SpeechLLMs for Large-scale Contextualized Zero-shot Slot Filling

Kadri Hacioglu, Manjunath K E, Andreas Stolcke
Uniphore
{kadri.hacioglu, manjunath.ke, andreas.stolcke}@uniphore.com

Abstract

Slot filling is a crucial subtask in spoken lan-
guage understanding (SLU), traditionally im-
plemented as a cascade of speech recognition
followed by one or more natural language un-
derstanding (NLU) components. The recent
advent of speech-based large language mod-
els (speechLLMs), which integrate speech and
textual foundation models, has opened new av-
enues for achieving speech understanding tasks
in a more unified, generative, and instruction-
following manner while promising data and
compute efficiency with zero-shot abilities, gen-
eralizing to unseen slot labels. We address the
slot-filling task by creating an empirical upper
bound for the task, identifying performance, ro-
bustness, and generalization gaps, and propos-
ing improvements to the training data, archi-
tecture, and training strategies to narrow the
gap with the upper bound result. We show that
each of these measures improve performance
substantially, while highlighting practical chal-
lenges and providing empirical guidance and
insights for harnessing these emerging models.

1 Introduction

Modern conversational Al systems require a sophis-
ticated integration of speech, language, and world
knowledge combined with advanced understanding,
reasoning, and generation capabilities to perform
context-dependent NLP tasks effectively. This re-
quires a tightly integrated model that can process
long-form inputs empowered by high-quality rep-
resentations of linguistic and world knowledge.

Recently a unified approach that leverages both
speech and text modalities, either in single-task or
multitask configurations, has emerged, capitalizing
on recent advances in text and speech foundation
models (Brown et al., 2020; Touvron et al., 2023;
OpenAl, 2023; Naveed et al., 2024; Hsu et al.,
2021; Chen et al., 2022; Mohamed et al., 2022)
trained on web-scale datasets, which yield both
data and computational efficiency.

Trainable
Frozen Response + <eos>

Large Language Model LORA
Modality Adapter Embedding

I i

Speech Encoder Tokenizer
t !

W <bos>+ Context + Instruction

Figure 1: SpeechLLM architecture

We ues the term speech large language model
(speechLLLM) for an architecture that tightly cou-
ples speech and text modalities through a decoder-
only large language model, for speech recognition
and understanding tasks generating textual outputs.
This tight coupling addresses the challenges of er-
ror propagation, information loss and disjoint op-
timization in the traditional loosely coupled, cas-
caded systems.

Slot filling is a key spoken language understand-
ing (SLU) task in goal-oriented conversational sys-
tems where a model extracts structured informa-
tion by identifying and extracting the slot labels
and their values within the user’s query (Tur and
De Mori, 2011). This information is essential for al-
lowing the system to understand user requests and
intents to take appropriate actions toward fulfill-
ing their goals. Traditionally, these systems, either
in cascade or end-to-end form, were typically de-
signed for specific closed domains for a predefined
set of slot types, limiting their adaptability and gen-
eralization to new domains or even for evolving
requirements within the same domain.

Therefore, a model’s zero-shot ability in slot
filling, i.e., its capacity to generalize to unseen
slot labels without having seen them in training, is
crucial for deployment in dynamic environments
where new user intents and slot types frequently

703

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 703-715
November 4-9, 2025 ©2025 Association for Computational Linguistics

emerge. SpeechLLMs are a natural solution for
this task, allowing unseen labels to be specified via
text modality and using instructions to capture their
meaning and relationship to linguistic constructs
during inference.

In our work, among many possible speechLLM
architectures (Peng et al., 2024; Cui et al., 2025;
Gong et al., 2023; Tang et al., 2024; Maiti et al.,
2024; Chen et al., 2024a; Chu et al., 2024; Shu
et al., 2023; Wu et al., 2023; Wang et al., 2023; Hu
et al., 2024; Chen et al., 2024b), we considered and
implemented one that has a structure very similar
to SpeechVerse (Das et al., 2024).

As shown in Figure 1, it consists of three main
components: a speech encoder, a modality adapter,
and a pretrained large language model (LLM). This
architecture is designed to jointly process speech
signals and textual instructions, enabling it to per-
form a wide range of tasks that require understand-
ing of both speech and text. The system combines
the processed audio features from the pretrained
speech encoder and modality adapter with the text
embeddings along the time/position dimension to
feed them into the LLM. This allows the model
to generate an output probability distribution con-
ditioned on both speech and text. The modality
adapter transforms the speech modality into a repre-
sentation compatible with the linguistic input space
of the LLM. The foundational models, pretrained
at scale in their respective modalities, promise
data-efficient development. Moreover, small-scale
modality adapters for alignment and large-scale
foundational models with parameter-efficient fine-
tuning enable computationally efficient develop-
ment. Importantly, the emergent abilities of LL.Ms,
if preserved during fine-tuning, offer the potential
for instruction-based zero-shot learning and im-
proved generalization capabilities, as well as gen-
eral linguistic knowledge to interpret slot names.
This approach not only addresses the data scarcity
issue, but also enhances the adaptability of speech
understanding systems to new domains and evolv-
ing requirements, marking a significant advance-
ment in the field of spoken language understand-
ing. This unified approach offers two key advan-
tages: (1) simplified development and maintenance
through a single integrated model architecture, and
(2) improved data and compute efficiency that sig-
nificantly reduce development costs.

In this paper, we first introduce a novel slot-
filling dataset for the training of speechLLLMs,
supporting a large number of slot types at indus-

trial scale for diverse call-center use cases and do-
mains, while targeting zero-shot generalization to
new labels, enabling faster time-to-delivery with-
out specific training. Second, we present our novel
prompting strategy to curate and annotate this
dataset using LLMs, contextualized by inputting
the complete call instead of individual turns. Then
we present our systematic and stepwise approach
of making architectural decisions, selecting train-
ing methods with various strategies to improve
upon baseline performance, approaching the ora-
cle performance. Finally, we point to an important
and overlooked distinction between composite and
foundational speechLLMs and evaluate their rel-
ative performances based on fine-tuning of both
models beyond considering just the out-of-the-box
evaluations. Our experimental results show that

* the complexity of modality adapters matters;

* modality alignment between multimodal input
and response generation is crucial;

* multistage training is necessary for faster and
better modal alignment

* extending the task-specific dataset to a care-
fully curated multitask dataset is essential for
robustness and generalization.

* starting from foundational speechLLMs re-
sult in a significant performance advantage,
though with reduced flexibility.

2 Data Preparation

2.1 Description and Annotation

The data for slot filling is a set of scripted call-
center conversations between agents and customers
curated by DefinedAI'. This collection, denoted
CallCenter-A, has approximately 31K calls with
almost 1M turns and 2.1K hours of speech. The
domains covered are banking, telecommunication,
insurance and retail. We used GPT-40 to annotate
our dataset with slot labels and values. To achieve
broad, diverse and open-ended slot filling we de-
cided not to prime the LLM for any specific set
of slot labels. Instead, given the entire call itself,
we instructed the LLM to do slot filling turn-by-
turn for mentions that reflect real world entities,
events, dates, times and numerals while avoiding

"https://www.defined.ai

704

Task Dataset Duration Samples
Slot Filling CallCenter-A 400 454
AST Internal 400 172
SIT Spoken Alpaca 30 29
SQIT Spoken Alpaca 14 14
Total All 844 454

Table 1: Training datasets: The audio durations are in hours and the number of training samples are in thousands.

abstract notions of “entities” such as issues, solu-
tions, broader concepts, advice or ideas. An ex-
ample LLM prompt for this annotation is given in
Appendix F.

2.2 Instruction-based Training Dataset

We now describe the conversion of the slot filling
dataset into an instruction-based training dataset.
This dataset consists of three fields: audio, instruc-
tion, and desired output. Instructions are the most
crucial part of the data preparation. It should con-
sist of a description of the task in natural language.
Although it is possible to use a fixed instruction, a
diverse set of instructions is beneficial for general-
ization to prompts unseen during training. In addi-
tion, we introduced several strategies for improving
coverage across a variety of use cases of slot filling.
We assume turn-by-turn slot filling with/without
context, and with/without querying specific slots.
The context is defined as the recognition results for
the previous 7' turns. We randomize the context
size in the range 0 < T' < 3. When we query spe-
cific slots in the prompt we take the ground truth
slots in the corresponding turn, if any, and then
add a varying numbers .S of distractors. We also
randomize the number of distractors, 1 < S < 5.
For each case, we randomly sample from a set of
10 prompts. Some examples of prompts are given
in Appendix F.

2.3 Multitask Datasets

In addition to the slot-filling dataset we consid-
ered other datasets for the following additional
tasks: automatic speech transcription (AST), spo-
ken instruction task (SIT), and spoken query in-
struction task (SQIT). The "internal AST dataset"
is a subset of our English training corpus for pro-
duction models, chosen to represent the acoustic
quality and language characteristics of call-center
domains, disjoint from the slot-filling data. The
other datasets are spoken versions of textual Alpaca
instruction datasets converted by a text-to-speech
system and open-sourced by Li et al. (2024). These

two datasets are described in detail in Appendix B.
The main task is slot filling, with other datasets
as auxiliary tasks to facilitate modality alignment
and to prevent overfitting. Table 1 summarizes the
training datasets used in our experiments.

2.4 Evaluation Datasets

In addition to the CallCenter-A evaluation dataset,
we created another dataset from real call-center
conversations to represent ‘“unseen” acoustic and
linguistic content, comprising 80 calls with a to-
tal of 4495 turns. It is annotated similarly to
CallCenter-A using GPT-40. While CallCenter-
A is considered in-domain both acoustically and
linguistically, CallCenter-B differs in the acous-
tic conditions and contains slot labels that over-
lap only 48% with CallCenter-A. Accordingly,
we split CallCenter-B into two subsets: in-
domain (CallCenter-B "ID") and out-of-domain
(CallCenter-B "OOD"). Detailed information about
these datasets is given in Appendix A.

3 Experiments

3.1 Experimental Details

Model development and experiments were run on
four NVIDIA A10G GPUs (24GB each) using the
Hugging Face ecosystem. To deal with limited
resources, we employed parameter-efficient fine-
tuning (PEFT) with QLoRA (4-bit quantization),
supported by Accelerate and DeepSpeed. LoRA
was configured with rank 32, o = 128, and dropout
0.05. Training used an effective batch size of 128
(batch 4 per GPU, accumulation 8), cosine learning
rate scheduling (2 x 10~* max, 20% warm-up)
over 10 to 15 epochs, and AdamW with default
parameters. Gradient clipping was applied at 1.0.

Experimental configurations, settings and model
selections are described in detail in Appendix C.
The results presented in the following sections be-
long to the model with the best evaluation loss
during fine-tuning over 10 to 15 epochs.

705

System

CallCenter-A Prec/Recall/F1

Vanilla LLM

FT-LLM

Whisper | FT-LLM
SpeechLLM (baseline)

0.0436/ 0.7259/ 0.0823
0.8523/0.9901/ 0.9160
0.7006/ 0.8982/ 0.7872
0.3892/0.4151/0.4017

Table 2: Baseline system performance: Slot-filling accuracy given by partial-match precision/recall/F1 metrics. The
fine-tuned Whisper operates at 14.20% word error rate. FT-LLM denotes the fine-tuned LLM.

3.2 Baseline Systems and Performances

We considered three baseline systems. The first
is a textual slot-filling system using Llama 3.2 1B
LLM. The model is fine-tuned using the textual
part of CallCenter-A. The second baseline system
is the traditional pipeline of ASR followed by an
NLU component with whisper-base (Radford et al.,
2022) model as the ASR component and Llama 3.2
1B for NLU. We used the internal AST dataset to
fine-tune the Whisper-base model. The NLU com-
ponent is the same textual LLM that was trained in
the first baseline system. The third baseline system
is a speechLLLM using a simple modality adapter
based on convolutional neural networks (CNNs).
We employed a training strategy keeping the LLM
and the speech encoder frozen and train only the
adapter component using the dataset specific to slot
filling. In addition, for better compute efficiency
we employed 8x subsampling of the adapter output.

The performance of the first (text-based) base-
line system will serve as an upper bound on per-
formance. Instead of ground truth transcripts, the
LLM in the cascaded system uses speech recog-
nition results, and the speechLLM uses adapted
speech embeddings

Table 2 shows the baseline results. The perfor-
mance of the vanilla LLM is also included to high-
light its inability to perform this highly structured
task in a zero-shot manner. The speechLLM model
was initially designed with a limited computational
budget in mind, which explains its inferior perfor-
mance. Ultimately, the speechLLM is required to
generate the same response as the textual LLM but
using the audio input, assuming successful modal-
ity alignment is achieved and the audio is “heard”
correctly. In the following sections we will discuss,
and experiment with, measures for narrowing the
gap to the upper bound, while still staying within
our computational constraints.

3.3 Modality Adapters

We investigated four adapters of increasing para-
metric complexity. The first adapter employs three

1-D convolutional layers (kernel=3, stride=2, chan-
nels=512) followed by a linear projector. The sec-
ond consists of a speech padding and stacking com-
ponent with a factor of 4, followed by a single lin-
ear projector. The third replaces the linear projec-
tor with a two-layer MLP incorporating a SwiGLU
nonlinearity (Shazeer, 2020). The fourth adapter is
a 2-layer transformer with 8 attention heads.

The parameter counts for the adapters are listed
in Table 3. Rather than equalizing parameter
counts, we designed each adapter to achieve a 8x
subsampling rate while projecting the speech en-
coder output to match the LLM’s input dimension.
Each adapter processes temporal and frequency in-
formation differently: the CNN adapter captures
local correlations while downsampling; the lin-
ear adapter models global correlations across sub-
sampling segments linearly; the MLP adapter in-
troduces nonlinear modeling of global correlations;
and the transformer adapter uses self-attention
mechanisms to capture both local and global de-
pendencies while modeling complex temporal rela-
tionships through its multihead attention and feed-
forward networks.

The results in Table 3 suggests that the size of
the adapter plays a crucial role in performance. To
investigate the impact of the adapter type, we in-
creased CNN size by adjusting the number of chan-
nels and kernel size to match the best-performing
network. Despite these adjustments, the modified
model, CNN-XL, exhibited relatively inferior per-
formance, underscoring the importance of not only
the model size, but also its design and modeling
capability.

3.4 LLM Fine-tuning

Training an adapter with frozen foundational mod-
els targets only the alignment of the input modali-
ties generating the desired output response for the
downstream task. Since the LLM is frozen, its
inherent ability to perform the downstream task
determines the performance of the model. We hy-
pothesize that, while aligning the modalities in their

706

Adapter Parameters Prec/Recall/F1

CNN (baseline) 341M 0.3892/0.4151/0.4017
Linear 8.39M 0.5411/0.8396/ 0.6581
MLP 20.98M 0.5758/0.8830/ 0.6970
Transformer 67.16M 0.6214/0.9207/0.7420
CNN-XL 68.17M 0.6232/0.7968/ 0.6994

Table 3: Performance and parameter count comparisons for different adapter architectures. Performance is measured

on CallCenter-A data.

Adapter Type Prec/Recall/F1 with LoRA AF1

CNN 0.5304/ 0.8908/ 0.6649 +0.2632
Linear 0.5761/0.9150/ 0.7071 +0.0490
MLP} 0.6553/0.9268/ 0.7677 +0.0707
Transformer* 0.4272/ 0.7734/ 0.5504 -0.1916

* After the stabilization of learning by reducing the learning rate the performance is Precision: 0.6010, Recall:

0.9109, F1: 0.7242, AF1: -0.0178

1 After increasing the warm-up period the performance is Precision: 0.6228, Recall: 0.9357, F1: 0.7479 AFI:

0.0059

T For the rest of our experiments with LoRA we continued with this best performing setup using MLP

Table 4: Performance comparisons across different adapter architectures when LoRA is enabled for LLM fine-tuning.
Performance is reported on CallCenter-A data and the AF]1 is relative to the F1 values in Table 3.

input representations, it is also crucial to align the
input modalities with the desired LLM output. This
requires the adaptation of the LLM.

Table 4 shows the results with LoRA adapta-
tion enabled. It is noteworthy that the performance
of all adapters increased significantly, except for
the transformer adapter. Inspection of its learning
curve showed divergent behavior that ended up at
a local minimum with inferior performance. We
believe that this is a natural consequence of the
difficulty of joint training as the scale and complex-
ity of the model increase. We elaborate on these
training difficulties in Appendix D.

3.5 Multistage Training

Several studies (Das et al., 2024; et.al, 2024) sug-
gest training the models in a multistage manner
for faster and more stable learning and better task
performance. In this section we consider three
strategies for multistage training.

First, we demonstrate a multistage training strat-
egy, namely Multistage-A, by (Stagel-a) fine-
tuning the Whisper encoder, using (speech, text)
pairs, and (Stagel-b) the LLM, using (instruction,
response) pairs, followed by (Stage2) jointly fine-
tuning both the modality adapter and the LLM us-
ing (speech, instruction, response) triplets. Note
that the first-stage speech encoder and LLLM ac-
tually correspond to the components used in the

cascaded baseline system. In other words, the job
of the first stage is to create fine-tuned foundational
models separately and use them as the initial mod-
els for training the speechLLM in the second stage.

Second, we consider alignment strategy
Multistage-B, where we first (Stagel) fine-tune the
adapter on a new task cast as a “continuation” task
of the audio transcripts. This method is similar
to the method proposed in Fathullah et al. (2024).
We present the transcripts to the foundational
LLM as a prompt and run it to complete the
transcripts in an auto-regressive manner creating
(transcript, continuation) pairs. Then, we convert
this into a fine-tuning dataset for the speechLLM
by replacing transcripts with audio as (audio,
continuation) pairs. Using the continuation outputs
with audio to fine-tune the adapter ensures an
alignment that both spoken and textual inputs
to the LLM generate the same response. After
this alignment, the adapter and LLM are jointly
(Stage2) fine-tuned further to revise the aligned
modality to generate task-specific outputs.

Finally, we experiment with a third multistage
strategy, Multistage-C, in which we first (Stagel)
fine-tune the adapter using an AST task to align the
audio encoder and Llama 3.2 1B in the linguistic
embedding space. This is followed by (Stage2)
joint adaptation of adapter and the language model.

707

Training strategy Prec/Recall/F1

Joint, single-stage 0.6553/ 0.9268/ 0.7677
Multistage-A 0.6722/0.9297/ 0.7803
Multistage-B 0.6653/0.9448/ 0.7808
Multistage-C 0.6842/0.9391/0.7916

Table 5: CallCenter-A results for multistage training

Table 5 shows the results for all the methods,
highlighting the importance of multistage strategies
for improved performance compared to a single-
stage strategy. In Appendix E we also illustrate
through learning curves their faster convergence to
a better operating point .

3.6 Out-of-domain Performance

We also ran experiments to probe the generaliza-
tion, robustness and zero-shot capabilities of the
models using three distinct datasets we briefly men-
tioned earlier and further described in detail in Ap-
pendix A.

The results in Table 6 show that despite being
trained on the same data and using the same com-
ponents, the cascaded system remains more robust,
generalizes better, and exhibits stronger zero-shot
capabilities than the bimodal speechLLM archi-
tecture. This performance gap suggests that the
bimodal model’s scale, the size of training data
and the training process are not yet sufficient for
joint and tightly coupled integration of information.
This highlights that modality alignment and LLM
fine-tuning may not be sufficient for the joint model
to perform better than the sequential performance
of individual unimodal models, unless we employ
training at scale (more tokens and parameters).

3.7 Multitask Training

To enhance multimodal alignment without increas-
ing the model size, we expanded the task-specific
dataset with additional auxiliary tasks, following
insights from related work by Li et al. (2024). As

described in Section 3.3, we added the AST task
as a simpler task to strengthen cross-modal align-
ment, while spoken instruction/query tasks were
added to mitigate overfitting in the text-based foun-
dational model. This strategy aimed to balance the
fine-tuning, ensuring better robustness and general-
ization under the constrained model capacity.

The results clearly show that training with aux-
iliary tasks significantly improves performance on
both in-domain and out-of-domain data sets. The
results are included in Tables 6 and 7.

3.8 Fine-tuning a SpeechLLM Foundational
Model

In this section, we highlight a major difference be-
tween the model we fine-tuned and a model that can
be considered as a speechLLM foundational model.
We considered building a task-specific system, that
leverages the strengths of unimodal foundational
models, but lack the training data scale to be cat-
egorized as a foundational model of its own. We
consider our model as a composite speechLLM of
two unimodal foundational models but fine-tuned
for a specific task in bimodal manner.

Among several open source models available,
Qwen2-Audio model (Chu et al., 2024), can be
considered a foundational speechLLM, in con-
trast to our composite model, having been trained
on diverse and large datasets at scale in a multi-
task and multistage manner including pretraining,
instruction-supervised training followed by DPO.
We fine-tuned this model using QLORA applied to
all its linear layers.

System CallCenter-B CallCenter-B

ID 00D
FT-LLM 0.8360/ 0.9530/ 0.8907 0.5439/ 0.8474/ 0.6626
Whisper | FT-LLM 0.5909/ 0.7067/ 0.6436 0.4280/ 0.6278/ 0.5090
SpeechLLM 0.3964/0.7306/ 0.5140 0.2386/ 0.4500/ 0.3119
SpeechLLM++ 0.4240/ 0.7810/ 0.5496 0.2645/ 0.5448/ 0.3561

Table 6: Performance on out-of-domain datasets. The system marked with “++ use multitask data expansion

described in Section 3.7. SpeechLLLM corresponds to the singel-stage training strategy.

708

System CallCenter-A Prec/Recall/F1
SpeechLLM 0.6553/0.9268/ 0.7677
SpeechLLM++ 0.6632/ 0.9458/ 0.7797

Table 7: Performance with multitask training. “++”denotes fine-tuning with multitask data expansion. SpeechLLM

corresponds to the single-stage training strategy.

The results are presented in Table 8. The perfor-
mance differences between the two models can be
attributed to both the size of the models in terms of
parameters, and the scale of data used for bimodal
fine-tuning in addition to the training strategies em-
ployed.

A larger model with extensive bimodal train-
ing is more likely to develop strong cross-modal
representations enabling better generalization, as
demonstrated by the results in Table 8.

A smaller model, by contrast, or one with lim-
ited bimodal fine-tuning, may rely more on uni-
modal strengths, leading to weaker multimodal
alignment and requiring more task-specific adap-
tation or multitask adaptation by expanding the
dataset, as demonstrated in Section 3.7.

We also demonstrated the poor performance of
the foundational model out-of-the-box, after exten-
sive prompt engineering to steer the model for our
specific task. This further illustrates the necessity
of fine-tuning for specific tasks.

4 Conclusions

In this paper, we have introduced speechLLLMs for
the open-ended slot-filling task and explored var-
ious architectural components, training strategies
and multitask training to progressively improve
performance over a simple baseline.

Through our experiments we learned that adapter
size plays a crucial role in model performance, but
training difficulty scales with the adapter size and
type, requiring careful selection.

We also found that freezing the language model
to preserve its original skills is not an effective strat-
egy for tasks where the model lacks strong capabil-
ities. Instead, aligning input representations with
output generation by fine-tuning the LLM is critical
for significantly improving task performance.

To further enhance generalization and robust-
ness we applied multistage training, which helped
mitigate difficulties in single-stage joint learning,
accelerated convergence, and improved learning
performance. Additionally, expanding the dataset
with diverse tasks, even if they were not the primary
focus proved beneficial for overall performance.

While these strategies helped to narrow the in-
domain performance gap, surpassing the cascaded
baseline system and approaching a text-based upper
bound, challenges remain, particularly, in out-of-
domain generalization and zero-shot capabilities.

Also we highlighted trade-offs between compos-
ite and foundational models, emphasizing the need
for continued scaling and refined training strategies
to further improve robustness and generalization in
real world scenarios.

We believe this work provides practical insights
and guidance for industry practitioners navigating
the challenges of multimodal model development.
Our findings highlight key tradeoffs in model de-
sign, training strategies, and data selection, offering
valuable directions for those looking to build effi-
cient, high-performing and adaptable multimodal
systems for real-world use cases and computational
constraints.

System CallCenter-A CallCenter-B ID CallCenter-B OOD
Prec/Recall/F1 Prec/Recall/F1 Prec/Recall/F1

FT-LLM 0.8523/0.9901/0.9160 0.8360/ 0.9530/ 0.8907 0.5439/ 0.8474/ 0.6626
FT-Qwen2-Audio 0.7710/ 0.9799/0.8630 0.6708/ 0.8697/ 0.7574 0.4507/ 0.7619/ 0.5664
SpeechLL.M-Multistage-C ~ 0.6842/0.9391/0.7916 0.4346/ 0.7588/ 0.5527 0.2653/ 0.4545/ 0.3351
FT-(WhisperILLM) 0.7006/ 0.8982/0.7872 0.5909/ 0.7067/ 0.6436 0.4280/ 0.6278/ 0.5090
SpeechLLM++ 0.6632/0.9458 /0.7797 0.4240/ 0.7810/ 0.5496 0.2645/ 0.5448/ 0.3561
SpeechLLM 0.6553/0.9268/0.7677 0.3964/ 0.7306/ 0.5140 0.2386/ 0.4500/ 0.3119
PE-Qwen2-Audio 0.1757/0.6334/0.2751 0.1059/0.6178/ 0.1807 0.0116/ 0.6034/ 0.0227

Table 8: Performances of prompt-engineered (PE) and fine-tuned (FT) Qwen2-Audio, with relevant results from ear-
lier tables for better comparison. We extended earlier Multistage-C results to CallCenter-B dataset for completeness.

709

5 Limitations

During fine-tuning, for each configuration, the
model with the best development loss is saved as
the final model. Due to compute constraints, we
reported only a single performance estimate per
model configuration. We acknowledge the limi-
tation of this approach; the lack of estimates of
performance variance makes it difficult to assess
the statistical significance of observed performance
differences when they are relatively small. There-
fore, it is important to view the reported numbers
as representative rather than absolute.

In addition, informed by earlier findings (Rana
et al., 2025) that the results with/without human
annotations can yield comparable outcomes, we
chose not to rely on comprehensive human anno-
tations or validations to keep cost low. Instead,
we conducted limited validation to have an infor-
mal confirmation of quality using a relatively small
subset of data generated by LLMs.

Our study does not report results on open
datasets, as no public benchmark exists at the scale
we considered. Our dataset cannot be distributed,
but reproducibility has been ensured through suffi-
cient documentation for an experienced researcher
to reproduce the major findings of this work.
Specifically, the appendices include the full experi-
mental configurations as well as the exact prompt
templates used for data preparation and instruction
creation. Furthermore, the methodology and pro-
cess are not tied to this specific dataset and can be
applied to any similarly structured customer inter-
action data organized turn-by-turn.

Due to the variety of available text LLMs with
varying scales, capabilities and training strategies
along with the growing number of open source
foundational speechlLLLMs, and driven by the pa-
per length limit, we made a deliberate decision to
present the results on a few representative models.
We acknowledge that this may not cover the full
diversity of the current model landscape. How-
ever, the inclusion of a larger foundational model,
namely Qwen2-Audio, offers valuable insight into
the scaling behavior of the composite model we
considered. We believe this helps contextualize our
results within the broader trajectory of model and
data scaling. The results omitted here for brevity
and clarity were in line with the observed trajec-

tory.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long
Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu,
Michael Zeng, Xiangzhan Yu, and Furu Wei. 2022.
WavLM: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing, 16(6):1505-1518.

Zhehuai Chen, He Huang, Andrei Andrusenko, Olek-
sii Hrinchuk, Krishna C. Puvvada, Jason Li, Sub-
hankar Ghosh, Jagadeesh Balam, and Boris Ginsburg.
2024a. SALM: Speech-augmented language model
with in-context learning for speech recognition and
translation. In ICASSP 2024 - 2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 13521-13525.

Zhehuai Chen, He Huang, Oleksii Hrinchuk, Krishna C.
Puvvada, Nithin Rao Koluguri, Piotr Zelasko, Ja-
gadeesh Balam, and Boris Ginsburg. 2024b. Bestow:
Efficient and streamable speech language model with
the best of two worlds in GPT and T5. In 2024 IEEE
Spoken Language Technology Workshop (SLT), pages
147-154.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng
He, Junyang Lin, Chang Zhou, and Jingren Zhou.
2024. Qwen2-audio technical report. Preprint,
arXiv:2407.10759.

Wengian Cui, Dianzhi Yu, Xiaoqi Jiao, Zigiao Meng,
Guangyan Zhang, Qichao Wang, Yiwen Guo, and Ir-
win King. 2025. Recent advances in speech language
models: A survey. Preprint, arXiv:2410.03751.

Nilaksh Das, Saket Dingliwal, Srikanth Ronanki, Rohit
Paturi, Zhaocheng Huang, Prashant Mathur, Jie Yuan,
Dhanush Bekal, Xing Niu, Sai Muralidhar Jayanthi,
Xilai Li, Karel Mundnich, Monica Sunkara, Sun-
dararajan Srinivasan, Kyu J Han, and Katrin Kirch-
hoff. 2024. SpeechVerse: A large-scale generalizable
audio language model. Preprint, arXiv:2405.08295.

Grattafiori et.al. 2024. The Llama 3 herd of models.
Preprint, arXiv:2407.21783.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin,
Ke Li, Junteng Jia, Yuan Shangguan, Jay Ma-
hadeokar, Ozlem Kalinli, Christian Fuegen, and

710

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/JSTSP.2022.3188113
https://doi.org/10.1109/JSTSP.2022.3188113
https://doi.org/10.1109/ICASSP48485.2024.10447553
https://doi.org/10.1109/ICASSP48485.2024.10447553
https://doi.org/10.1109/ICASSP48485.2024.10447553
https://doi.org/10.1109/SLT61566.2024.10832146
https://doi.org/10.1109/SLT61566.2024.10832146
https://doi.org/10.1109/SLT61566.2024.10832146
https://arxiv.org/abs/2407.10759
https://arxiv.org/abs/2410.03751
https://arxiv.org/abs/2410.03751
https://arxiv.org/abs/2405.08295
https://arxiv.org/abs/2405.08295
https://arxiv.org/abs/2407.21783

Mike Seltzer. 2024. AudioChatlLlama: Towards
general-purpose speech abilities for LLMs. Preprint,
arXiv:2311.06753.

Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid
Karlinsky, and James Glass. 2023. Listen, think, and
understand. arXiv preprint arXiv:2305.10790.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM transactions on audio,
speech, and language processing, 29:3451-3460.

Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Ling-
wei Meng, Hongkun Hao, Jing Pan, Xunying Liu,
Jinyu Li, Sunit Sivasankaran, Linquan Liu, and Furu
Wei. 2024. WavLLM: Towards robust and adaptive
speech large language model. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2024,
pages 4552-4572, Miami, Florida, USA. Association
for Computational Linguistics.

Dayal Singh Kalra and Maissam Barkeshli. 2024. Why
warmup the learning rate? Underlying mechanisms
and improvements. Preprint, arXiv:2406.09405.

Mohan Li, Cong-Thanh Do, Simon Keizer, Youmna
Farag, Svetlana Stoyanchev, and Rama Doddipatla.
2024. WHISMA: A speech-LLM to perform zero-
shot spoken language understanding. Preprint,
arXiv:2408.16423.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Jiawei Han. 2023. Understanding
the difficulty of training transformers. Preprint,
arXiv:2004.08249.

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-Weon
Jung, Xuankai Chang, and Shinji Watanabe. 2024.
VoxtLM: Unified decoder-only models for consoli-
dating speech recognition, synthesis and speech, text
continuation tasks. In ICASSP 2024 - 2024 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 13326—13330.

Abdel-Rahman Mohamed, Hung yi Lee, Lasse Borgholt,
Jakob D. Havtorn, Joakim Edin, Christian Igel, Ka-
trin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars
Maalge, Tara N. Sainath, and Shinji Watanabe. 2022.
Self-supervised speech representation learning: A re-
view. IEEE JSTSP Special Issue on Self-Supervised
Learning for Speech and Audio Processing.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2024. A
comprehensive overview of large language models.
Preprint, arXiv:2307.06435.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Jing Peng, Yucheng Wang, Yu Xi, Xu Li, Xizhuo Zhang,
and Kai Yu. 2024. A survey on speech large language
models. Preprint, arXiv:2410.18908.

711

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. Preprint, arXiv:2212.04356.

Mansi Rana, Kadri Hacioglu, Sindhuja Gopalan, and
Maragathamani Boothalingam. 2025. Zero-shot slot
filling in the age of LLMs for dialogue systems. In
Proceedings of the 31st International Conference on
Computational Linguistics: Industry Track, pages
697-706, Abu Dhabi, UAE. Association for Compu-
tational Linguistics.

Noam Shazeer. 2020. GLU variants improve trans-
former. Preprint, arXiv:2002.05202.

Yu Shu, Siwei Dong, Guangyao Chen, Wenhao Huang,
Ruihua Zhang, Daochen Shi, Qiqi Xiang, and Yemin
Shi. 2023. LLaSM: Large language and speech
model. Preprint, arXiv:2308.15930.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao
Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA, and Chao
Zhang. 2024. SALMONN: Towards generic hearing
abilities for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Gokhan Tur and Renato De Mori. 2011. Spoken Lan-
guage Understanding: Systems for Extracting Seman-
tic Information from Speech. John Wiley & Sons,
Chichester, UK.

Mingqiu Wang, Wei Han, Izhak Shafran, Zelin Wu,
Chung-Cheng Chiu, Yuan Cao, Nanxin Chen,
Yu Zhang, Hagen Soltau, Paul K. Rubenstein, Lukas
Zilka, Dian Yu, Golan Pundak, Nikhil Siddhartha,
Johan Schalkwyk, and Yonghui Wu. 2023. SLM:
Bridge the thin gap between speech and text founda-
tion models. In 2023 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
1-8.

Jian Wu, Yashesh Gaur, Zhuo Chen, Long Zhou, Yi-
meng Zhu, Tianrui Wang, Jinyu Li, Shujie Liu,
Bo Ren, Linquan Liu, and Yu Wu. 2023. On decoder-
only architecture for speech-to-text and large lan-
guage model integration. In 2023 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU), pages 1-8.

A Evaluation Dataset Creation and
Characteristics

To complement our primary in-domain evaluation
dataset CallCenter-A, we introduce CallCenter-B

https://arxiv.org/abs/2311.06753
https://arxiv.org/abs/2311.06753
https://doi.org/10.18653/v1/2024.findings-emnlp.263
https://doi.org/10.18653/v1/2024.findings-emnlp.263
https://arxiv.org/abs/2406.09405
https://arxiv.org/abs/2406.09405
https://arxiv.org/abs/2406.09405
https://arxiv.org/abs/2408.16423
https://arxiv.org/abs/2408.16423
https://arxiv.org/abs/2004.08249
https://arxiv.org/abs/2004.08249
https://doi.org/10.1109/ICASSP48485.2024.10447112
https://doi.org/10.1109/ICASSP48485.2024.10447112
https://doi.org/10.1109/ICASSP48485.2024.10447112
https://www.amazon.science/publications/self-supervised-speech-representation-learning-a-review
https://www.amazon.science/publications/self-supervised-speech-representation-learning-a-review
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2410.18908
https://arxiv.org/abs/2410.18908
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://aclanthology.org/2025.coling-industry.59/
https://aclanthology.org/2025.coling-industry.59/
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2308.15930
https://arxiv.org/abs/2308.15930
https://openreview.net/forum?id=14rn7HpKVk
https://openreview.net/forum?id=14rn7HpKVk
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1002/9781119992691
https://doi.org/10.1002/9781119992691
https://doi.org/10.1002/9781119992691
https://doi.org/10.1109/ASRU57964.2023.10389703
https://doi.org/10.1109/ASRU57964.2023.10389703
https://doi.org/10.1109/ASRU57964.2023.10389703
https://doi.org/10.1109/ASRU57964.2023.10389705
https://doi.org/10.1109/ASRU57964.2023.10389705
https://doi.org/10.1109/ASRU57964.2023.10389705

Evaluation Dataset

samples

CallCenter-A

CallCenter-B (ID)
CallCenter-B (OOD)

3253
1482
3013

Table 9: Evaluation Datasets: CallCenterA is in-domain for both speech and slots, CallCenter-B (ID) is in-domain
for slots and out-of-domain for speech, and CallCenter-B (OOD) is out-of-domain for both slots and speech.

dataset, sourced from different call-center con-
versations, to systematically assess the model’s
robustness, generalization and zero-shot abilities.
CallCenter-B dataset differs from CallCenter-A in
acoustic conditions, while partially overlapping in
label distribution. Our analysis shows that 48% of
the slot labels in CallCenter-B overlap with those
in CallCenter-A dataset providing a subset that
matches the linguistic characteristics of the training
data. The remaining 52% consist entirely of new la-
bels not seen during training making it a strong test
for zero-shot abilities. The sizes of evaluation sets
used in our experiments are listed in Table 9. Be-
low we give additional information about partitions
of these datasets used in experiments:

* Held-out test set: CallCenter-A subset with
the same acoustic and language characteristics
as the training data, providing a benchmark
for in-domain performance

» Textually overlapping, acoustically differ-
ent set: (CallCenter-B, ID) dataset containing
language similar to the training data sharing
the slots seen during the training, but with
new acoustic conditions, testing the model’s
robustness to variations in speech input

* Textually and acoustically unseen set:
(CallCenter-B, OOD) represents the same
acoustic conditions as the second set, but with
entirely unseen types of slots. This evaluates
the model’s ability to generalize to unseen
language structures through novel slots, ro-
bustness to the shifted acoustic domain, and
zero-shot performance.

By comparing performance across CallCenter-A,
CallCenter-B (ID) and (CallCenter-B (OOD) we
gain deeper insights into the model’s ability to han-
dle real-world variability and its effectiveness in
generalizing beyond the training distribution.

B SIT and SQIT Datasets

The spoken instruction task (SIT) and spoken
query—instruction task (SQIT) are derived from the

text-based Alpaca dataset. The original Alpaca cor-
pus contains two example formats: (i) {instruction,
input, output}, where instruction specifies the task,
input provides context, and output is the expected
response; and (ii) {instruction, output}, where the
instruction is self-contained and does not require
additional context.

For SIT, speech is generated from the input field
while the instruction remains text, allowing the
model to process spoken input conditioned on a
textual prompt. Here, the instructions are applied
to spoken content. That is, a task is accomplished
on speech. For SQIT, speech is generated directly
from the instruction field, with no accompanying
text prompt, requiring the model to interpret spoken
queries directly. Here, spoken content is used as
instruction. That is, a task is accomplished using
speech.

C Experimental Setup and Details

Model development and experiments were con-
ducted on hardware consisting of four NVIDIA
A10G GPUs, each with 24GB of memory. The
software ecosystem for this work was primarily
based on the Hugging Face framework. Consider-
ing limited resource development and experimenta-
tion, to optimize the training/fine-tuning processes,
we employed several advanced techniques. PEFT
(parameter-efficient fine-tuning) was used to allow
for fine-tuning of large models with significantly
fewer parameters, reducing computational require-
ments. We also used QLORA (quantized low-rank
adaptation), which uses 4-bit quantization. This
technique drastically reduces the memory footprint
of the model while maintaining performance. Ad-
ditionally, we utilized Accelerate and DeepSpeed
libraries to further optimize the training process.
For the LORA settings, we selected a rank of 32
with a corresponding « of 128. These settings
control the complexity and capacity of the LoRA
adaptation. We applied a dropout rate of 0.05 to
all linear target modules to prevent overfitting. The
batch size was set to 4 per GPU, with gradient

712

Parameter Value
GPUs 4
GPU Memory 24GB per GPU
LORA Rank 32
LORA Alpha 128
Dropout Rate 0.05
Batch Size per GPU 4
Gradient Accumulation Steps 8
Effective Batch Size 128
Maximum Learning Rate 2e-4
Number of Epochs 10-15
Warm-up 20% of iterations
AdamW betal 0.9
AdamW beta2 0.999
AdamW epsilon le-8
Weight Decay Not applied
Gradient Clipping Threshold 1.0
Adaptation Layers All linear layers

Table 10: Fine-tuning hyperparameters and configuration

accumulation of 8 steps, resulting in an effective
batch size of 128. The learning rate was managed
using a cosine scheduler over 10-15 epochs, with
a maximum learning rate of 2 x 10~*. We imple-
mented a linear warm-up for the first 20% of the
total number of iterations. For optimization, we
employed the AdamW (weighted Adam) optimizer.
We used its default parameters, including 5; = 0.9,
B2 = 0.999, and € = 10~% , without applying any
weight decay. We applied gradient clipping with
a threshold of 1.0. During fine-tuning, for each
configuration, the model with the best evaluation
loss is saved as the final model. Due to compute
constraints, we report point estimates of model per-
formances in the experimental sections, while we
acknowledge the limitations of this approach. We
noticed that the final models may not correspond
to the best performing models on the target metrics
(precision/recall/F1). We observed performance
fluctuation across runs and checkpoints with differ-
ences of +2 percent points depending on the selec-
tion point. Therefore, it is important to review the
reported numbers as representative rather than abso-
lute. After the fine-tuning process, we implemented
an efficient inference pipeline to evaluate the fine-
tuned models. We used greedy search with tem-
perature 0. The maximum number of new tokens
was set to 512. This temperature setting without
sampling is particularly useful when we want con-
sistent, high-confidence responses from the model.

The choice of new tokens maximum length allows
for reasonably lengthy responses while prevent-
ing excessively long generations. Table 10 gives a
summary of the hyperparameters and configuration
settings used in fine-tuning, including hardware
specifications, LoRA settings, optimization param-
eters, and training details.

eval_loss

0.36
0.32
0.28
0.24

0.2
0.16
0.12

0 2k 4k 6k 8k

Ir: 5e-5
warmup: 0.3

10k 12k 14k

lr: 5e-5,
warmup: 0.2

Figure 2: Learning curves showing training difficulties

D Training Difficulties

In Das et al. (2024), the authors observe frequent
gradient explosion leading to suboptimal conver-
gence when training both the adapter and LoRA
from scratch. However, among the modules we ex-
perimented with as modality adapters, we observed
that training instabilities first emerged when using

713

the transformer. It is well-known that transformers
are challenging to train due to issues such as van-
ishing/exploding gradients, sensitivity to learning
rate scheduling, and difficulty in optimizing the at-
tention architecture Liu et al. (2023). Various tricks
of the trade, such as using warm-up with proper
learning rate scheduling, adding gradient clipping,
applying better initialization of weights, position-
ing of layer normalization and considering smaller
architecture, are commonly used to stabilize train-
ing. Although all of these are considered in our
training process, the default settings which have
been largely robust for other adapter types, have
turned out to be suboptimal for the transformer
adapter. Training loss during the default warm-up
period with the default learning rate has shown rel-
atively large loss spikes. Based on the insights in
Kalra and Barkeshli (2024), we experimented with
reducing the maximum learning rate or increasing
the duration of the warm-up period. Our goal was
to mitigate instability in regions where we observed
sharp training loss spikes, ensuring that learning
continues with lower learning rates through those
unstable phases. Reducing the learning rate worked
better than increasing the warm-up duration con-
sidering the smoothness of the learning curve, but
the final performance of the model was better with
increased warm-up duration as indicated in Table 4.
The learning curves in Figure 2 illustrate this diver-
gent behavior with a relatively large learning rate,
as well as stabilization by lowering the learning
rate either by decreasing the maximum learning
rate or increasing the warm-up duration.

E Learning Curves of Multi-Stage
Training

Figure 3 shows the cross-entropy loss over train-
ing checkpoints for four strategies discussed in the
main text. The single-stage strategy represents the
baseline, while the other strategies are variants of
the multi-stage strategy. The curves demonstrate
a clear progression in convergence speed and final
performance, with each multi-stage strategy outper-
forming the baseline. The multi-stage C strategy
achieves the fastest convergence and lowest loss,
demonstrating the effectiveness of the multi-stage
fine-tuning.

F Annotation and Task Prompt Examples

The structure of the prompt for GPT-40 to anno-
tate each turn in a complete conversation sample

Evaluation Loss Learning Curves

10
— single-stage
— multi-stage A
— multi-stage B
— multi-stage C

Cross Entropy Loss

T

500 1000 1500 2000 2500 3000
Model Savepoint, Steps

Figure 3: Learning curves comparing multistage train-
ing against single-stage joint fine-tuning.

between an agent and a user is shown in Figure 4.
In Figure 5, a subset of instructions used for the
training data of the SpeechLLM model is shown.

714

[System]: You are an expert in Natural Language Processing.

[User]: Your task is to identify all slots with their types and values in the given dialogue text between an agent
and the customer turn by turn. The agent starts the dialogue. Return the output in a json format for every turn in
the order given below between ’dialogue starts’ and ’dialogue ends’ where key names "normalized_text" for a
turn line and "slots" for slot types and value as {slot_type: slot_value} dictionary items. If there are no slot
types in the line, return NA. For "normalized-text", DON’T change the content by rephrasing, auto-correcting,
splitting, combining and skipping words. Punctuate by adding all the required punctuation marks, then capitalize
appropriately, and then apply all the text normalization rules such as numbers to digits, currencies to symbols,
dates and times to readable form of the given text. Slots will ONLY be for very SPECIFIC mentions of things
in real world, entities, named entities, events by customer and agent. Avoid abstract, description like mentions.
Slot values should be normalized too. Don’t skip any line. Output only the JSON format

Dialogue starts:

{dialog_transcript}

Dialogue ends:

[Assistant]:

T

json
[
{
"normalized_text": "Thank you for calling Wetsuits in Harrisburg, this is Heaven.",
"slots": {

"location": "Harrisburg",
"agent_name": "Heaven"

}

——

"normalized_text": "Yeah, is Matt back yet on his trip?",
"slots": {
"person_name": "Matt"

Figure 4: The prompt used for GPT-40, [System]+[User] and its response/completion as [Assistant] which is
the desired JSON annotation for turns in the dialog transcript. The {dialog_transcript} is the complete human
transcription of the conversation. All the named entities mentioned in the examples are fictitious.

"Using the previous context, identify and extract slot values from {slots} in the current utterance. Do not extract
slot values from the context itself. Output should be in JSON format. Context: “‘ {context} “*",

"Based on the previous context, find slot values for {slots} in the current speech. Ensure that slot extraction is
only from the current utterance, not the context. Output in JSON. Previous context: “‘ {context} “",

"Refer to the previous context to help identify slot values from {slots} in the current audio. Slots should be
extracted from the current utterance only. Output must be in JSON format. Context: “‘ {context} “‘",

"Utilize the previous context to extract slot values from {slots} in the current utterance. Do not consider the
context for slot extraction. Format output as JSON. Context: “‘ {context} “‘",

"Identify slot values for {slots} in the current speech, using the previous context for guidance. Slot values
should not be taken from the context itself. Output in JSON format. Context: oo

{context} “",

Figure 5: A subset of prompts used for the “instruction” part of the training triplet {audio, instruction, response}.
The fields “slots” and “context” in each prompt are populated as described in Section 2.2.

715

