liu et al., 2019).
It considers each LoRA rank as a neural network
operation and assigns a learnable architectural pa-
rameter. Its objective is to select the best LoRA
architecture, which relies on the learned architec-
tural parameters’ values as the importance scores.
SoRA (Ding et al., 2023) and SaLoRA (Hu et al.,
2023) are similar to AutoLoRA except that the ar-
chitectural parameters are learned with a normal
optimization procedure on the training set (Bi et al.,
2020). The LoRA ranks with higher architectural
weights are kept while others are pruned. However,
as pointed out by (Chen and Hsieh, 2020), the ar-
chitectural parameters can not reliably reflect the
quality or importance of the LoRA ranks.

To enhance the effectiveness of the LoRA scor-
ing mechanism, we identify the key challenge as
overcoming the limitations of sensitivity scores (the
foundation of the AdaLoRA method). Our primary
inspiration stems from Shapley value theory (Lund-
berg and Lee, 2017). This theory models module
evaluation as a cooperative game framework, treat-
ing each module as an independent participant. The
Shapley value Φ(m) for a neural network module
m is defined by the following game-theoretic equa-
tion:

Φm =
1

|Sk|
∑

A⊆Sk\{m}

[
V(A∪{m})−V(A)

]
(3)

where Sk represents the space of all possible mod-
ule combinations, and V(·) denotes the coalition
utility function. This framework captures synergis-
tic effects through multi-dimensional interaction
evaluation. While computational complexity re-
mains challenging, its theoretical foundation pro-
vides crucial insights for our research.
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Our second inspiration comes from gradient path
integration techniques. The integrated gradients
method (Sundararajan et al., 2017) measures the
importance by integrating along paths:

ipt(ω) = ω ∗
∫ 1

α=0

∂F (αω)

∂ω
dα (4)

This method constructs an interpolation path be-
tween baseline input x′ (e.g., zero vector) and
target input x, quantifying feature contributions
through gradient integration. Essentially, it com-
putes gradients under different parameter scaling
coefficients α, though significant computational
overhead arises from multiple forward passes.

3.3.2 PI-LoRA
Building on the above analysis, we propose

PI-LoRA to improve importance evaluation of
LoRA modules in LLMs. Given any parameter
w ∈ LoRAm,l, loss function L, and zero baseline,
we construct the importance scoring function:

s(w) =

∣∣∣∣w
∫ 1

0
∇wL(αw)dα

∣∣∣∣ (5)

≈ |w|
K

∥∥∥∥∥
K∑

k=1

∇L( k
Kw)

∥∥∥∥∥ (6)

Equation (6) employs the trapezoidal rule with
K > 0 equidistant points to approximate high-
dimensional integration, addressing the strong non-
convexity of L in LLM parameter spaces.

Equation (6) requires K gradient computations,
yielding O(K) complexity. To reduce computa-
tional load, we design a stochastic sampling strat-
egy. Assume the training process contains P train-
ing steps. During the p-th mini-batch of fine-tuning,
we uniformly sample αp from { 1

K , ..., K−1
K , KK },

with single-point approximation:

s̃(p)(w) = ∥(αp ∗ w) ∗ ∇L(αp ∗ w)∥ (7)

After P mini-batches, parameter importance is ob-
tained via temporal aggregation:

s̃(w) =
1

P

P∑

p=1

s̃(p)(w). (8)

This approach reduces complexity to O(1) per pa-
rameter per batch, significantly enhancing feasi-
bility for large-scale models. Then the sensitivity
score for the whole LoRA module is calculated as
the average score:

s̃(LoRAm,l) =

∑
w∈LoRAm,l

s̃(w)

|LoRAm,l|
. (9)

3.3.3 Algorithm Overview
We now present the overall procedure for our

PI-LoRA method, which is presented in Algorithm
1. We can see that PI-LoRA is a LoRA pruning
method equipped with our LoRA scoring method.
We calculate the LoRA importance scores from
Eq 9, and then prune the LoRA parameters that
receive the lowest scores.

Algorithm 1 PI-LoRA
Input: Train data D; the number of training

steps P ; randomly initialized LoRA modules
LoRAm,l (l < L, m ∈ SLoRA); targeted num-
ber of LoRA modules NLoRA.

1: for p = 1 to P do
2: Sample a mini-batch data from D;
3: Sample αp from { 1

K , ..., K−1
K , KK };

4: Conduct a forward pass on Ba and compute
the gradients of the LoRA modules;

5: Calculate the sensitivity scores
s̃(p)(LoRAm,l) via Eq 8;

6: Accumulate the average score of LoRAm,l

for each LoRA module via Eq 9.
7: end for
8: Prune the LoRA modules that receives the low-

est scores, so that remaining LoRA parameters
meet the targeted number of LoRA modules
NLoRA.

4 Experiments

4.1 Datasets and evaluation metrics
In this work, we mainly use the Text2MDT task

for evaluation. Readers are referred to (Zhu et al.,
2024a) for detailed introductions and dataset statis-
tics. In order to evaluate how different models
perform on the Text2MDT task, we now define the
following evaluation metrics:

• For triplet extraction, we follow (Zhu et al.,
2023) to adopt the triplet-level precision
(Prec), recall (Rec) and F1 scores as evalu-
ation metrics.

• For node grouping, we define a Levenshtein
ratio (Navarro, 2001) style score, NG_LR, for
this subtask.

• For the tree assembling subtask and also the
whole Text2MDT task, we define three met-
rics: (a) the accuracy of decision tree extrac-
tion (Tree_Acc); (b) the F1 score of decision
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paths (DP_F1); (c) Lenvenshtein ratio of the
decision tree (Tree_LR).

4.2 Baselines

On the Text2MDT task, We compare our method
with the current SOTA PEFT baseline methods.
LoRA and its variants we consider the follow-
ing LoRA variants as baselines: (a) the original
LoRA (Hu et al., 2021) which are considered by
(Zhu et al., 2024a); (b) AdaLoRA (Zhang et al.,
2023a), which adaptively adjust the LoRA param-
eters among different Transformer modules. (c)
AutoLoRA (Zhang et al., 2024), which utilize the
bi-level optimization method (Liu et al., 2019) to
learn the LoRA ranks’ importance scores. (d)
MOELoRA (Liu et al., 2023), which considers each
LoRA module as a mixture of single-rank LoRA
experts. (e) DoRA (Liu et al., 2024).
Other PEFT methods We also consider the most
recent PEFT methods: (a) Parallel-Adapter pro-
posed by He et al. (2021); (b) Learned-Adapter
(Zhang et al., 2023b). (c) P-tuning v2 (Liu et al.,
2021). (d) IAPT (Zhu et al., 2024b). (e) BitFit
(Ben-Zaken et al., 2021). (f) (IA)3 (Liu et al., 2022),
which multiplies learnable vectors to the hidden
states in different modules of the Transformer layer.
(g) SSP (Hu et al., 2022).

The baselines are implemented using their
open-sourced codes. We only adjust the hyper-
parameters related to tunable parameter numbers
to fairly compare the baseline methods and our
method.

4.3 Experimental settings

LLM backbones The main experiments use the
most recent open-sourced LLM, Qwen 2.5 7B mod-
els (Yang et al., 2025) as the pretrained backbone
model. In the ablation studies, we will also use
the Baichuan 2 7B models (Yang et al., 2023) and
GLM-4-9B-Chat1. When fine-tuning a LLM, we
only consider the supervised fine-tuning (SFT) set-
ting (Ouyang et al., 2022). After receiving a prompt
or instruction, all the predictions are generated us-
ing the language modeling head (LM head). No
additional prediction heads are installed for making
categorical or numerical predictions. For decoding
during inference, we use beam search with beam
size 3.
Implementation details for PI-LoRA For our
PI-LoRA method, each LoRA module is initialized

1https://huggingface.co/zai-org/glm-4-9b-chat-hf

with rank r = 16. For our PI-LoRA method, K
is set to 25. And at the end of the PI-LoRA train-
ing procedure, half of the LoRA modules will be
pruned. And the remaining LoRA placements will
be used as the LoRA setting for re-initialization
and retraining. The Adam optimizer (Loshchilov
and Hutter, 2017) is employed throughout all ex-
periments. The loss objective is MSE. The learning
rate is set to 1e-4, and the number of learning rate
warm-up steps is 100. The batch size is set to 32,
with the help of gradient accumulation technique.
We run validation on the valid set after each epoch.
If the validation loss does not drop for 5 epochs,
then the training will stop. The gradient check-
points with the lowest validation loss will be used
to make predictions on the test set.

During the final fine-tuning stage, all the LoRA
modules are randomly initialized according to the
allocation setting delivered by the previous stage.
And training hyper-parameters are set to be the
same with the previous stage. In every 200 steps,
the model is evaluated on the dev set. Patience is
set to 10, that is, if the model does not achieve a
lower development set loss for 10 evaluation runs,
the training stops. The best checkpoint on the dev
set is used to run predictions on the test set.

4.4 Main results

Results on the sub-tasks In this setup, We com-
pare our proposed method with baseline PEFT
methods by employing these methods in fine-
tuning on the Text2MDT task. The experimental
results are presented in Table 1. We present the
encoder-based methods from (Zhu et al., 2024a)
as comparison. Table 1 reveals that our PI-LoRA
method outperforms the baseline methods across
all seven tasks, with comparable tunable parame-
ters. In particular, PI-LoRA outperforms the previ-
ous SOTA LoRA-based baselines like AdaLoRA,
AutoLoRA, DoRA, and MOELoRA with compa-
rable or less tunable parameters. These results
demonstrate that our method excels at downstream
task adaptation of large language models. In addi-
tion, we can see that our PI-LoRA method outper-
forms all the encoder-based methods.
Results on the end2end framework In this set
of experiments, we adopt the end2end framework
and fine-tune the LLM to complete the whole MDT
generation process upon the corresponding prompt.
The results are detailed in Table 2. Consistent with
earlier findings (Table 1), PI-LoRA achieves supe-
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Subtask Triplet extract Node Grouping Tree assembling
Metric Prec Rec F1 NG_LR Tree_Acc DP_F1 Tree_LR

LLM APIs
GPT-4 0.783 0.815 0.798 0.916 0.672 0.786 0.893

Encoder-based methods
UNIRE 0.913 0.881 0.896 - - - -

TPLinker 0.909 0.878 0.893 - - - -
CasRel 0.882 0.891 0.886 - - - -

Sep-Biaffine 0.893 0.897 0.895 - - - -
NG-Biaffine - - - 0.962 - - -

NG-TableFilling - - - 0.961 - - -
TreeAssemble-Biaffine - - - - 0.735 0.841 0.937

TreeAssemble-TableFilling - - - - 0.741 0.838 0.933
LLM fine-tuning methods

IA3 0.886 0.902 0.893 0.957 0.746 0.835 0.933
Bitfit 0.879 0.911 0.894 0.962 0.741 0.828 0.924
LoRA 0.901 0.908 0.904 0.973 0.764 0.858 0.952

AdaLoRA 0.903 0.910 0.906 0.978 0.761 0.852 0.948
AutoLoRA 0.914 0.901 0.907 0.976 0.765 0.860 0.954
MOELoRA 0.910 0.907 0.908 0.975 0.764 0.859 0.953

DoRA 0.906 0.913 0.909 0.978 0.767 0.862 0.959
PI-LoRA (ours) 0.911 0.916 0.913 0.981 0.772 0.884 0.967

Table 1: Results for each subtask in Text2MDT. The average results in five different runs are reported. The best
results are in bold.

Method Tree_Acc DP_F1 Tree_ER
LoRA 0.510 0.646 0.911

AdaLoRA 0.510 0.651 0.907
AutoLoRA 0.510 0.648 0.914
MOELoRA 0.520 0.657 0.917

DoRA 0.520 0.660 0.923
PI-LoRA (ours) 0.550 0.679 0.936

Table 2: Overall results of the end2end methods using
different PEFT methods. The average results in five
different runs are reported. The best results are in bold.

rior performance compared to the baseline methods
across all benchmarks. These results underscore
PI-LoRA’s efficacy in improving instruction-tuning
performance for LLMs, highlighting its potential as
a robust alternative to existing parameter-efficient
adaptation strategies.

4.5 Ablation studies and further analysis

Sensitivity analysis on the K parameter In our
main experiments (Table 1 and 2), we set the K
parameter to 25. Now we change its value to {1,
5, 10, 15, 50, 100}, and investigate how it affects
the fine-tuning performance. The experimental re-
sults are presented in Table 3. The results show
that K > 10 results in reasonable performances,
and our PI-LoRA method is robust to this parame-

Value of k Tree_Acc DP_F1 Tree_ER
K = 1 0.510 0.652 0.906
K = 5 0.520 0.664 0.923
K = 10 0.530 0.672 0.928
K = 15 0.540 0.678 0.934
K = 25 0.550 0.679 0.936
K = 50 0.550 0.677 0.935
K = 100 0.550 0.679 0.935

Table 3: Results of different values for the K parameter.

ter. However, low K results in sub-optimal perfor-
mance. This is natural: low K values means that
our method can not properly approximate the path
integral’s process, making our method to reduce to
the AdaLoRA method.
On the stability of our scoring method On
a given LLM backbone, we need to investigate
whether our LoRA scoring and pruning is stable
since it involves random sampling. We run the
whole LoRA scoring procedure under 3 different
random seeds, and compare the LoRA importance
scores obtained in each run. We calculate the simi-
larities between these three sets of scores pairwise.
The similarity score is measured using Spearman
rank correlation. Note that these three results are
not included in the evaluation of the previous ex-
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Seed 1 Seed 2 Seed 3
Seed 1 1.00 0.94 0.93
Seed 2 - 1.00 0.92
Seed 3 - - 1.00

Table 4: The pairwise similarity scores for the LoRA
ranks’ importance estimations obtained under three ran-
dom seeds.

Method Tree_Acc DP_F1 Tree_ER
Results for Baichuan 2 7B

LoRA 0.490 0.632 0.898
AdaLoRA 0.490 0.634 0.903

Ours 0.51 0.645 0.909
Results for GLM-4-9B-Chat

LoRA 0.540 0.678 0.936
AdaLoRA 0.540 0.676 0.935

Ours 0.560 0.688 0.942

Table 5: Results for different PEFT methods, when the
backbone LLMs are Baichuan 2 7B and GLM-4-9B-
Chat.

periments. We present the pairwise correlations in
Table 4. From the results, we can see that the im-
portance scores of the LoRA ranks obtained under
different random seeds have very high correlations,
indicating that the LoRA scores obtained by our
method is stable with respect to random seeds.
Ablation studies of the LLM backbone Our
main experiments are conducted on the Qwen 2.5
7B model. To demonstrate the wide applicability
of our method, we now conduct experiments on the
Baichuan 2 7B and GLM-4-9B-Chat. The results
are reported in Table 5. We can see that on these
two backbones, our method can also outperform
the baseline methods.

5 Conclusion

In this paper, we presented FT-MDT, a novel
framework for extracting medical decision trees
from clinical texts through a novel low-rank adap-
tation method. The proposed approach addresses
Text2MDT, the task of of building clinical deci-
sion support systems by automating the extrac-
tion of medical decision trees from clinical guide-
lines and textbooks, eliminating the need for time-
consuming manual annotation. The key innova-
tion of our work lies in the development of PI-
LoRA (Path-Integrated LoRA), which overcomes
the limitations of existing rank allocation meth-
ods in LoRA by leveraging Shapley value theory

and gradient path integration. Unlike previous ap-
proaches that rely on unreliable sensitivity scores,
PI-LoRA provides a more effective and theoret-
ically grounded mechanism for module-specific
rank allocation, significantly improving the effi-
ciency and performance of the model. Our ex-
perimental results demonstrate that the PI-LoRA
method achieves superior performance compared
to previous approaches. This work not only ad-
vances the state-of-the-art in medical decision tree
extraction but also provides a valuable framework
for LoRA-based LLM fine-tuning.

Future work will explore extending this frame-
work to handle more complex medical decision-
making scenarios and investigate its applicability
across diverse medical domains with varying lev-
els of structural complexity. The principles un-
derlying PI-LoRA may also inspire more effective
parameter-efficient fine-tuning methods for other
natural language processing tasks involving hierar-
chical structure extraction.

Limitations

Despite the promising results achieved by our
PI-LoRA approach for medical decision tree ex-
traction, several limitations warrant consideration.
First, while our method significantly reduces the
need for manual annotation, it remains sensitive
to the quality and structure of the input medical
texts. Clinical guidelines with non-standard format-
ting, ambiguous phrasing, or complex multi-step
decision processes often lead to incomplete or in-
accurate tree structures, particularly when the text
contains multiple concurrent treatment paths that
are not clearly delineated.

Second, the prompt engineering approach, while
effective for standard cases, faces challenges with
rare medical conditions or emerging treatment pro-
tocols that fall outside the training distribution of
the LLM. The current triplet relationship categories
(e.g., "clinical manifestations," "therapeutic drugs")
may not adequately capture specialized medical
knowledge in rapidly evolving fields, potentially
requiring domain-specific customization for opti-
mal performance.

Third, the PI-LoRA method, while computation-
ally efficient compared to full fine-tuning, still re-
quires careful tuning of the path integration param-
eters for different medical domains. The current
implementation assumes a relatively uniform struc-
ture across medical texts, which may not hold for
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highly specialized clinical guidelines that deviate
from the standard binary decision tree format.

Fourth, our evaluation primarily focuses on struc-
tural accuracy of the extracted decision trees, but
does not fully address the clinical validity of the
resulting decision logic. A tree that is structurally
correct may still contain medically questionable
recommendations due to limitations in the LLM’s
knowledge base or the prompt design.

Finally, the current implementation is limited to
English-language medical texts, which restricts its
immediate applicability in non-English speaking
healthcare settings without significant additional
adaptation. Future work should address these lim-
itations to broaden the method’s practical utility
across diverse medical contexts and languages.

Ethics Statement

This research involves the extraction of medi-
cal decision trees from clinical texts using large
language models. We have carefully considered
the ethical implications of our work in the health-
care domain and have implemented the following
measures:

Data Privacy: All medical texts used in this study
were publicly available clinical guidelines or syn-
thetic data generated for research purposes. No
patient-identifiable information was included in
any of our datasets or models. All data process-
ing and model training complied with institutional
privacy policies.

Bias Mitigation: We acknowledge that medical
data may contain biases that could affect clinical
decision-making. To address this, we implemented
a multi-step verification process involving medical
professionals to review the extracted decision trees
for potential biases in treatment recommendations.
We recognize that our current model may not cap-
ture all nuances of medical decision-making and
recommend future work with more diverse medical
data sources.

Safety and Clinical Use: The extracted decision
trees are intended to support, not replace, clinical
decision-making. We explicitly state that all clini-
cal decisions must be made by qualified healthcare
professionals, and our system should not be used
as a standalone diagnostic or treatment tool. We
emphasize the importance of human oversight in
any clinical implementation.

Transparency: We provide a comprehensive de-
scription of our methodology, model architecture,

and limitations to enable peer review, replication,
and critical evaluation of our work. The prompt
templates, evaluation metrics, and implementation
details are fully documented for transparency.

Potential Misuse: We recognize that this technol-
ogy could be misused to automate clinical decisions
without appropriate oversight. Therefore, we rec-
ommend that our system should only be deployed
in clinical settings with appropriate regulatory ap-
provals and under the supervision of qualified med-
ical professionals.

Social Impact: While we believe this research
has the potential to improve clinical decision sup-
port systems and enhance healthcare efficiency, we
acknowledge the need for ongoing discussion about
the societal implications of increased automation in
healthcare, including potential impacts on health-
care workforce dynamics. We commit to ongoing
ethical review of our work as the technology de-
velops and is implemented in real-world clinical
settings.
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A Prompt templates and response
formats for the pipeline framework

A.1 The triplet extraction subtask

In the triplet extraction task asks a language
model to predict a series of triplets from the given
text. A triplet includes the head entity mention, tail
entity mention, and the relation between them. For
the triplet extraction sub-task, the template for the
input prompt is:

Please extract triplets based on the
following medical guideline text:

[Text]

Instruction: Extract the triplet used to
describe diagnosis and treatment

knowledge or clinical information as
the content of the condition/

decision node. The triplet
relationship defines a total of 6
categories: "clinical manifestations
", "therapeutic drugs", "usage and
dosage", "Treatment plan", "
Prohibited drugs", "Basic situation"

the response should be formated as follows:

The triples in the given guideline text
are as follows:

[triplets]

The special token [Text] denotes the input text, and
[triplets] denotes a list of triplets.

A.2 The node grouping subtask

In the node grouping task, we asks a language
model to predict which triplets form a node, and
which logical relation the node has. For the
node grouping sub-task, the template for the in-
put prompt is:

Please combine these triples into
several nodes based on the following
medical guideline text and the

triplet information extracted from
it, and indicate the logical
relationship of the triplets within
this node:

Medical guideline text:

{Text}

The triples in the given guideline text
are as follows:

{triplets}

Note: If several triples form a node , it
means that there is an and or or

logical relationship between these
triples. If a triple does not have
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an and or or relationship with other
triples , it means that the triple

needs to become a node independently
.

the response should be formated as follows:
Based on the given guideline text and

its triplet information , the nodes
of the decision tree are composed as
follows:

The following triples constitute a node
of the decision tree: [triplets ].
The logical relationship of this
node is: [logical_rel]

The following triples constitute a node
of the decision tree: [triplets ].
The logical relationship of this
node is: [logical_rel]

The special token [Text] denotes the input text, and
[triplets] denotes the list of extracted triplets, and
[node] denotes the contents of the node.

A.3 The tree assembling subtask
In the tree assembling task, given the results

of the node grouping step, we ask the language
model to generate the whole decision tree. For the
tree assembling sub-task, the template for the input
prompt is:
Please form a decision tree based on the

following medical guideline text
and the node information extracted
from it:

Medical guideline text:

[Text]

The nodes in a given guideline text are
composed as follows:

[nodes]

Note: (1) The diagnosis and treatment
decision tree is a binary tree
composed of conditional nodes and
decision nodes. It aims to express
guideline text through concise
structured information. It requires
not only to dig out the core
entities and relationships in the
text , but also to carry out this
information. They are connected in
series to form a complete decision -
making process; (2) In the diagnosis
and treatment decision -making

binary tree , non -leaf nodes are
condition nodes and leaf nodes are
decision nodes. For the condition
node , when the condition judgment
result is "yes", it will go to the
left child node for the next
judgment or decision. When the
condition judgment result is "no",

it will go to the right child node
for the next judgment or decision.
(3) The output of each node is a
dict , containing three fields: (3a)
"role", which is the node role type;
(3b) "triples", which is a list of

triples; (3c) "logical_rel", which
represents the node logical
relationship. (4) The entire
diagnosis and treatment decision
tree is arranged into a list using
the breadth -first strategy.

the response should be formated as follows:

The diagnosis and treatment decision
tree extracted based on the given
guideline text is as follows:

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triplets
=[ triplets]

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triplets
=[ triplets]

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triplets
=[ triplets]

The special token [Text] denotes the input text, and
[nodes] denotes the list of nodes from the previ-
ous subtask. In the response, [node_idx] denotes
the index of a node, [triplets] denotes the list of
extracted triplets in a node, [logical_rel] denotes
the logical relation of the node, and [role] denotes
the role label of the node.

A.4 COT-Gen-3

Following (Zhu et al., 2024a), we consider the
following template for the COT-Gen-3 method:

Please generate a diagnosis and
treatment decision tree for the
following medical guideline text:

[Text]

Task description:
(1) Based on the given medical guideline

text , create a binary tree ,
including conditional nodes and
decision nodes , to succinctly
display the guideline content while
capturing core entities and
relationships;

(2) Conditional nodes are used for
judgment , based on the results point
to the left or right child node to

make the next decision.
(3) The output of each node is a dict ,

containing three fields:
- (3a) "role" indicates the node
type , which can be a condition node
("C") or a decision node ("D");
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- (3b) "triples" is a list of
triples describing diagnosis and
treatment knowledge or clinical
information , including "clinical
manifestations", "therapeutic drugs
", "usage and dosage", "treatment
plan", "Prohibited drugs", "Basic
situation" six types of
relationships;
- (3c) "logical_rel" represents the
logical relationship between
multiple triples (the values are and
, or , null , when there is only one
triple. The logical relationship is
null when it is a tuple).

(4) The finally generated diagnosis and
treatment decision tree is arranged
into a list according to the breadth
-first strategy .)

Instructions for the generation steps:
Please complete the generation of
the decision tree step by step. (a)
First extract triples from the above
text; (b) and then generate a

complete decision tree.

where [Text] is a piece of medical text. Accord-
ing to (Zhu et al., 2024a), the response should be
formated as follows:
The triples in the given guideline text

are as follows:

[triplets]

The diagnosis and treatment decision
tree extracted based on the given
guideline text is as follows:

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triples =[
triplets]

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triples =[
triplets]

Node [node_idx ]: role=[role];
logical_rel =[ logical_rel ]; triples =[
triplets]

where [node_idx] represents the node id, [role]
means the role of the node, [logical_rel] stands
for the logical relation in the node, and [triplets]
expresses the contents in the node. From the above
prompt template and response, we can see that
COT-Gen-3 asks the LM to extract triplets and then
generate the whole MDT.
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