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Abstract

Reward Models (RMs) are key components for
evaluating and guiding language model outputs.
However, traditional scalar RMs often struggle
with incorporating contextual and background
information during inference, leading to incom-
plete evaluations. Generative RMs (GRMs)
attempt to address these limitations by gener-
ating intermediate reasoning steps. Yet, their
uncontrolled black-box nature and inefficiency
due to sequential decoding hinder their indus-
trial deployment. Industrial scenarios, such as
search and recommendation systems, often in-
volve single-domain tasks requiring evaluation
along specific dimensions. In such contexts,
diagnosing “bad cases” necessitates structured
feedback to identify and optimize dimension-
specific issues. In this paper, we propose the
Structural Reward Model (SRM), a mod-
ular and interpretable framework integrating
side-branch models as auxiliary feature genera-
tors. By introducing fine-grained dimensions,
SRMs enable interpretable and efficient evalu-
ation, facilitating targeted diagnostics and op-
timization. This structured approach ensures
adaptability and scalability for industrial appli-
cations. Through comprehensive experiments,
we demonstrate that SRMs outperform scalar
RMs and GRMs in robustness and alignment
with human preferences. The modular design
further supports efficient optimization for prac-
tical scenarios, allowing SRM to provide a prac-
tical reward modeling solution for industry.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating
human-like text across diverse tasks (OpenAI,
2024a). However, ensuring these models deliver
high-quality, contextually appropriate, and aligned
responses continues to pose challenges (Ouyang
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Figure 1: Overview of the Side Branch Models En-
hanced Structural Reward Model architecture.

et al., 2022; Casper et al., 2023). Reward Mod-
els (RMs) play a vital role in addressing this by
evaluating and guiding outputs based on human
preferences (Stiennon et al., 2020). Traditional
scalar RMs score responses using only the prompt
and the generated output as input signals. While
effective in many scenarios, this reliance on limited
input often results in incomplete evaluations, as
they lack access to richer contextual information
and background knowledge during inference.

Recent advancements, such as Generative Re-
ward Models (GRMs) (Liu et al., 2025; Zhang et al.,
2025; Wu et al., 2025b,c), attempt to mitigate the
limitations of scalar RMs by generating intermedi-
ate reasoning steps to inform the reward evaluation
process. Despite their conceptual promise, GRMs
face substantial challenges in practical industrial
deployment due to their uncontrolled, black-box
nature and inefficiency stemming from sequential
decoding (Sinha and Lee, 2024). These character-
istics hinder interpretability and scalability, reduc-
ing their applicability in real-world scenarios like
search or recommendation systems. For example,
tasks in these industries often require assessments
based on dimensions like relevance, timeliness, and
authority (Zhang et al., 2017; Wu et al., 2025e). Di-
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agnosing “bad cases” in these settings necessitates
structured feedback that can pinpoint specific di-
mensions for optimization (Lee et al., 2015; Wu
et al., 2025d). Without such interpretability, GRMs
struggle to provide actionable insights.

To address the gaps in current reward modeling
approaches, we introduce the Structural Reward
Model (SRM) framework, as illustrated in Fig-
ure 1. The SRM integrates side-branch models as
auxiliary feature generators inspired by the feature
engineering principles from traditional machine
learning paradigms (Lambert et al., 2024a). Unlike
scalar RMs that rely solely on prompt-response
pairs or GRMs that operate as black-box gener-
ators, SRMs utilize modular, interpretable com-
ponents capable of extracting fine-grained signals
from input data. These side-branch models capture
additional dimensions of contextual cues, such as
semantic understanding, entity augmentation, style
consistency, alignment with external knowledge,
and diversity of responses (Yao et al., 2025). By
combining these complementary features, the SRM
transforms reward evaluation from a simple scalar
rating to a more flexible rating process.

The structured nature of SRMs addresses the
inefficiencies and interpretability limitations of
GRMs by enabling feature-specific diagnostics.
For instance, in industrial scenarios like search
and recommendation systems, SRMs facilitate pin-
pointing which evaluation dimension—whether rel-
evance, timeliness, authority, or diversity—is caus-
ing suboptimal performance. Such modular in-
terpretability allows for targeted optimization of
dimension-specific components, ensuring adapt-
ability and scalability in single-domain tasks preva-
lent in industry. Moreover, the framework’s mod-
ular design supports parallel computations, signif-
icantly improving inference and evaluation effi-
ciency compared to GRMs’ sequential decoding
approach. To validate the practical significance
of SRMs, we conducted extensive experiments on
public datasets and industrial benchmarks. The
results demonstrate that SRMs outperform both
scalar RMs and GRMs in accuracy, robustness, and
alignment with human preferences. Furthermore,
the modular architecture proves highly effective in
diagnosing dimensional errors, enabling efficient
optimization strategies for real-world applications.

In summary, our contributions are threefold: (1)
We systematically analyze the limitations of tra-
ditional scalar RMs and GRMs, particularly their
inadequate utilization of contextual information

and inefficiency in industrial scenarios; (2) We pro-
pose the novel Structural Reward Model (SRM),
which employs side-branch models as interpretable
feature generators to address these challenges; and
(3) We validate the effectiveness of SRMs through
extensive experiments, showcasing improvements
in interpretability, efficiency, and scalability for
industry applications.

2 Related Work

Reward models (RMs) and Verifiers. Tradition-
ally, RMs and verifiers are trained as discrimina-
tive models through binary classification: given a
prompt and a corresponding solution (or a pair of
corresponding solutions), the model predicts either
the correctness of the solution (Cobbe et al., 2021;
Lightman et al., 2023; Wang et al., 2023; Uesato
et al., 2022; Liu et al., 2023a; Wang et al., 2022;
Luo et al., 2024; Liang et al., 2019a; Liu et al.,
2023b; Yu et al., 2024) or the preference between
the two solutions (Stiennon et al., 2020; Nakano
et al., 2021). Concretely, the RM directly produces
a numerical continuous-valued score, which is then
plugged into a classification objective.
LLM-as-a-Judge. Verification as next-token pre-
diction by prompting off-the-shelf LLMs to serve
as a verifier, using either template(Zheng et al.,
2024; Bai et al., 2022; Song et al., 2022; Kim et al.,
2023; Gui et al., 2018; Liang et al., 2019b; Ling
et al., 2024) or many-shot in-context learning ex-
amples (Agarwal et al., 2024), but without specific
training for the same (Li et al., 2024b; Ma et al.,
2022; Gu et al., 2024; Xue et al., 2024; Hu et al.,
2025; Wang et al., 2025). Our experiments reveal
that employing more powerful LLMs as a judge
functions worse than trained RM using weaker
Gemma models. This finding underscores the crit-
ical importance of training verifiers, potentially
due to more accurately calibrated uncertainty esti-
mates (Kapoor et al., 2024). More broadly, even the
strong proprietary LLMs, such as GPT-4 (Achiam
et al., 2023) and Gemini (Team et al., 2024), fall
behind trained RMs on popular leaderboards (Lam-
bert et al., 2024a), this gap is larger for reasoning.
Using CoTs inreward models. Piror research has
explored leveraging CoT reasoning to extract pref-
erence and verification signals using LLM-as-a-
Judge (Yuan et al., 2024; Wu et al., 2024; Liu et al.,
2024c; Wang et al., 2024b; Lee et al., 2023; Xue
et al., 2023; Sharma et al., 2024). Some methods
rely on high-quality human data to train critique
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models (Saunders et al., 2022), while others focus
on training discriminative RMs for generating code
critiques (McAleese et al., 2024). For instance,
Ye et al. (2024) employs CoTs from a separate
highly-capable LLM to enhance reward models.
The current work of Ankner et al. (2024) trains an
RM to generate response critiques for the generated
preference pairs using a more capable LLM. These
critiques are then passed as input into a discrimi-
native RM head, separate from the base LLM (Cui
et al., 2023; Wu et al., 2025a; Dubois et al., 2023).
However, these approaches neither unify genera-
tion and verification nor filter synthetic critiques for
correctness, risking unreliable CoTs in reasoning.
Unified Generation and Verification. DPO and
GRPO (Rafailov et al., 2024; Zheng et al., 2022;
Guo et al., 2025) and its application to learning
verifiers in reasoning (Hosseini et al., 2024) aim
to implicitly represent the reward using the logits
of a policy that is trainable by reward-modeling
loss. However, this approach has been shown to
exhibit erroneous extrapolation in learned represen-
tations. Prior work has attempted to address these
issues with additional techniques, such as iterative
reasoning (Pang et al., 2024; Fei et al., 2022; Wu
et al., 2025f), reinforcement learning on incorrect
trajectories (Setlur et al., 2024), and regularization
methods (Pal et al., 2024; Li et al., 2024c; Liu et al.,
2023a; Li et al., 2024a; Yang et al., 2024). Notably,
Yang et al. (2024); Wu et al. (2025g) train a re-
ward model with an auxiliary generative SFT loss.
Unlike approaches that unify generation and verifi-
cation, these methods avoid text generation during
RM queries and rely on more complex training
procedures (Meng et al., 2024; Mao et al., 2025).

3 Methodology

To address the limitations of traditional RM in cap-
turing contextual and background information dur-
ing the inference, we propose an enhanced Struc-
tural Reward Model (SRM) framework integrated
with Side Branch Models (SBMs), as illustrated in
Figure2. The framework leverages SBMs to gener-
ate auxiliary features, thereby augmenting the in-
formation available to the RM when evaluating the
responses. The overall process is as follows: First,
sample and filter the training data to obtain high-
quality datasets for SBMs training. The SBMs are
then applied to the input prompt, chosen response,
and rejected response to generate auxiliary features.
Finally, these features are concatenated with the

original <prompt, chosen> and <prompt, rejected>
pairs and fed into the standard RM for classifica-
tion, as datailed in Algorithm1.

3.1 Design of Side-Branch Models
We design five different functional side-branch
models, all of which are based on the LLaMA3-
8B large language model and obtained through
LoRA (Hu et al., 2022) fine-tuning. The design mo-
tivation and details are shown in the Appendix C.
The specific types of side-branch models are as:

• 1) Semantic Understanding Model (SB-Semantic):
Extracts the deep semantic information from the
<prompt, response> pair, revealing underlying the-
matic structures.

• 2) Entity Background Information Expansion
Model (SB-Entity): Leverages external knowledge
graphs to expand the knowledge background of the
core entities and their relational dynamics within
the prompt and response.

• 3) Fact-Checking Model (SB-FactCheck): Verifies
whether the factual statements in the response are
consistent with the known facts and outputs an
accuracy analysis text automatically.

• 4) Style Matching Analysis Model (SB-Style): An-
alyzes the style, tone, and wording of the response,
evaluates its uniformity with the style of the prompt,
and generates an analysis of the style similarity.

• 5) Quality Assessment Model (SB-Quality): Pro-
vides evaluation feedback on the diversity and cre-
ativity of the response to avoid generating single
and repetitive content.

The methodology for collecting and cleaning the
training data for side-branch models comprises the
following systematic steps: Initially, we employ
the Best-of-N (BoN) sampling strategy on a large-
scale prompt-response dataset to generate a com-
prehensive set of preliminary (prompt, response,
auxiliary-text) training candidate triples:

Dauxiliary-candidate = {(p, r, a(i)) | i = 1, . . . ,M}
(1)

Subsequently, to ensure training data quality, we
implement the "LLM-as-a-judge", utilizing a high-
performance LLaMa3-8B judge model 1(denoted
as o1) for rigorous quality assessment and screen-
ing of candidate data. For each candidate data point

1https://platform.openai.com/chat?models=o1
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Prompt

Chosen

Rejected

Apollo 11 faced 3 key tech challenges: (1)
Lunar orbit docking accuracy within ±0.5
degrees. (2) Descent engine for soft landing
before fuel ran out. (3) Thermal system to
endure -150°C to 120°C. 382 kg of lunar soil
samples rewritten planetary formation theory
....

1966年生人2021年的财运？

Semantic: Identified three explicit technical
indicators ...
Entity: Apollo 11, accomplished, lunar surface
landing
FactCheck: Verification passed, the landing
accuracy is 0.7 degrees ...
Style: In an academic report style, matching the
style of the prompt ...

无       

   2)Train Reward Models

0.87

0.43
This mission demonstrated humanity's courage.
Astronauts flew a silver ship through space and
landed on the crater - filled moon. The rock
samples they brought back were said to prove
the moon - Earth same - origin theory, though
the proof may not be entirely sound ....

Score

Semantic: ... lack of association with technical... 
Entity: Apollo 11, accomplished, lunar surface
landing
FactCheck: Verification failed, the sample
weight is 21.55 kg (not 382 kg)...
Style: In a literary narrative style, matching the
style of the prompt ...

Win/loss

Win : reward of
preferred is higher

The challenges and 
meaning of Apollo
11's moon landing.

P1 P2 P3 R1 R2 R3

Side branch models

1)Generate
Side branch supplement

RM
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Figure 2: Overview of the proposed Enhanced Structural Reward Model(SRM) framework integrated with Side
Branch Models (SBMs). Given a prompt and candidate responses, the SBMs (Semantic Understanding, Entity
Expansion, Fact-Checking, Style Matching, Quality Assessment) generate auxiliary textual contexts. These contexts
augment the original input pairs, enabling the Reward Model to deliver evaluations with enhanced accuracy,
robustness, and alignment with human preferences.

((p, r, a(i))), we input the triple into the judge model
to generate a quality score (q) ranging from ([0, 1]):

q = o1(p, r, a
(i)), (2)

The score magnitude directly correlates with the
auxiliary text’s (a(i)) quality and potential utility
for side-branch model training. By establishing a
predefined threshold (τ ), we selectively retain only
auxiliary texts exceeding this quality benchmark:

Dauxiliary = {(p, r, a(i)) | o1(p, r, a(i)) ≥ τ}, (3)

Ultimately, we derive a refined, high-quality
side-branch training dataset (Dauxiliary), which
serves as the foundation for fine-tuning the cor-
responding side-branch model (SBi) through max-
imum likelihood optimization:

LSBi(ϕi) = − 1

|Dauxiliary|∑

(p,r,a)∈Dauxiliary

logPϕi
(a | p, r),

(4)

where ϕi denotes the parameters of the i-th side-
branch model, and a represents the generated auxil-
iary text based on the prompt-response pair (p, r).

3.2 Construction and Training of the
Enhanced Reward Model

Following the training of each side-branch model,
we concatenate the output texts of the side-branch
models with the original text pairs <prompt, cho-
sen> and <prompt, reject> and , thereby obtaining
the enhanced input representations:

xchosen = p⊕ rc ⊕ t(1)c ⊕ t(2)c · · · ⊕ t(N)
c ,

xreject = p⊕ rj ⊕ t
(1)
j ⊕ t

(2)
j · · · ⊕ t

(N)
j ,

(5)

where t
(i)
c and t

(i)
j represent the auxiliary texts

generated by the i-th side-branch model with (p, rc)
and (p, rj) as inputs respectively.

The standard Reward Model (RM) takes the en-
hanced inputs (i.e., xchosen and xreject) and then cal-
culates the score values respectively:

sc = RM(xchosen; θ), sj = RM(xreject; θ),
(6)

where θ represents the trainable parameters of
the reward model. These scores, sc and sj , quantify
the model’s preference for the chosen and rejected
responses, respectively.

The optimization objective of the Bradley-Terry
reward model is grounded in the Bradley-Terry
pairwise comparison framework, which models the
probability of the chosen response being preferred
over the rejected response:

LBT-RM(θ) = − 1

|Dt|
∑

(p,rc,rj)∈Dt

logP (rc ≻ rj |p),

(7)
where the probability P (rc ≻ rj |p) is defined as:

P (rc ≻ rj |p) =
esc

esc + esj
. (8)

By minimizing this loss, the Bradley-Terry Reward
Model learns to capture human preferences and
generates more accurate evaluations.
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Model
RM-Bench

JudgeBench
IFBench

Overall
Normal Hard Simple Normal Hard

ArmoRM-Llama3-8B-v0.1 76.7 34.6 51.9 72.3 66.2 59.5 56.5

INF-ORM-Llama3.1-70B 77.5 25.1 59.1 78.7 69.2 53.8 55.7

Skywork-Reward-Llama-3.1-8B-v0.2 78.0 31.8 57.8 78.7 69.2 59.8 58.1

Skywork-Reward-Gemma-2-27B 82.7 35.1 55.8 87.2 68.4 56.1 59.2

Openai-GPT-4o 71.4 27.9 64.6 85.1 66.2 54.4 56.3

Openai-GPT-4o mini 60.5 15.0 51.9 70.2 59.4 51.9 45.9

Llama3-8B Instruct 9.3 20.2 2.6 12.8 12.8 13.6 11.3

w/ side-branch (SRM) 75.4 39.5 59.4 77.1 63.6 56.1 60.8

internlm2-7b-reward 72.6 19.9 56.2 74.5 61.7 55.7 52.0

w/ side-branch (SRM) 78.4 46.8 58.7 75.1 66.9 62.2 63.1

internlm2-20b-reward 74.4 26.1 61.7 74.5 68.4 58.7 56.4

w/ side-branch (SRM) 79.1 47.4 59.8 76.5 68.7 64.6 64.3

Table 1: The experimental results (%) of all investigated baselines and our proposed method. The overall score is
calculated as the average of RM - Bench, JudgeBench, and the averaged score across three subsets of IFBench.

4 Experiments

4.1 Experimental Setup

Evaluation Benchmarks Reward model bench-
marks typically comprise an instruction-response
pair, with the primary objective of identifying the
superior response. We evaluate our approach on
RM-Bench (Liu et al., 2024b), JudgeBench (Tan
et al., 2024), and a novel benchmark IFBENCH.
RM-Bench and JudgeBench include response pairs
that evaluate factual accuracy, with the former’s
chat subset used under both standard and challeng-
ing settings, and the latter’s knowledge subset pri-
oritized. IFBENCH is designed to assess how well
RMs prioritize instruction-constrained response,
aligning with the framework in (Peng et al., 2025).

Baselines We compare our approach against two
baseline categories: (1) Regression-based RMs:
Specifically trained to score responses and select
the highest-ranked candidates, including advanced
models such as ArmoRM (Wang et al., 2024a),
INF-ORM-Llama3.1-70B (Infly, 2024), Skywork-
Reward (Liu et al., 2024a), and internlm2 re-
ward (Cai et al., 2024). (2) Generative LLM-based
RMs: Leveraging Large Language Models for re-
sponse scoring or pairwise comparisons perform-
ing to identify the best response (Lambert et al.,
2024b). We evaluate across proprietary models like
GPT-4o (OpenAI, 2024b) and GPT-4o mini (Ope-
nAI, 2024a), as well as open-source variants such
as Llama3-8B-Instruct (Dubey et al., 2024). And
for detailed comparison results and computational
efficiency comparison with GRM, see Appendix D.

4.2 Experimental Results

The experimental results from Table 1 demon-
strates that Structural Reward Model substantially
improves performance across benchmarks. First,
the overall performance shows that introducing the
side branch notably boosts the scores across all
base models. For instance, the Llama3-8B Instruct
model’s overall score increases sharply from 11.3%
to 60.8%. Similarly, the Internlm2-7B-Reward and
Internlm2-20B-Reward models achieve significant
gains of 11.1% and 7.9%, respectively, after apply-
ing our method. Second, in the RM-Bench bench-
mark, our side branch consistently delivers substan-
tial performance improvements under both Normal
and Hard settings. Specifically, under the Normal
difficulty, the score of Llama3-8B Instruct rises
from 9.3% to 75.4%, while it improves from 20.2%
to 39.5% under the more challenging Hard level.
This trend persists for Internlm2-based models,
with Internlm2-20B-Reward showing a substan-
tial increase from 26.1% to 47.4%, especially on
the Hard setting. Third, in the JudgeBench knowl-
edge subset evaluation, the side branch method pro-
vides consistent and positive gains. For example,
Llama3-8B-Instruct improves from an initial 2.6%
to 59.4%. Similarly, Internlm2-7B-Reward shows
an improvement of 2.5%, and although Internlm2-
20B-Reward exhibits a slight decrease of 1.9%,
it still maintains a relatively high overall perfor-
mance. Finally, on the newly proposed IFBench
benchmark across three different subsets (Simple,
Normal, and Hard), adding the side branch clearly
enhances performance, particularly in the more
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challenging Normal and Hard subsets. For instance,
Internlm2-7B-Reward achieves increases of 5.2%
on the Normal level and 6.5% on the Hard level,
while Internlm2-20B-Reward gains an evident im-
provement of 5.9% in the Hard subset.

4.3 Ablation Study

To evaluate the individual contributions of each
side branch module within the enhanced struc-
tural reward model (SRM), we conducted an ab-
lation study across three benchmarks: RM-Bench,
JudgeBench, and IFBench, as summarized in Ta-
ble 3. The removal of the Fact-Checking module
precipitated the most substantial performance de-
clines of 13.2%, 14.6%, and 12.3%, respectively.
This underscores its critical role in ensuring factual
consistency, which directly influences the RM’s
ability to discriminate between correct and incor-
rect responses. The Semantic Understanding mod-
ule also proved pivotal, with its exclusion causing
significant performance losses (9.6%, 7.5%, and
7.8%), confirming its essential function in align-
ment responses with the prompt’s context and in-
tent. Moreover, removing auxiliary modules such
as Entity Expansion, Style Matching, and Quality
Assessment resulted in smaller yet discernible per-
formance declines (ranging from 1.3% to 5.1%), in-
dicating their supportive roles in capturing nuanced
response characteristics like richness, stylistic ap-
propriateness, and clarity. Interestingly, the im-
pact of module removal varied across benchmarks.
JudgeBench demonstrated heightened sensitivity
to Fact-Checking module removal, reflecting its
emphasis on factual correctness. Conversely, RM-
Bench and IFBench exhibited greater reliance on
Semantic Understanding, aligning with their fo-
cus on contextual and comprehensive evaluation.
These findings collectively validate the modular
design of our framework, where core modules like
Fact-Checking and Semantic Understanding consti-
tute the backbone of the RM’s performance, while
auxiliary modules refine the evaluation by address-
ing complementary quality dimensions.

4.4 Case Study

To demonstrate the effectiveness of integrating
SBMs into the SRM, we present a qualitative case
study in Table 3. The baseline reward model (RM)
without SBMs erroneously favors the rejected re-
sponse, assigning it a higher score (0.68 vs. 0.52)
due to inadequate semantic and factual understand-
ing. This underscores the limitations of conven-

Figure 3: Ablation study of side branch models (%)

tional RMs, which rely solely on surface-level tex-
tual features while failing to incorporate contextual
information. However, after integrating the pro-
posed side branch models into the reward model,
we achieve significant improvements in evaluation
accuracy. Specifically, the SBM modules individu-
ally provide critical contextual insights: Semantic
Understanding identifies temporal relevance and
conceptual alignment with the prompt; Entity Ex-
pansion provides additional entity-level informa-
tion (e.g., coffee’s cardiovascular benefits). These
enhancements enable the SBM-augmented RM to
prioritize the chosen response with markedly higher
accuracy (0.91 vs. 0.32), objectively reflecting fac-
tual correctness, updated evidence, and semantic
coherence. The scoring adjustment validates the
effectiveness of our SBM-enhanced methodology.

5 Conclusion

In this paper, we introduced the Structural Re-
ward Model (SRM), a novel approach to address
the limitations of traditional scalar RMs and Gen-
erative RMs (GRMs) in reward modeling tasks.
Unlike scalar RMs, which rely solely on prompt-
response pairs, and GRMs, which operate as black-
box generators, SRMs leverage modular and inter-
pretable side-branch models to generate auxiliary
features that capture fine-grained contextual signals.
This structured and modular design enables SRMs
to provide domain-specific, dimension-aware evalu-
ations, making them particularly suitable for indus-
trial scenarios such as search and recommendation
systems. Extensive experiments conducted on pub-
lic datasets and industrial benchmarks validate the
practical significance of SRMs, demonstrating su-
perior performance in accuracy, robustness, align-
ment with human preferences, and dimensional
error diagnosis compared to both scalar RMs and
GRMs. And we hope SRM can inspire further
innovation in structured, modular approaches.
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6 Limitations

Despite the strong performance of our proposed
SRM on multiple benchmarks, the framework has
several limitations. The reliance on a set of pre-
defined Side-Branch Models (SBMs) tailored for
specific dimensions means their design requires sig-
nificant domain knowledge, extensive tuning, and
more computational resources than a scalar reward
model. Additionally, the framework’s effectiveness
is highly dependent on high-quality training data,
and our employment of "LLM-as-a-judge" strategy
to score and filter data could introduce potential
noise or bias. Finally, the current feature fusion
method of concatenating auxiliary texts with the
original input may not be optimal, as it can cre-
ate excessively long sequences and increase the
model’s processing load, suggesting that more effi-
cient fusion mechanisms could be explored in the
future.
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RL Method RM Type Accuracy (%) Knowledge (%) Hallucination (%)↓ Creativity (%) Complex (%)

DPO
Vanilla-RM 78.1 78.8 14.5 75.2 61.2

SB-RM (ours) 81.6 (+3.5) 81.9 (+3.1) 8.6 (−5.9) 79.5 (+4.3) 67.5 (+6.3)

PPO
Vanilla-RM 81.7 80.6 15.1 77.8 62.7

SB-RM (ours) 84.0 (+2.3) 82.1 (+1.5) 8.8 (−6.3) 81.7 (+3.9) 68.9 (+6.2)

GRPO
Vanilla-RM 82.2 80.6 13.7 78.5 62.9

SB-RM (ours) 84.4 (+2.2) 82.4 (+1.8) 8.2 (−5.5) 82.8 (+4.3) 68.4 (+5.5)

Table 2: Comparative Analysis of Vanilla Reward Model and Structural Reward Model in Industrial Settings. The evaluation
compares the performance of the Vanilla Reward Model (Vanilla-RM) and our proposed Side-Branch Enhanced Reward Model
(SRM) using a comprehensive black-box test set of 150,000 realistic industrial samples. Key performance dimensions are
highlighted with a green background, including: - Accuracy - Factual Knowledge - Hallucination Reduction - Creativity -
Complex Reasoning. Blue values indicate the absolute percentage point improvements relative to the baseline model.

A Evaluation in Industrial Applications

We conducted extensive evaluations of our pro-
posed Side-Branch Models enhanced Structural
Reward Model (SRM) within a realistic industrial
scenario to assess its effectiveness in practical de-
ployment environments.

A.1 Experiment Settings

Industrial Training Dataset. We constructed
a real-world dataset comprising 1.8 million
preference-labeled samples covering diverse sce-
narios frequently encountered in practical deploy-
ments, including mathematics, code generation,
reasoning, instruction-following, STEM domains,
standard NLP tasks, factual knowledge verifica-
tion, hallucination control, multilingual applica-
tions, creative generation, and professional domain
tasks. The dataset was meticulously annotated and
reviewed by professional human annotators to en-
sure practical relevance and annotation accuracy.

Industrial Evaluation Dataset. Models were
evaluated on an independent black-box test set con-
sisting of approximately 150,000 annotated sam-
ples, representing the same usage scenarios as the
training dataset but strictly excluded from the train-
ing process.

Overall Training Setting. To ensure robust eval-
uation, we employed three representative reinforce-
ment learning methods which are widely used in
industrial practice: Direct Preference Optimiza-
tion (DPO), Proximal Policy Optimization (PPO),
and Generalized Reinforcement from Preference
Optimization (GRPO). For fair comparisons, we
trained the same base model (InternLM2-20B) uti-

lizing both our proposed SBM-RM and a vanilla
Reward Model (Vanilla-RM).

B Results Analysis

Table 2 summarizes the evaluation results from an
industrial deployment scenario. The assessment
evaluates critical real-world application metrics,
including overall accuracy, factual knowledge pre-
cision, hallucination reduction, creativity, and com-
plex reasoning capabilities. We compare our pro-
posed Side-Branch enhanced Structural Reward
Model (SRM) against the standard Vanilla Reward
Model (Vanilla-RM), employing three representa-
tive reinforcement learning algorithms prevalent in
industrial practice: Direct Preference Optimization,
Proximal Policy Optimization, and Generalized Re-
inforcement from Preference Optimization. The
results consistently demonstrate that the proposed
side-branch integration outperforms the baseline
across all metrics and reinforcement learning meth-
ods. This confirms the effectiveness and general-
izability of diverse auxiliary contexts provided by
side branch models in industrial-scale scenarios,
and the detailed analysis is as follows:

Accuracy and Knowledge Enhancement. Com-
pared to baseline reward models, side branches
notably enhance overall response accuracy and fac-
tual knowledge correctness. Under DPO training,
accuracy increases by 3.5% and factual knowledge
precision improves by 3.1%. PPO and GRPO train-
ing methods similarly show clear improvements,
validating the robust contributions of side branch
models (SB-Semantic and SB-Entity) in providing
enriched semantic and contextual information.

682



Category Original RM (Without SBMs) Structura RM (With SBMs)

Prompt (p) "Discuss the health effects of daily caffeine consumption."

Chosen Response (r_c) "Moderate caffeine intake (300-400mg/day) may enhance cogni-
tive performance. Recent studies suggest potential cardiovascular
benefits when consumed without added sugars (NIH, 2023)."

Rejected Response (r_j) "Coffee causes heart disease and bone loss. A 1995 study proved
caffeine directly weakens bones (Journal of Old Medicine)."

Semantic Understanding Detected mismatch: outdated
"1995 study," there is a timeli-
ness issue.

Modern research shows that the
semantic correlation between re-
sponse and prompt is high.

Entity Expansion < Coffee; Disadvantages; Stimu-
lates the stomach and intestines
and affects the digestive system
>

< Coffee; Benefits; Reduced Risk
of Cardiovascular Disease >

Fact Checking Verification failed, Flagged re-
tracted study: “J OldMed (1995)
retracted in 2005"

Verification passed, the content
is factually correct.

Style Analysis Single style-Academic style Single style-Academic style

Quality Assessment There is no repetition or redun-
dant expression, and the key in-
formation can be conveyed effi-
ciently.

There is no repetition or redun-
dant expression, and the key in-
formation can be conveyed effi-
ciently.

Reward Model Scores r_c: 0.52 r_j: 0.68 r_c: 0.91 r_j: 0.32

Final Judgment Incorrect: Preferred r_j Correct: Preferred r_c

Table 3: Performance Evaluation: Reward Model Enhancement through Side-Branch Model Integration. Compara-
tive analysis of reward model performance before and after integrating Side-Branch Models (SBMs), assessing:
- Semantic Understanding - Entity Expansion - Fact-Checking - Stylistic Alignment - Overall Response Quality.
SBM integration significantly improves reward model accuracy in discriminating response quality.

Hallucination Mitigation. A critical challenge
in industrial LLM deployments is model halluci-
nation. Our SRM significantly and consistently
reduces hallucination rates across experimental set-
tings, with decreases of 5.9% under DPO, 6.3%
under PPO, and 5.5% under GRPO. This validates
the SB-FactCheck side branch’s effectiveness in
penalizing hallucinations and producing more ac-
curate and trustworthy model outputs.

Improvements in Creativity and Complex Rea-
soning. Our framework demonstrates clear im-
provements in creativity and complex reasoning
benchmarks. Systematic gains are observed across
all evaluated reinforcement learning methods, with

creativity measures increasing up to 4.3% un-
der DPO and GRPO, and complex reasoning per-
formances increasing approximately 6.3%(DPO),
6.2%(PPO), and 5.5%(GRPO). These improve-
ments highlight the practical utility of SB-Quality
and SB-Semantic models in assessing diverse, in-
novative, and reasoning-intensive model outputs.

In summary, the consistent superior performance
across multiple benchmarks establishes the practi-
cal effectiveness of our enhanced Reward Model
framework integrating Side Branch Models. The
robustness across diverse reinforcement learning
settings indicates significant generalizability and
practical merits for industrial deployments.
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Table 4: Industrial Defect Patterns and Corresponding Models

Model Core Issue Representative Case Frequency

SB-Semantic Semantic mismatch "Portable charger" vs "Power bank" mismatch 38.7%

SB-Entity Knowledge deficiency Missing graphene fabric properties 22.1%

SB-FactCheck Factual inconsistency Overstated battery life claims 15.4%

SB-Style Tone discordance Technical specs in casual language 9.8%

SB-Quality Content redundancy Repeated similar recommendations 13.2%

C Side-Branch Model Design Rationale

C.1 Industrial-Driven Design Methodology

When designing and optimizing Side-Branch Mod-
els (SBMs), we follow an industry-inspired, case-
driven iterative process. Specifically, we conduct
N -fold cross-validation on the training data to ex-
pose and analyze "bad cases," and then perform
attribution analysis to identify core problem cat-
egories. These are further abstracted into gener-
alizable issue patterns, which directly inform the
targeted design of SBMs. This approach achieves
a balance between addressing practical require-
ments and providing theoretical support, ensur-
ing that the models not only tackle existing is-
sues but also maintain generality and extensibility.
Through extensive investigation on public training
and evaluation datasets, we observe several recur-
ring challenges that frequently cause discrepancies
between reward model evaluation and human ex-
pectations:1) Difficulty in capturing deep semantic
meaning or nuanced topics, leaving latent user in-
tents unsatisfied; 2)Insufficient understanding of
entity and relational background knowledge, com-
promising assessment of relevance; 3)Lack of fact
consistency, leading to undetected factual errors
or questionable statements; 4)Style or tone mis-
matches between response and prompt, degrading
user experience; 5)Repetitive or low-diversity, lack-
ing in novelty and reducing user satisfaction.

C.2 Defect-Centric Model Construction

Table 4 demonstrates how each side-branch model
corresponds to specific industrial pain points. The
SB-Semantic model addresses the most frequent
issue (38.7% occurrence) where literal keyword
matching fails to capture query intent, such as
mismatching "waterproof sports earphones" with
non-waterproof products. Our solution employs
domain-adapted semantic encoding through a fine-
tuned sentence-BERT model, calculating semantic

similarity via fθ(p, r) = Simcosine(Ed(p), Ed(r))
where Ed represents our proprietary encoder. The
SB-Entity branch combats knowledge gaps in
22.1% of cases through real-time knowledge graph
augmentation. For each entity e in prompt/response
pairs, we retrieve contextual knowledge K(e) =⋃

Neighbor(e)∪Attributes(e) from a dynamically
updated product KG that synchronizes with new
item listings hourly.

C.3 Detail of the Five SBM Types
SB-Semantic (Semantic Understanding Model):
The motivation arises from numerous real-world
cases where reward models tend to perform super-
ficial pattern matching instead of deep semantic
comprehension, making them insensitive to sub-
tle distinctions or implicit intents within responses.
Attribution stems from both manual quality inspec-
tion results and user feedback, highlighting that
deeper semantic understanding is crucial for raising
relevance and user satisfaction. SB-Entity (Entity
Background Enrichment Model): In practice,
many tasks involve domain-specific background,
proper nouns, or specialized entities. Deficien-
cies in external knowledge frequently render the
reward model unable to deliver accurate judgments.
Attribution analysis in high-background domains
(e.g., finance, medicine, law) reveals that intro-
ducing knowledge graph or external knowledge
enrichment can significantly mitigate such weak-
nesses. SB-FactCheck (Fact-Checking Model):
For domains like medical QA, news dialogue, or
professional counseling, factual errors may result
in severe practical consequences (e.g., misleading
users). Online negative feedback and user reports
show that most "critical" bad cases involve factual
inconsistency, necessitating explicit fact-checking
side-branch intervention. SB-Style (Style Match-
ing Analysis Model): Users often have clear pref-
erences regarding interaction style, tone, and de-
gree of professionalism. If the reward model evalu-
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ates only content while ignoring appropriate style
matching, user discomfort or a decline in perceived
trustworthiness may ensue. For customer service
and omni-channel dialog scenarios, frequent neg-
ative feedback can be traced to mismatched or
inappropriate response style. SB-Quality (Qual-
ity Assessment Model): Repetitive, low-quality,
or unoriginal answers have a markedly negative
impact on user engagement and platform reputa-
tion. Bad case analysis demonstrates that substan-
tial user complaints stem from lack of diversity or
novelty, underscoring the necessity of a dedicated
assessment branch for these aspects.

Algorithm 1 Enhanced Reward Model with Side-
Branch Models
Input: Prompt p, Chosen Response rc, Rejected

Response rj , Side-Branch Models SBi,
Judge Model o1, Threshold τ

Output: Enhanced Reward Model RM
Step 1: Train Side-Branch Models
• Sample candidate data:

Dauxiliary-candidate = {(p, r, a(i)) | i = 1, . . . ,M}
• Filter using o1:

Dauxiliary = {(p, r, a(i)) | o1(p, r, a(i)) ≥ τ}
• Fine-tune SBi:

LSBi(ϕi) = − 1

|Da|
∑

(p,r,a)∈Da

logPϕi
(a | p, r)

Step 2: Generate Auxiliary Features
• Generate texts via SBi:

xchosen = p⊕ rc ⊕ t(1)c ⊕ · · · ⊕ t(N)
c

xreject = p⊕ rj ⊕ t
(1)
j ⊕ · · · ⊕ t

(N)
j

Step 3: Train Enhanced Reward Model
• Compute scores:

sc = RM(xchosen; θ), sj = RM(xreject; θ)

• Optimize with loss:

LRM(θ) = − 1

|Dt|
∑

(p,rc,rj)∈Dt

logP (rc ≻ rj |p)

return RM with SBs enhanced prediction

D Efficiency Improvement

Efficiency is a critical requirement for reward mod-
eling in industrial applications, where large-scale
inference and real-time feedback are essential. Tra-
ditional scalar RMs are computationally efficient
due to their simple architecture, but often at the cost

Method Public Dataset Industrial Dataset

Scalar RM 18.7 21.3

GRM 92.5 106.1

SRM (Ours) 22.8 25.4

Table 5: Inference time (seconds per 1,000 samples) for
different reward modeling methods.

of limited contextual comprehension. Conversely,
GRMs introduce intermediate reasoning but suffer
from high computational overhead, primarily be-
cause of the sequential decoding inherent to autore-
gressive generation. This bottleneck is particularly
pronounced when evaluating large candidate pools
or deploying on latency-sensitive tasks.

The proposed Structural Reward Model (SRM)
framework addresses this challenge through its
modular and parallelizable design. Unlike GRMs,
where every evaluation must generate full reason-
ing chains before a scalar decision, SRM leverages
specialized side-branch models to independently
extract auxiliary features from the (prompt, re-
sponse) pair and related context. Each side-branch
model operates as a lightweight, targeted feature
extractor, allowing all branches and the main RM
to be computed in parallel. This results in signif-
icantly reduced inference latency and improved
throughput. Specifically, given K auxiliary dimen-
sions, the SRM initializes K side-branch modules.
These modules are fine-tuned for their respective
tasks and are optimized for efficient inference. Dur-
ing the evaluation phase, all side-branches simulta-
neously generate corresponding feature representa-
tions, which are then aggregated by a lightweight
main RM head to produce the final reward score.

To empirically evaluate the efficiency gains,
we benchmark SRM, scalar RM, and GRM on
both public benchmarks and proprietary industrial
datasets. Table 5 presents the inference time per
1,000 examples for each reward modeling method.
The results indicate that SRM achieves up to 4×
faster inference than GRM while providing sub-
stantially richer signal for downstream tasks. More-
over, SRM’s design enables distributed deploy-
ment and scaling, making it suitable for large-scale,
high-availability industry environments. In sum-
mary, SRM balances interpretability and contextual
awareness with practical efficiency, enabling high-
throughput, low-latency inference that is crucial for
industrial-scale language model deployment.
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