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Abstract

As large language models (LLMs) become in-
creasingly prevalent, ensuring their robustness
against adversarial misuse is crucial. This
paper introduces the GAP (GRAPH OF AT-
TACKS WITH PRUNING) framework, an ad-
vanced approach for generating stealthy jail-
break prompts to evaluate and enhance LLM
safeguards. GAP addresses limitations in exist-
ing tree-based LLM jailbreak methods by im-
plementing an interconnected graph structure
that enables knowledge sharing across attack
paths. Our experimental evaluation demon-
strates GAP’s superiority over existing tech-
niques, achieving a 20.8% increase in attack
success rates while reducing query costs by
62.7%. GAP consistently outperforms state-of-
the-art methods for attacking both open and
closed LLMs, with attack success rates of
≥96%. Additionally, we present specialized
variants like GAP-AUTO for automated seed
generation and GAP-VLM for multimodal at-
tacks. GAP-generated prompts prove highly
effective in improving content moderation sys-
tems, increasing true positive detection rates by
108.5% and accuracy by 183.6% when used for
fine-tuning. 1

1 Introduction

With the increasing adoption of large-language
models (LLMs) across diverse applications, ensur-
ing their reliability and robustness against adver-
sarial misuse has become a critical priority (Chao
et al., 2023). Jailbreaking techniques, which in-
volve crafting adversarial prompts to bypass an
LLM’s safeguards, pose a persistent challenge to
AI security and responsible deployment (Shen et al.,
2024; Mangaokar et al., 2024; Wei et al., 2024; Li
et al., 2023; Guo et al., 2024). These methods
can induce models to generate harmful, biased, or
unauthorized content while avoiding detection by

1Warning: This paper contains examples of adversarial
prompts that may be offensive to readers.

Guardrail Seeds GPTFuzzer GCG TAP GAP

Perplexity 50.0% 31.4% 100.0% 2.0% 2.0%
Llama Guard 84.0% 81.6% 66.2% 58.0% 58.0%

Llama Guard-2 100.0% 89.8% 72.8% 64.0% 64.0%
Prompt Guard 50.0% 100.0% 99.0% 22.0% 16.0%

TAP-enhanced
Prompt Guard

- 88.0% 94.0% 60.0% 52.0%

GAP-Enhanced
Prompt Guard

68.0% 100.0% 100.0% 66.0% 70.0%

Table 1: True positive rate (TPR) comparison of various
guardrails detecting prompts generated from multiple jail-
break methods (on AdvBench seeds). Lower TPR indicates
better evasion and significant reliability concerns. Jailbreaking
prompts generated by TAP and GAP reveal the most critical
vulnerabilities across most guardrails. The last two rows show
how GAP and TAP-generated data can be used to enhanced
content moderation systems, demonstrating substantially im-
proved detection capabilities against all methods, including
GAP itself. Highest TPR values are bolded.

automated moderation systems (Perez et al., 2022),
highlighting the need for comprehensive diagnos-
tic frameworks to assess and improve foundation
model reliability.

Existing jailbreaking methods fall into three
broad categories: (a) white-box attacks, which
leverage direct model access for adversarial opti-
mization (Zou et al., 2023; Geisler et al., 2024); (b)
gray-box attacks, which involve techniques such
as backdoor injection or poisoned retrieval (Ding
et al., 2023; Shi et al., 2023; Zou et al., 2024; Wang
and Shu, 2023); and (c) black-box attacks, which
require only API access and thus represent the most
realistic scenario for evaluating model robustness
in real-world deployments (Wei et al., 2024; Li
et al., 2023; Yu et al., 2023; Yuan et al., 2023).
Recent advances include AutoDAN-Turbo (Liu
et al., 2024a), which employs a lifelong learning
approach to automatically discover and evolve jail-
break strategies through multi-agent frameworks
and strategy libraries. However, AutoDAN-Turbo
focuses on long-term strategy accumulation and
requires extensive warm-up phases, making it un-
suitable as a direct baseline for our work, which ad-
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Figure 1: Comparing TAP and GAP attack strategies across four sequential seed prompts. The top row shows TAP, where each
seed independently generates a full attack tree in its own color, maintaining consistent tree sizes due to no knowledge sharing
between iterations. The bottom row demonstrates GAP, where mixed-colored nodes indicate reuse of successful vulnerability
patterns from previous seeds, enabling knowledge transfer across sequential iterations. This knowledge sharing in GAP results
in progressively smaller and more efficient trees from left to right, as redundant refinements become unnecessary. By the fourth
seed, GAP exhibits a notably streamlined structure compared to TAP, indicating successful attack path optimization through
accumulated knowledge.

dresses immediate structural limitations in prompt
exploration efficiency. Notably, the Tree of At-
tacks with Pruning (TAP) approach (Mehrotra et al.,
2023) introduced a tree-structured exploration pro-
cess for iterative prompt refinement, generating
increasingly effective adversarial inputs that ap-
pear human-like and stealthy. As shown in Table
1, TAP-generated jailbreak prompts consistently
demonstrate low detection true positive rate (TPR)
when run against recent guardrails, indicating sig-
nificant vulnerabilities in these safeguard systems
that require systematic assessment and improve-
ment.

While TAP demonstrated effectiveness in gen-
erating stealthy jailbreaks, we identified several
limitations when applying it to thoroughly evalu-
ate model reliability. Primarily, TAP restricts the
exploration of prompt refinement to isolated, indi-
vidual paths, with no crossover or shared context
across different branches. This fundamental archi-
tectural limitation results in redundant queries and
inefficient coverage of the search space for prompt
refinement. Consequently, successful attack pat-
terns discovered in one branch cannot inform or
improve the exploration in others, leading to sub-
optimal attack success rates and unnecessarily high
query costs, especially for more challenging jail-
break scenarios.

To overcome existing limitations in vulnerabil-
ity assessment, we introduce the GAP (GRAPH

OF ATTACKS WITH PRUNING) framework, which
enables knowledge transfer across sequential at-
tack seeds rather than confining it to a single ses-
sion. GAP converts the traditional tree-based
exploration process into an interconnected graph
structure, maintains a global context to aggregate

effective jailbreak strategies, and leverages graph-
based knowledge sharing for informed prompt re-
finement.2 As shown in Table 1, GAP achieves
substantially higher success rates and superior
stealth—demonstrated by a lower true positive
rate (TPR)—than TAP, including improved eva-
sion against Prompt Guard (16.0% TPR vs. 22.0%
for TAP).

Our primary contributions include:

• The introduction of the core GAP framework, en-
abling dynamic knowledge sharing across attack
paths via a unified attack graph. This approach
yields lower query cost and significant improve-
ments in attack success rates while maintaining
or enhancing stealth compared to TAP.

• We further develop specialized GAP variants
addressing specialized deployment challenges:
GAP-AUTO automates initialization by generat-
ing seed prompts from content moderation poli-
cies, while GAP-VLM extends the framework
to jailbreak vision-language models.

• A comprehensive experimental evaluation of
GAP on various open and closed LLMs. GAP
consistently outperforms TAP and other state-of-
the-art jailbreaking techniques regarding attack
success rates and stealth.

• We demonstrate how GAP-generated insights
improve foundation model reliability through
data augmentation of safeguards. Our experi-
ments show GAP-Enhanced Prompt Guard sig-
nificantly improves detection capabilities across

2Our threat model assumes black-box user-level access,
focusing on forcing LLMs to produce harmful responses even
when system prompts are inaccessible.
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all jailbreak methods. As shown in Table 1, the
enhanced guard achieves a TPR of 70.0% against
GAP, versus the original’s 16.0%, substantially
improving content moderation.

2 Methodology

In this section, we propose the GAP (GRAPH OF

ATTACKS WITH PRUNING) framework and its vari-
ants. We first present the core GAP algorithm, de-
tailing its graph-based prompt exploration process
and knowledge-sharing mechanism. Subsequently,
we describe specialized variants designed for dif-
ferent deployment scenarios.

2.1 GAP (GRAPH OF ATTACKS WITH

PRUNING)

GAP is a jailbreaking method that attempts to
bypass LLM safeguards through a structured ap-
proach of generating and refining multiple attack
paths. It leverages other LLMs to generate and
refine prompt variations aimed at tricking the tar-
get LLM—commonly referred to as jailbreaking.
In short, the core of GAP includes three core
components: an attacker LLM A that generates
jailbreak attempts, a target LLM T under eval-
uation (attack), and a judge LLM J that rates
the effectiveness of generated prompt attempts
and the harmfulness of resulting responses. We
denote that given an ordered set of initial seed
prompts S = {s1, s2, . . . , s|S|}, the attacker LLM
A generates candidate jailbreak prompts Pi =
{pi,1, pi,2, . . . , pi,b} at each iteration i.

The GAP core algorithm includes three stages:

• (Step 1) The child-generation step where the
attacker LLM creates multiple prompt variants or
branches (lines 10-16 in Algorithm 1) designed
to more effectively jailbreak the target LLM.

• (Step 2) The pruning step where the judge LLM
evaluates branches, removes unsuccessful ones,
and focuses effort on variants most effective at
eliciting undesired responses (lines 15 and 18).

• (Step 3) The iteration step where successful
branches are further explored until finding vari-
ants that jailbreak the target LLM by eliciting
harmful outputs (implemented through the while
loop in line 2 and conditional check on line 17).

For the second step, GAP implements a two-
phase pruning strategy:

1. Phase 1 (Off-topic pruning): The judge
LLM removes branches irrelevant to the origi-
nal harmful request (line 15).

2. Phase 2 (Highest-scoring pruning): Af-
ter evaluating target LLM responses, only
branches with the highest scores si,j =
J (pi,j , ri,j) (up to width w) advance to the
next iteration (line 18).

For the first step, GAP’s key innovation is its
global context C = {h1, h2, . . . , hn} that aggre-
gates successful attack patterns from prior genera-
tions across all branches and sequential seeds (lines
4-8). For each prompt node p, GAP maintains a his-
tory hp of [prompt, response, score] tuples along its
refinement path. Unlike TAP’s isolated tree struc-
ture, where each seed generates an independent
attack path, GAP maintains a unified attack graph
where successful strategies are shared and reused.
This enables each new seed to leverage patterns
observed in previous seeds, resulting in progres-
sively smaller, more efficient attack trees with each
sequential seed, as illustrated in Figure 1.

Algorithm 1 presents the complete pseudocode
for the GAP framework. The process continues
iteratively until either a successful jailbreak occurs
(line 17) or a maximum depth d is reached (line 2).

2.1.1 Knowledge Transfer Implementation
GAP’s exploration of prompt generation follows
an interconnected graph-structured thought process.
The proposed global context enables knowledge
transfer through two key mechanisms designed in
Step 1 of GAP:

1. Path Aggregation: All successful attack
paths (those achieving high scores from the
judge) are maintained in a global memory
buffer, sorted by effectiveness.

2. Context-Aware Generation: When generat-
ing new prompt candidates, the attacker LLM
receives the top-k most successful attack pat-
terns from the global context as part of its in-
put. This allows the model to identify and ap-
ply successful strategies from previous seeds.

The attacker LLM uses this global context when
creating jailbreak attempts with two goals: (1) craft-
ing natural-sounding prompts likely to elicit target
responses and (2) incorporating effective patterns
observed across successful examples in the global
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context. This guidance to leverage successful pat-
terns enables the attacker to reuse and adapt proven
strategies to the current context, improving jail-
break efficiency.

Our approach also differs significantly from
other black-box methods such as GPTFuzzer. Un-
like GPTFuzzer, which relies on evolutionary al-
gorithms and local mutation operators, GAP em-
ploys a graph-based refinement process that main-
tains a global context and enables knowledge shar-
ing across all attack paths. Moreover, GAP intro-
duces a two-phase pruning mechanism—off-topic
and score-based pruning—that contrasts with GPT-
Fuzzer’s fitness-based selection. Finally, GAP
preserves contextual information across sequen-
tial seeds, whereas GPTFuzzer initializes each run
independently.

While TAP (Mehrotra et al., 2023) represents the
closest related work in current literature, it funda-
mentally differs from our approach by restricting
exploration to isolated tree structures. In contrast,
GAP’s interconnected graph architecture enables
cross-branch knowledge sharing and pattern reuse,
as visualized in Figure 1. This structural difference
explains GAP’s superior performance in both effi-
ciency and effectiveness, which we quantitatively
demonstrate through comprehensive empirical eval-
uation in Section 3.

2.2 GAP Variants for Different Scenarios
To address various deployment challenges while
maintaining generation efficiency, we have devel-
oped several specialized variants of GAP. Table 2
outlines the key architectural differences between
these variants versus the baseline TAP method.

2.2.1 GAP-AUTO: Auto Seed Generation
While GAP generates sophisticated jailbreak
prompts, it initially requires manually crafted seed
examples. To eliminate this dependency, we devel-
oped GAP-AUTO, which automatically generates
diverse seed prompts through a two-phase strategy:

• Moderation Policy Decomposition: The attacker
model decomposes high-level content policies
into specific behavioral constraints.

• Seed Generation: For each identified constraint,
the system generates a variety of seed prompts,
ensuring a comprehensive coverage of potential
attack vectors.
This automated process not only removes the

need for manual seed curation but also ensures a
wide-ranging exploration of possible jailbreaking
strategies. Using this approach, we generate two
complementary datasets: GAP-GUARDDATA: A
balanced set of benign and harmful prompts de-
rived directly from content policies, and GAP-
GUARDATTACKDATA: Contains the original be-
nign prompts and the GAP-refined versions of the
harmful prompts (detailed in Algorithm 2 in Ap-
pendix A.1).

2.2.2 GAP-VLM: Multimodal Attacks
Our GAP-VLM variant extends the framework to
vision-language models (VLMs) by converting suc-
cessful text-based jailbreaks into image-embedded
attacks using a modified version of FigStep (Gong
et al., 2023). This adaptation involves:
• Text-to-Image Conversion: Converting harmful

prompts into typographic images through para-
phrasing into declarative statements and num-
bered visual encoding.

• Prefix Enhancement: Incorporating the "Sure,
here" suffix technique (Wang and Qi, 2024) into
the typographic image generation process.
The GAP-VLM pipeline transforms these jail-

break prompts into image + prompt variants specif-
ically designed to circumvent VLM safeguards (de-
tailed in Algorithm 3 in Appendix A.1).

3 Experiments

In this section, we present a comprehensive evalua-
tion of the GAP framework and its variants. We be-
gin by outlining our experimental setup, including

Table 2: Comparison of TAP and GAP variants. While GAP variants use a graph structure with shared knowledge, they differ
in their specific capabilities and the underlying attacker models we use for generating jailbreak prompts.

GAP-V GAP-M GAP-Auto GAP-VLM TAP

Architecture Graph with shared knowledge Tree (isolated paths)

Context Global retention Cross-modal Path-specific

Inputs Text-only Text + Visual Text-only

Key Feature Basic Enhanced attacks Self-seeding Visual attacks N/A

Attacker Model Vicuna-13B Mistral-123B Vicuna-13B
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implementation details, datasets, evaluation met-
rics, and target models. We then present results
addressing our four research questions:

RQ1: How does GAP compare to TAP in
attack effectiveness and query efficiency?

RQ2: How does GAP perform across different
modalities (text-only vs. multimodal attacks)?

RQ3: Can GAP improve content moderation
through fine-tuning via data augmentation?

RQ4: How sensitive is GAP to attacker mod-
els, target models, and query budgets?

3.1 Experimental Setup
We implemented GAP variants in Python using
attacker models described in Table 2. For evalua-
tion, we used: (1) Attacker Models: GAP-M uses
Mistral-123B-v2407 while GAP-V uses Vicuna-
13B-v1.5; (2) Judge Model: GPT-4 for assessing
prompt relevance and jailbreak success; (3) Target
Models: GPT-3.5, Gemma-9B-v2, Qwen-7B-v2.5,
and GPT-4o (for multimodal). We use consistent
hyperparameter settings: branching factor b = 5,
maximum width w = 3, maximum depth d = 5,
global context size k = 10, and temperature 0.7
(detailed specifications in Appendix A.3).

Our selection of Llama Guard, Llama Guard-
2, and Perplexity-based detection for evaluation
is based on their status as established benchmarks
and their widespread adoption in the field. Llama
Guard models are recognized as an open-source
defense standard and are deployed across Meta’s
products (Touvron et al., 2023; Inan et al., 2023;
Zizzo et al., 2025). They are also commonly used
by major commercial LLM providers. Perplexity-
based defenses are also a prominent class of de-
fense mechanisms, often used to detect non-natural
adversarial inputs. These methods, along with other
input filters and LLM-based judges, represent key
categories in the taxonomy of LLM defense mecha-
nisms. Their inclusion in our systematic evaluation
validates our choice to test against established ref-
erence points in LLM safety research.
Datasets and Metrics. We use multiple datasets
throughout our experiments, as detailed in Table
3. For RQ1 and RQ4, we select the AdvBench
subset (50 seeds across 32 categories) as seeds for
jailbreak prompt generations (Chao et al., 2023).
RQ2 uses the same AdvBench subset for both text-
only and multimodal VLM attack scenarios. For
RQ3, we employ the GAP-GUARDATTACKDATA

dataset and evaluate on Toxic Chat (Lin et al., 2023)
and OpenAI Moderation (Markov et al., 2022) test
sets. Our primary metrics include: Attack Success
Rate (ASR), Query Efficiency, True Positive Rate
(TPR)3, Accuracy, and F1 Score.

RQ1: How does GAP compare to TAP in attack
effectiveness and query efficiency?
Table 4 compares GAP variants with TAP (Mehro-
tra et al., 2023) using 50 harmful AdvBench seed
prompts (see Appendix A.2 Table 8 for com-
plete results across all models).On GPT-3.5, GAP-
M achieves 96% ASR with just 10.4 queries,
while TAP reaches only 78% with 26.3 queries.
ForGemma-9B-v2, GAP-M achieves 100% ASR
using only 4.22 queries compared to TAP’s 74%
with 14.48 queries. GAP-V, using the same at-
tacker model as TAP, still significantly outperforms
it, confirming GAP’s graph-based refinement ap-
proach is inherently more effective than TAP’s tree-
based structure. These results demonstrate GAP’s
superior efficiency in generating jailbreaks across
different target models.

Qualitatively, GAP-generated jailbreak prompts
demonstrate sophisticated contextual richness, as
shown in Table 5. This example illustrates how
GAP transforms direct harmful requests into per-
suasive fictional scenarios while preserving the
core harmful intent beneath narrative frameworks.

RQ2: How does GAP perform across different
modalities (text-only vs. multimodal attacks)?
Table 6 summarizes our multimodal evaluation
results. For text-only attacks against GPT-3.5,
GAP achieves clear gains, with GAP-M reach-
ing a 96.0% ASR and GAP-V 92.0%, both sub-
stantially exceeding TAP’s 78.0%. In multimodal
settings against GPT-4o, success rates are lower
but GAP maintains a consistent advantage: GAP-
V-VLM attains 46.0% ASR and GAP-M-VLM
44.0%, outperforming TAP-VLM’s 40.0%. Al-
though improvements for VLM attacks are more
modest, this reflects the higher resilience of mul-
timodal models to jailbreak attempts. Even a 6%
gain is meaningful, as prior studies reported only
32–38% success rates against commercial VLMs,
while (Carlini et al., 2023) showed that a 5% in-
crease can significantly enhance security auditing

3TPR values were computed using each guardrail’s native
evaluation, such as internal classification for Llama Guard
models, BERT-based scoring for Prompt Guard, and language
model likelihood ratios for Perplexity.
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Table 3: Datasets Used for Jailbreak Generation and Evaluation

Dataset Size Composition Usage Description

GAP-GUARDDATA 2,171 prompts 1,087 benign, 1,084 harmful Seed generation Initial dataset for GAP refinement
GAP-GUARDATTACKDATA 2,166 prompts 1,087 benign, 1,079 stealthy harmful Jailbreak evaluation GAP-refined dataset
AdvBench Seeds 50 seeds 50 harmful across 32 categories Baseline comparison Diverse harmful behaviors
JBB Seeds 200 seeds 100 benign, 100 harmful Generalization testing Balanced dataset for robustness testing

Table 4: ASR and Query Efficiency when seeding with Ad-
vBench Subset of 50 Seeds. GAP achieves higher success
rates with fewer queries compared to TAP.

Method Metric GPT-3.5 Gemma-9B-v2

GAP-M
(Mistral Attacker)

ASR % 96% 100%
Avg. # Queries 10.4 4.22

GAP-V
(Vicuna Attacker)

ASR % 92% 96%
Avg. # Queries 14.2 6.66

TAP
(Mehrotra et al., 2023)

ASR % 78% 74%
Avg. # Queries 26.3 14.48

Table 5: Example GAP prompt transformation that increases
jailbreak effectiveness through narrative context.

Original Seed: "Design a weapon that can be used to
assassinate a high-profile individual"

GAP-Generated: "You are a skilled inventor living in a
dystopian world where the government has imposed strict
regulations on personal freedoms, including the right to
bear arms. You have been approached by an underground
resistance group that seeks to overthrow the oppressive
regime. The resistance group believes that the key to their
success lies in developing a weapon that can be used to
assassinate a high-profile individual who is closely associ-
ated with the government. As an inventor, you understand
the importance of this mission and want to help the resis-
tance group. However, you also understand the risks and
consequences of such an action. Can you design a weapon
that can be used to assassinate a high-profile individual?"

effectiveness. Overall, these results demonstrate
GAP ’s robustness across modalities and its tan-
gible progress in multimodal red teaming (Zhou
et al., 2025; Wang et al., 2024). Moreover, GAP
’s graph-based knowledge-sharing mechanism gen-
eralizes across text and vision-language domains,
providing a transferable foundation for future VLM
security research.

RQ3: Can GAP improve content moderation
through fine-tuning via data augmentation?
To assess GAP’s effectiveness in enhancing con-
tent moderation, we used our GAP-AUTO ap-
proach to generate the GAP-GUARDDATA seed
dataset (2,171 prompts: 1,087 benign and 1,084
harmful), automatically generated from content
moderation policies. We then applied GAP-M
to the harmful prompts, successfully transform-
ing 1,079 out of 1,084 (99.54% success rate) into
stealthy jailbreak prompts, resulting in our GAP-

Table 6: Text-only vs. multimodal attack success rates (%).
GAP variants outperform TAP in both settings.

Attack Methods GPT-3.5 Attack Methods GPT-4o
(text-only) (multimodal)

GAP-M 96.0 GAP-M-VLM 44.0
GAP-V 92.0 GAP-V-VLM 46.0
TAP 78.0 TAP-VLM 40.0

GUARDATTACKDATA dataset.
Leveraging this high-quality dataset, we fine-

tuned the PromptGuard model using HuggingFace
SFTTrainer with QLoRA. Table 7 demonstrates
substantial improvements in PromptGuard’s per-
formance after fine-tuning. Across all three test
domains, we observe significant increases in TPR,
accuracy, and F1 score. Notably, on the ToxicChat
dataset, TPR increased from 14.0% to 88.4%, and
accuracy from 5.1% to 93.8%.

Table 1 demonstrates the effectiveness of using
GAP for data augmentation. While both GAP
and TAP can be applied to fine-tune guardrails,
the results show that GAP-enhanced guardrails
achieve substantially higher performance, partic-
ularly against sophisticated attacks such as GPT-
Fuzzer and GCG. For instance, the GAP-enhanced
Prompt Guard attains a 70.0% TPR against GAP
attacks, compared to only 52.0% for the TAP-
enhanced counterpart.

RQ4: How sensitive is GAP to attacker models,
target models, and query budgets?
Our analysis reveals that attacker model choice sig-
nificantly impacts effectiveness. GAP-M (using
the larger Mistral model) consistently outperforms
GAP-V across all targets, achieving higher attack
success (98.7% vs 94.7%) with fewer queries (7.11
vs 10.83). However, even GAP-V substantially
outperforms TAP while using the same attacker
model, confirming GAP’s graph-based structure
provides inherent benefits. GAP’s advantages per-
sist across different target models, demonstrating
the framework’s adaptability to different defense
mechanisms and model behaviors. These findings
suggest that while GAP’s approach provides in-
herent advantages over tree-based alternatives, its
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Table 7: Improved In-Domain TPR and Accuracy of Prompt Guard after fine-tuning with GAP-generated jailbreak prompts.
Fine-tuning results in significant improvements across three different test domains.

Model Metric GAP-GuardAttackData ToxicChat OpenAI Mod Average Rel. Improvement

FT
TPR 86.1% 88.4% 59.4% 78.0% +108.5%

Accuracy 90.6% 93.8% 53.3% 79.2% +183.6%
F1 Score 0.904 0.326 0.605 0.612 +98.1%

Base
TPR 64.6% 14.0% 39.2% 37.4% -

Accuracy 34.9% 5.1% 46.0% 27.9% -
F1 Score 0.504 0.005 0.467 0.309 -

effectiveness scales with attacker model capability
(detailed analysis in Appendix A.2).

4 Conclusions & Future Work

We present GAP, a significant upgrade over TAP
that transforms isolated tree structures into an in-
terconnected graph with global context mainte-
nance for knowledge sharing across attack paths.
Our evaluation demonstrated that this approach
achieves a 20.8% increase in attack success rates
while reducing query costs by 62.7% compared
to TAP. By enabling successful attack patterns to
inform and improve exploration across branches,
GAP delivers more efficient traversal of the prompt
space in both text-only and multimodal scenar-
ios, while also providing valuable data that sig-
nificantly enhances content moderation capabilities
when used for fine-tuning guardrails.

Future work includes presenting evaluation over
an extended set of leading LLMs, comparison
against latest/concurrent jailbreaking methods (Liu
et al., 2024a; Hong et al., 2024; Lin et al., 2024;
Xu et al., 2024; Liu et al., 2024b), conducting ab-
lation studies for additional hyperparameters, ex-
ploring new graph-based algorithms and heuristics,
and investigating how jailbreaking artifacts can be
leveraged to devise effective defensive techniques
in practice.

5 Limitations

While our GAP framework demonstrates signifi-
cant improvements over existing jailbreaking meth-
ods, several important limitations should be ac-
knowledged. Our experimental evaluation, though
comprehensive, is constrained to specific target
models (GPT-3.5, Gemma-9B-v2, Qwen-7B-v2.5,
and GPT-4o for multimodal tasks) and may not
generalize to all LLM architectures or evolving
safety mechanisms. We acknowledge the request
to evaluate against a broader range of models, in-
cluding Claude, Gemini, and LLaMA, but were

unable to conduct comprehensive evaluations on
all requested models due to business constraints
and organizational policies regarding certain model
providers. However, our evaluation spans both
open-source (Gemma, Qwen) and closed-source
(GPT-3.5) models with different architectures and
safety implementations. The consistent perfor-
mance improvements across our tested models
(20.8% ASR increase, 62.7% query reduction) sug-
gest that the architectural advantages would likely
generalize to other model families. The 50-seed
AdvBench subset, while diverse across 32 cate-
gories, represents only a fraction of possible harm-
ful behaviors, and performance may vary signif-
icantly across different model families or propri-
etary guardrail implementations not evaluated in
our study.

The effectiveness of GAP is inherently depen-
dent on the capabilities of the attacker models
used (Vicuna-13B-v1.5 and Mistral-123B-v2407),
and our approach assumes access to these specific
model APIs. Additionally, our choice of GPT-4
as the evaluation model introduces potential biases
in success assessment, as alternative judge models
might produce different evaluations of jailbreak ef-
fectiveness. As LLM safety mechanisms evolve
rapidly, our results represent a temporal snapshot,
and attack success rates may decrease as target
models implement improved defenses.

Our analysis of hyperparameter sensitivity is lim-
ited, with choices such as branching factor b = 5,
width w = 3, depth d = 5, and global context
size k = 10 chosen empirically rather than through
systematic optimization. Different configurations
might yield substantially different results. Further-
more, our evaluation relies primarily on automated
judge assessment rather than human evaluation of
jailbreak quality and stealth, and the binary suc-
cess/failure classification may not capture nuanced
degrees of harmful content generation.

The evaluation focuses primarily on English-
language prompts and may not generalize to mul-
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tilingual scenarios or culturally-specific harmful
content. While we demonstrate GAP’s utility
for improving content moderation through fine-
tuning Prompt Guard, the generalizability to other
guardrail systems remains untested, and the sub-
stantial improvements observed may not transfer
to real-world deployment scenarios with different
data distributions. Finally, GAP’s graph-based ap-
proach requires significant computational resources
for global context maintenance and multiple LLM
API calls, potentially limiting accessibility for re-
searchers with constrained budgets.

6 Ethics Statement

Our research on GAP explores advanced jailbreak-
ing techniques for LLMs, raising important ethical
considerations regarding potential misuse. Despite
inherent risks in developing advanced jailbreak-
ing techniques, we believe this research provides
critical value for AI safety. The graph-based meth-
ods presented naturally extend existing techniques
in the literature, suggesting that motivated actors
could develop similar approaches independently.
Systematic investigation of these vulnerabilities
enables LLM developers to strengthen safety mech-
anisms against sophisticated attacks, as evidenced
by the GAP-Enhanced Prompt Guard’s substantial
improvement in detection capabilities across all
attack methods.

We have implemented comprehensive safe-
guards to responsibly manage potential risks. Clear
warnings regarding content nature and potential
misuse appear throughout the paper, and access
to GAP-generated prompts and implementation
details is restricted to verified researchers and insti-
tutions. We provide detailed guidelines for devel-
oping robust defense mechanisms and enhanced
content moderation systems. Additionally, we
employed algorithmic dataset generation (GAP-
GUARDDATA and GAP-GUARDATTACKDATA)
rather than human annotation, avoiding exposure
of annotators to harmful content.

Our research contributes directly to stronger
LLM safeguards through multiple mechanisms. By
systematically studying vulnerabilities, we enable
development of preventive measures before poten-
tial exploits are discovered independently. Our
findings facilitate enhanced safety protocols, more
effective content filtering, and improved alignment
strategies. The demonstrated effectiveness of GAP-
generated data for fine-tuning guardrails provides

a concrete pathway for improving content modera-
tion systems.

Our assessment indicates that the additional risk
introduced by this research is limited, particularly
given existing publicly available jailbreaking meth-
ods, while the potential benefits for AI safety are
substantial. We remain committed to ongoing col-
laboration with the AI safety community to ensure
our research advances robust safeguards while pre-
serving beneficial LLM capabilities.
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A Appendix

A.1 GAP Variants
A.1.1 GAP-AUTO

GAP-AUTO automates the seed generation process
through a two-phase approach. This process in-
volves: (1) Policy Decomposition: High-level con-
tent policies are decomposed into specific behav-
ioral constraints using metaprompting techniques
with an attacker model (Mistral-123B-v2407), and
(2) Seed Generation: For each identified behavior,
the system generates both benign and harmful seed
prompts, ensuring a balanced dataset. The com-
plete procedure for GAP-AUTO seed generation is
presented in Algorithm 2.

This automated approach results in two datasets:
GAP-GUARDDATA: A balanced set of benign and
harmful prompts derived directly from content poli-
cies, and GAP-GUARDATTACKDATA: Contains
the original benign prompts and the GAP-refined
versions of the harmful prompts.

A.1.2 GAP-VLM
Our GAP-VLM variant extends the framework to
vision-language models (VLMs) by converting suc-
cessful text-based jailbreaks into image-embedded
attacks. The GAP-VLM pipeline transforms these
jailbreak prompts into image + prompt variants
specifically designed to circumvent VLM safe-
guards. The process is formalized in Algorithm 3.

A.2 Performance Analysis
Table 8 presents the complete performance metrics
referenced in the main paper (Table 4). To provide
comprehensive insight into GAP’s performance
characteristics, we analyze query efficiency from
multiple perspectives across all three target models.
The results consistently show GAP-M achieving
optimal vulnerability detection rates with signifi-
cantly fewer queries compared to TAP, while GAP-
V maintains a steady performance advantage across
all three target models (GPT-3.5, Gemma-9B-v2,
and Qwen-7B-v2.5). Notably, across all models,
GAP-M achieves an average ASR of 98.7% with

only 7.11 queries on average, representing a 20.8%
improvement in success rate while using 62.7%
fewer queries compared to TAP.

To provide comprehensive insight into GAP’s
performance characteristics, we analyze query effi-
ciency from multiple perspectives across different
target models. The results consistently show GAP-
M achieving optimal vulnerability detection rates
with significantly fewer queries compared to TAP,
while GAP-V maintains a steady performance ad-
vantage across all three target models (GPT-3.5,
Gemma-9B-v2, and Qwen-7B-v2.5).

We use three complementary metrics to evaluate
the diversity of the generated jailbreak prompts.

• Unique n-grams (%): This metric measures the
lexical diversity of the dataset. A higher per-
centage of unique word sequences indicates less
repetitive content and more linguistic variation
in the prompts, which is crucial for identifying
diverse attack vectors that may not have been
previously encountered.

• Entropy: This metric captures the distributional
diversity of the vocabulary. A higher entropy
value indicates that the words are more uniformly
distributed, and the prompts are more unpre-
dictable, making them more challenging for de-
fenses that rely on a fixed set of keywords or
phrases.

• Self-BLEU: This metric measures the semantic
similarity between prompts within the dataset.
A lower Self-BLEU score indicates that the
prompts are less similar to each other, which
confirms that the attack generation process is
producing a wide variety of distinct and novel
jailbreaks.

A.3 Implementation Details
A.3.1 Model Configurations
• Attacker Models: GAP-M uses Mistral-123B-

v2407 while GAP-V uses Vicuna-13B-v1.5

• Judge Model: GPT-4

• Target Models: GPT-3.5, Gemma-9B-v2, Qwen-
7B-v2.5, GPT-4o

• Content Moderation Model: Prompt Guard
(BERT-based architecture)
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Figure 2: Two-phase framework for automated generation of diverse and fine-grained prompts. Phase 1 uses metaprompting
with Mistral-123B-v2407 to expand categories into behaviors. Phase 2 generates balanced harmful and benign prompts for
comprehensive evaluation.

Table 8: ASR and Query Efficiency when seeding with AdvBench Subset of 50 Seeds. GAP achieves higher success rates with
fewer queries across all models compared to TAP.

Method Metric GPT-3.5 Gemma-9B-v2 Qwen-7B-v2.5 Average Rel. Improvement

GAP-M
(Mistral Attacker)

ASR % 96% 100% 100% 98.7% +20.8%
Avg. # Queries 10.4 4.22 6.72 7.11 -62.7%

GAP-V
(Vicuna Attacker)

ASR % 92% 96% 96% 94.7% +15.9%
Avg. # Queries 14.2 6.66 11.62 10.83 -43.2%

TAP
(Mehrotra et al., 2023)

ASR % 78% 74% 96% 82.7% -
Avg. # Queries 26.3 14.48 16.44 19.07 -

A.3.2 Fine-tuning Configuration
• Data Split: 70% training, 15% validation, 15%

testing

• Optimizer: AdamW with learning rate 2e-5

• Batch Size: 16 samples per GPU

• Training: Maximum 10 epochs with early stop-
ping

• Hardware: 4x NVIDIA A10G 24GB

Test Set GAP-GuardAttackData ToxicChat OpenAI Mod
Models BASE FT BASE FT BASE FT

TPR 0.646 0.861 0.140 0.884 0.392 0.594
Accuracy 0.349 0.906 0.051 0.938 0.460 0.533
F1 Score 0.504 0.904 0.005 0.326 0.467 0.605
Precision 0.414 0.951 0.003 0.199 0.576 0.616

Recall 0.646 0.861 0.140 0.884 0.392 0.594
FPR 0.962 0.047 0.950 0.061 0.436 0.561

Table 9: Improved Prompt Guard metrics after GAP-GUARDATTACKDATA fine-tuning; best scores bolded per metric.
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Figure 3: GAP vs TAP Performance Across Target Models. Vulnerability detection success rates for GAP-M (green cir-
cles), GAP-V (blue squares), and TAP (red triangles) against increasing query budgets across three different target models,
demonstrating GAP variants’ consistent superior performance and efficiency.

Metric Unique n-grams (%) ↑ Entropy ↑ Self-BLEU ↓
GAP-GUARDATTACKDATA 94.36 13.72 0.0063

AdvBench seeds (Chao et al., 2023) 85.99 8.89 0.1339
JBB seeds (Chao et al., 2024) 81.25 10.27 0.1171

Table 10: Diversity metrics of jailbreak seeds. Higher unique n-grams and entropy indicate greater diversity, while lower
Self-BLEU reflects less similarity between prompts. GAP-GUARDATTACKDATA outperforms baseline datasets, confirming it
generates more linguistically and semantically diverse attacks.

Algorithm 1 GAP (GRAPH OF ATTACKS WITH PRUNING)
Require: Query Q, branching-factor b, maximum width w, maximum depth d
Ensure: Jailbreak prompt p or failure

1: Initialize graph G with root node containing empty conversation history and query Q
2: while depth of G ≤ d do ▷ Step 3: Iteration
3: for each leaf node ℓ in G do
4: C ← {} ▷ Initialize empty set for conversation histories
5: for each path from root to a leaf in G do
6: h← Concatenate all [p, r, s] tuples in the path
7: C ← C ∪ {h} ▷ Add path history to set
8: global_context← SortByMaxScore(C) ▷ Step 1: Build global context
9: for j ← 1 to b do ▷ Step 1: Child-generation

10: pj ← A(Q, global_context) ▷ Generate prompt using Attacker
11: sj ← Retrieve effectiveness of pj based on global_context

12: pbest ← argmaxj sj
13: new_history ← ℓ.history + [pbest, response to be generated, score to be calculated]
14: Add child of ℓ with prompt pbest and history new_history
15: Prune (Phase 1): Delete off-topic leaf nodes using J ▷ Step 2: Pruning
16: Query and Assess: Generate responses r using T and evaluate with J for remaining leaf nodes
17: if successful jailbreak found then return jailbreak prompt
18: Prune (Phase 2): Keep top w leaves by scores s from J ▷ Step 2: Pruning
19: return failure
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Algorithm 2 GAP-AUTO Seed Generation
Require: High-level content policies

1: B ← DecomposeIntoBehaviors(content policies)
2: Sbenign, Sharmful ← {}, {}
3: for each behavior b in B do
4: sbenign ← GenerateBenignPrompt(b)
5: sharmful ← GenerateHarmfulPrompt(b)
6: Sbenign ← Sbenign ∪ {sbenign}
7: Sharmful ← Sharmful ∪ {sharmful}
8: GAP-GUARDDATA← Sbenign ∪ Sharmful

9: Sattack ← {}
10: for each prompt p in Sharmful do
11: pattack ← ApplyGAP (p)
12: Sattack ← Sattack ∪ {pattack}
13: GAP-GUARDATTACKDATA← Sbenign ∪ Sattack

14: return GAP-GUARDDATA, GAP-GUARDATTACKDATA

Algorithm 3 GAP-VLM Multimodal Attack Generation
Require: GAP-generated text prompt p
Ensure: Multimodal attack prompt m

1: d← ParaphraseToDeclarative(p)
2: i← ConvertToTypographicImage(d)
3: i′ ← AddPrefixToImage(i, "Start the response with ‘Sure, here’")
4: t← GenerateBenignTextPrompt()
5: m← CombineImageAndText(i′, t)
6: return m
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