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Abstract

The reasoning capabilities of Large Language
Models (LLMs) play a critical role in many
downstream tasks, yet depend strongly on the
quality of training data. Despite various pro-
posed data construction methods, their practical
utility in real-world pipelines remains under-
explored. In this work, we conduct a com-
prehensive analysis of open-source datasets
and data synthesis techniques for mathemat-
ical reasoning, evaluating them under a uni-
fied pipeline designed to mirror training and
deployment scenarios. We further distill ef-
fective data selection strategies and identify
practical methods suitable for industrial appli-
cations. Our findings highlight that structuring
data in more interpretable formats, or distilling
from stronger models often outweighs simply
scaling up data volume. This study provides ac-
tionable guidance for integrating training data
to enhance LLM capabilities, supporting both
cost-effective data curation and scalable model
enhancement. We hope this work will inspire
further research on how to balance "more data"
versus "better data" for real-world reasoning
tasks.

1 Introduction

High-quality training data is widely recognized as a
key factor in improving model performance across
various machine learning and NLP tasks. With
the rapid development of advanced large language
models (LLMs), a growing number of high-quality
synthetic datasets and domain-specific data genera-
tion methods have been developed based on LLMs
(Tan et al., 2024; Wang et al., 2024a; Zhou et al.,
2024; Ding et al., 2024; Xu et al., 2024; Ziegler
et al., 2024; Riaz et al., 2025; Vanherle et al., 2025;
Zhan et al., 2025; Wang et al., 2024b).

However, most of these methods focus on the-
oretical performance in academic research, rather
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than practical model development in industrial con-
texts. In industrial practice, models often need
to handle diverse tasks simultaneously, and inte-
grating heterogeneous datasets can lead to conflict-
ing objectives and degraded performance (Li et al.,
2021; Yang et al., 2023; Yu et al., 2020; Li et al.,
2025; Zhang et al., 2024). This raises a new ques-
tion: Is simply adding more data always beneficial,
or should we prioritize better and more targeted
data?

In this work, we investigate the effectiveness of
data selection strategies and synthesis methods in
the math domain, with a focus on model devel-
opment in industrial contexts. First, we evaluate
existing open-source datasets and distill data se-
lection strategies based on the analysis. Then,
we systematically analyze data synthesis meth-
ods within a unified framework, covering both
pretraining data refinement and supervised fine-
tuning (SFT) data generation. We report the im-
plementation results of some methods, along with
insights and observations from an industrial stand-
point. Furthermore, we report several unsuccess-
ful attempts, which may offer insights that are
valuable as those from successful approaches. Fi-
nally, we propose some promising directions for
future work, including RL-inspired data synthesis
techniques, to enhance controllability and effective-
ness in real-world settings.

Our main contributions are as follows:

• We adopt a unified evaluation pipeline that is
designed to closely mirror both training and
deployment scenarios, enabling realistic assess-
ment of data effectiveness in practical applica-
tions.

• We conduct a systematic evaluation of several
widely used open-source datasets and data con-
struction methods with the unified pipeline.
Based on the results, we further distill practical
data selection strategies and extract actionable
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insights into effective data construction, offer-
ing actionable guidance for cost-effective data
curation and scalable model enhancement.

• We propose several promising directions for
future works, including RL-based data synthe-
sis techniques, with the goal of encouraging
further exploration into more scalable and ef-
fective training paradigms.

2 Experimental Setup
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Figure 1: Evaluation pipeline for verifying the effective-
ness of new datasets.

To ensure a consistent evaluation across datasets,
we adopt a unified evaluation methodology. As
shown in Figure 1, we use DeepSeek-V2-Lite
(DeepSeek-AI et al., 2024) or Qwen2.5-3B (Qwen
et al., 2025) as the base model and establish a base-
line by training the base model on a large validated
dataset consist of both code and mathematical data,
covering both pretraining and SFT stages.

For evaluation, we follow the annealing method
proposed in Grattafiori et al. (2024) and Gu et al.
(2024), and train the base model on a mixture of
the validated dataset and a new dataset under eval-
uation, where the new dataset is assigned a weight

of 0.2 in the mixture. That is, 20% of the train-
ing samples are drawn from the new dataset, while
the remaining 80% are sampled from the validated
dataset. If the integration of data achieves better
results than the baseline, we consider the evaluated
dataset to be effective.

This pipeline not only allows for a controlled as-
sessment of the contribution brought by a specific
dataset, but also aligns with evaluation practices
commonly adopted in industrial scenarios. Such
evaluation strategies are commonly adopted in pro-
duction environments to ensure robustness and re-
producibility. Therefore, our evaluation approach
not only provides insights into the utility of dif-
ferent datasets, but also serves as a guideline for
efficient data integration in real-world applications.

The benchmarks used for evaluation cover four
types of tasks: common knowledge, logical rea-
soning, mathematical reasoning and coding ability.
Accuracy is used as the metric for common knowl-
edge, logical reasoning and mathematical reason-
ing tasks, while Pass@1 is used for coding tasks.
Our primary focus is on improvements in math-
ematical reasoning, but we also pay attention to
potential regressions in the model’s performance
on other capabilities. The benchmark used for eval-
uation are shown in Table 1.

Domain Dataset

Knowledge

MMLU (Hendrycks et al., 2021a)
MMLU-Pro
CMMLU (Li et al., 2024)
GPQA-Diamond (Rein et al., 2023)

Reasoning
HellaSwag (Zellers et al., 2019)
BBH (Suzgun et al., 2022)
DROP (Dua et al., 2019)

Math

MATH (Hendrycks et al., 2021b)
GSM8K (Cobbe et al., 2021)
MathBench-a (Liu et al., 2024)
MathBench-t

Coding
OpenAI-HumanEval (Chen et al., 2021)
Sanitized-MBPP (Austin et al., 2021)

Table 1: Benchmarks Used for Evaluation.

3 Data Selection

3.1 Evaluation of Open-Source Datasets
Despite the wide availability of open-source
datasets for mathematical reasoning, their qual-
ity remains highly inconsistent (Shi et al., 2024;
Huang et al., 2025; Ye et al., 2025; Muennighoff
et al., 2025a). In our practical experience, we find
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that simply adding more datasets does not neces-
sarily lead to better model performance. In some
cases, it can even jeopardize the overall perfor-
mance. To better guide future data selection, we
conduct a comparative analysis of both effective
and ineffective datasets, and summarize key char-
acteristics that distinguish "better data" from "more
data".

Many open-source datasets are constructed by
scraping web pages and filtering for relevant con-
tent. For example, IndustryCorpus2 (Shi et al.,
2024) aggregates and stratifies domain-specific
data through rule-based and model-based filtering,
and opc-fineweb-math-corpus (Huang et al., 2025)
uses fastText to retrieve math-related pages from
the Fineweb corpus. However, as our evaluation in
Table 6 shows, the diverse nature of source web-
sites makes simple cleaning strategies insufficient
to remove noise thoroughly. This can degrade the
overall dataset quality and hinder training effective-
ness, highlighting that merely adding more data
without careful curation does not necessarily im-
prove model performance.

To address this limitation, recent works have
explored an alternative paradigm: instead of col-
lecting more data, they focus on curating small
yet high-quality datasets through rigorous filter-
ing and model-based selection. Notable examples
include the LIMO (Ye et al., 2025) and s1K (Muen-
nighoff et al., 2025a) datasets, both of which are
built through careful sampling from large candidate
pools, followed by multi-stage filtering that em-
phasizes difficulty, diversity and reasoning depth.
Furthermore, these datasets also leverage powerful
reasoning models to generate detailed explanations,
thereby enriching the data with high-quality reason-
ing trajectories. However, because of the limited
data volume, the performance gains from these
high-quality datasets remain modest. A promising
direction is to scale up data construction by adopt-
ing similar methodologies. For example, OpenR1-
Math-220K1 proposes a dataset of over 220,000
samples and provides the model with more substan-
tial performance improvements (e.g., +8.96 accu-
racy on the MATH dataset), according to the results
in Tables 7 and 8.

3.2 Data Selection Strategies
Based on our evaluation of various open-source
datasets, we summarize the following practical

1https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k

strategies for selecting effective datasets for mathe-
matical reasoning tasks:

• Be cautious with data aggregated from di-
verse web sources, as more data are not al-
ways better. Datasets collected through large-
scale web scraping (e.g., IndustryCorpus2, opc-
fineweb-math-corpus) often contain significant
noise due to inconsistent formats. Without rig-
orous cleaning, such datasets may degrade the
training performance.

• Prioritize datasets distilled by advanced
reasoning models. Data enriched with de-
tailed reasoning steps or explanations gener-
ated by reasoning models (e.g., DeepSeek-R1,
QwQ-32B) tend to provide better supervision sig-
nals and improve the model’s own reasoning
capabilities.

• Scale generation while maintaining data
quality. Instead of relying solely on man-
ual curation, adopt scalable data generation
methods that mimic the principles of high-
quality datasets. These principles typically in-
clude leveraging LLMs to perform quality fil-
tering and difficulty calibration. The success of
OpenR1-Math-220K illustrates that principled
large-scale generation is feasible and effective.

4 Data Synthesis

4.1 Pretraining Data Refinement

In the pretraining stage, the model builds funda-
mental language abilities and accumulates essen-
tial knowledge from large-scale data. While broad
content coverage is necessary, simply adding more
data does not guarantee better performance. It is
equally important that pretraining data is structured
in ways that enhance concept connections and fa-
cilitate deeper understanding.

Cosmopedia (Ben Allal et al., 2024) serves
as a representative example of pratraining data
construction. They extract a wide range of
valuable topics from educational sources such
as Standford courses2, Khan Academy3, Open-
Stax4, WikiHow and other websites, and prompts
an LLM to generate educational content tai-
lored to different audiences and styles. By us-
ing Mixtral-8x7B-Instruct-v0.1 (Jiang et al.,

2https://explorecourses.stanford.edu/search?q=
all%20courses

3https://www.khanacademy.org/
4https://openstax.org/
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Characteristic Example

Provide clear definitions To understand this concept more deeply, let’s first define what
it means ...

Replace ambiguous expressions with terms The study of quadratic residues and nonresquares modulo a
prime number is ...

Present formulas with LaTeX syntax We test \( xˆ2 \equiv 1 \pmod{83} \) and find that...

Use examples instead of abstract explanations Let’s illustrate this process with a few examples. Consider the
number 2 ...

Table 2: Examples of Pretraining Data Refinement

2024a), they generate over 30 million files and 25
billion tokens of high-quality educational text cov-
ering diverse topics and styles. Many other studies
employ prompt engineering to construct pretrain-
ing data, all following a consistent approach: curat-
ing raw educational corpora from various sources
through prompt design and using LLMs to refine
them into more educational and well-structured
content.

We explore a similar approach in our experi-
ments. We begin by collecting books on various
mathematical topics and apply OCR techniques5

to extract text from PDFs. After performing data
denoising, we use resulting text as pretraining data,
allowing model to learn knowledge through a sim-
ple next-token prediction task. Specifically, we
focus on books related to intermediate algebra, re-
sulting in 192 samples containing approximately
0.13 billion tokens. However, the result shows
little improvement on standard math benchmarks,
which suggests that merely scaling up data quantity
alone is insufficient to ensure consistent perfor-
mance gains.

Then, we make an attempt to replicate the
methodology proposed by Cosmopedia (Ben Al-
lal et al., 2024). We use the math pretrain corpus
previously collected and apply prompt engineering
techniques to refine the corpus into a more educa-
tional format. Furthermore, we generate in-depth
explanations based on the original content with
Qwen2.5-72B. This process yields a dataset con-
taining 760 million tokens, hereafter referred to
as Math-Cosmo. As a result, the performance of
the model on the MATH and MathBench bench-
marks are improved (e.g., +1.72 accuracy on the
MATH dataset). The results of the experiment are
presented in Table 9.

5https://mathpix.com/

Moreover, we extend the Cosmopedia approach
to Chinese mathematical pretraining data and gen-
erate high-quality samples that has been manu-
ally evaluated. The prompt templates we used are
shown in Appendix A.

Insights: When constructing pretraining data,
simply collecting large amounts of data does not
necessarily lead to performance gains. Instead, at-
tention should be paid to how the data is presented
to the model(Lu et al., 2023). Structuring it in a
more interpretable format is an effective way to im-
prove the model’s reasoning capability. Examples
are shown in Table 2.

4.2 SFT Data Generation

In the SFT stage, the model learns to follow instruc-
tions to complete specific tasks, thereby acquir-
ing task-solving strategies and gradually connect-
ing knowledge concepts gained during pretraining.
This process often results in substantial improve-
ment in reasoning and generalization abilities com-
pared to the pretraining stage. However, simply
increasing data quantity does not guarantee better
performance. It is important to ensure the training
data remains high-quality, diversity and difficulty.

A variety of studies have proposed different ap-
proaches to generate high-quality SFT datasets. S1
(Muennighoff et al., 2025b) employs two pretrained
models to evaluate data, filtering out samples that
can be correctly answered by the models, thereby
ensuring the difficulty of the dataset. In addition,
they classify the problems based on the Math Sub-
ject Classification system, randomly selecting sam-
ples from each domain while giving priority to data
with longer reasoning steps, in order to enhance
the diversity of the dataset. SynthLLM (Qin et al.,
2025) leverages LLMs to extract topics and key
concepts from documents, and combines them to
generate new questions. Furthermore, it constructs

621

https://mathpix.com/ 


a global concept graph based on the topic and con-
cepts, and uses random walk algorithm to expand
related knowledge concepts, to generate more com-
plex and diverse questions. Dolphin-R16 directly
employs larger models to generate data with reason-
ing steps. Jiang et al. (2024b) and Luo et al. (2024)
propose well-designed tree search algorithms to
generate reasoning steps progressively.

In our experiment, we follow the methodology
of Dophin-R1 and prompt QwQ-32B (Qwen et al.,
2025) to generate new answers for questions in Nat-
uralReasoning (Yuan et al., 2025). We then filter
out instances with inconsistent answers, resulting
in a new dataset, referred to as NaturalReasoning-
QwQ. As shown in table 3, the experimental results
clearly demonstrate that data distilled by reasoning
model is of significantly higher quality than the
original data, leading to substantial improvements
in model performance (e.g., +1.92 accuracy on the
MATH dataset). This reinforces the central insight
that better data is more valuable than just more
data.

Benchmark
NaturalReasoning-QwQ
Score ∆

MMLU 64.95 –0.46
MMLU-Pro 14.58 1.39
CMMLU 78.06 0.15
GPQA-Diamond 32.32 0.5

HellaSwag 81.12 –0.67
BBH 63.87 1.16
DROP 63.48 0.64

MATH 49.68 1.92
GSM8K 81.50 –0.99
MathBench-a 38.07 1.47
MathBench-t 63.84 0.07

OpenAI-Humaneval 57.93 -0.61
Sanitized-MBPP 53.7 –0.77

Table 3: Performance of the model fine-tuned on the
NaturalReasoning-QwQ dataset. "∆" denotes the differ-
ence in performance compared to the baseline model.

To further examine this idea from a different
perspective, we also explore a series of weakness-
guided generation methods to acquire samples tai-
lored to the model’s limitations. More specifically,
we first analyze the model’s failure cases on the
MATH dataset (Hendrycks et al., 2021b) and de-
fine them as seed examples. Then, we use Math-
BERT (Peng et al., 2021) for embedding and FAISS
(Douze et al., 2024) to retrieve similar data from

6https://huggingface.co/datasets/
cognitivecomputations/dolphin-r1

other datasets, in order to amplify their proportion
in the training set. For each sample, we select the
top 20 most semantically similar examples as candi-
dates. Through this method, we collect over 75,000
examples comprising more than 82 million tokens,
which we refer to as the math-retrieval dataset.
However, model gains little improvement from this
dataset, especially on mathematical datasets.

We further prompt LLMs to generate data similar
to these seed examples. Once new data is gener-
ated, we prompt the model to re-answer the same
question. If the answers from both rounds are con-
sistent, the data is considered valid. We directly
apply this augmentation method to both seed ex-
amples and the math-retrieval dataset, resulting in
the math-weakness-augmented dataset and math-
retrieval-augmented dataset. The detailed results
are shown in Table 4, confirming that simply re-
trieving more data is less effective than applying
high-quality augmentation strategies.

Furthermore, following Lu et al. (2025), we ex-
tract question-answer pairs from textbooks. In par-
ticular, we segment the content of the textbook into
chunks based on chapters and sections, and use
LLMs to extract question-answer pairs from each
chunk, with each question paired with a correspond-
ing solution. The generated data is then evaluated
by LLMs to filter out low-quality samples. To en-
sure diversity, we further apply MinHash-based
deduplication, resulting in the final dataset. We
apply this approach to construct two datasets on
intermediate algebra and calculus. Then we fine-
tune the model separately on each dataset. Inter-
estingly, two datasets constructed with the same
methodology exhibit significant differences in the
performance. This phenomenon may be related to
the data mixing strategy, which warrants further
investigation. Detailed performance of the models
are shown in Appendix B.3.

Insights: When constructing SFT data, leverag-
ing advanced models for data distillation or gener-
ating data tailored to the model’s limitations can
both effectively improve the model’s performance,
which highlights that better-curated data is more
valuable than simply increasing data volume.

5 Unsuccessful Attempts

In our previous research, we also explored several
approaches that did not yield satisfactory results.
Here, we share these attempts in the hope of con-
tributing to further exploration in this area.
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Benchmark
Math-Retrieval Math-Retrieval-Augmented Math-Weakness-Retrieval
Score ∆ Score ∆ Score ∆

MMLU 65.34 –0.07 65.47 0.06 65.32 -0.09
MMLU-Pro 14.18 0.99 14.52 1.33 14.01 0.82
CMMLU 77.57 -0.34 77.62 -0.29 77.89 -0.02
GPQA-Diamond 31.82 0 28.79 -3.03 36.87 5.05

HellaSwag 81.20 –0.59 81.88 0.09 81.74 -0.05
BBH 63.04 0.33 62.75 0.04 63.60 0.89
DROP 62.94 0.1 62.67 -0.17 63.45 0.61

MATH 46.06 -1.7 51.48 3.72 48.24 0.48
GSM8K 81.35 –1.14 82.64 0.15 83.55 0.16
MathBench-a 37.4 0.8 36.4 -0.2 37.33 0.73
MathBench-t 63.07 -0.7 63.83 0.16 63.88 0.11

OpenAI-Humaneval 63.41 4.87 56.71 -1.83 58.54 0
Sanitized-MBPP 54.09 –0.38 56.03 1.56 54.46 -0.01

Table 4: Performance of the model fine-tuned on datasets generated with weakness-guided methods. "∆" denotes
the difference in performance compared to the baseline model.

There are some existing approaches constructing
data through rule-based methods. Morishita et al.
(2023) constructs multi-step reasoning data based
on logical inference theorems (i.e., modus ponens),
where the reasoning steps are logically valid but se-
mantically meaningless. Xie et al. (2025) generates
Knights and Knaves puzzles at different difficulty
levels with detailed reasoning steps. Ye et al. (2024)
proposes a graph-based approach that allows mod-
els to learn dependencies between different objects.
We follow this methodology and construct math
word problems with different reasoning complex-
ities based on the dependency graph and train the
model on the resulting dataset. However, the im-
provements in reasoning ability brought by these
methods are quite limited, especially in mathemat-
ics. The experiment shows that purely rule-based
generation, without deeper quality control or task
alignment, yields little benefit.

In addition, motivated by advanced Reasoning
Large Language Models (RLLMs), we further com-
bine the reasoning chains generated by the RLLMs
(known as Long CoT (Chen et al., 2025)) with the
distilled data to construct the training dataset for
our model. Still, the improvements in reasoning
performance remain limited. We further categorize
the data into different difficulty levels based on the
length of reasoning steps, and evaluate the impact
of difficulty on the model’s reasoning ability. How-
ever, the results show no clear correlation between
reasoning performance and data difficulty, again
highlighting the difference between high-quality

distillation and naive complexity scaling.
Insights: Data constructed purely with rule-

based methods generally provide limited benefit to
the model, highlighting that lack of deeper structure
may reduce its effectiveness. In addition, reasoning
step length may not accurately reflect real difficulty,
as no clear correlation is observed between longer
reasoning chains and model performance. This
further demonstrates that simply generating more
data or increasing its apparent complexity does not
guarantee better model reasoning.

6 Future Work

6.1 RL-like Data Synthesis Methods
Due to advanced development in reinforcement
learning, we also propose several approaches for
synthesizing pretraining and SFT data inspired by
RL methods, such as Zhang et al. (2025) and Du
et al. (2025). Our motivation is to mimic the explo-
ration process of RL in data generation to improve
diversity, not merely to increase data quantity but
to discover diverse, high-value examples that bet-
ter improve the capabilities of models. Given the
absence of experimental results, we present these
ideas as exploratory directions. We believe such
RL-like synthesis strategies hold promising poten-
tial for generating better-curated data, and suggest
several venues that merit further investigation.

• multiple solution paths for the same problem
Generated data may include both correct and
incorrect solutions, with varying levels of detail
and diverse solution strategies.
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Dimension "More Data" "Better Data"

Data Source Noisy web-crawled Structured, interpretable

Data Selection Broad aggregation without filtering
Multi-stage filtering

Model-based selection

Data Synthesis Solely rule-based or logic-based
Distillation from advanced models

Weakness-guided generation

Difficulty Control Partitioning by reasoning chain length Fine-grained hierarchy with curriculum learning

Data Mixing Direct integration Balanced, interference-aware

Outcome Inconsistent outcomes and conflicts across tasks Consistent improvements and cost-efficiency

Table 5: Summary of Key Findings: "More Data" vs. "Better Data" in Mathematical Reasoning.

• reward-like signals Labels such as quality-
related metadata, annotations identifying rea-
soning flaws or suboptimal steps can be in-
cluded to evaluate the generated data.

• synthetic data with limited noise Models
should learn from both successes and failures.
For instance, nearly correct solutions can be
added to the training data along with explana-
tions of their errors, enabling models to learn
from mistakes.

• hierarchical data training strategy Gradu-
ally presenting the data to the model in order
of increasing difficulty may lead to better per-
formance improvements.

• integration data from diverse models The
combination of synthesized data from models
with different sizes or models possessing di-
verse domain knowledge may provide better
diversity.

6.2 Data Mixing Strategy

In real-world scenarios, the model is required to
handle multiple tasks rather than being confined
to mathematical reasoning alone. As a result, it is
common practice to mix data from different tasks
during training. However, our findings show that
indiscriminate data mixing can reduce the benefits
that each individual datasets brings to the model,
suggesting potential interference effects (Li et al.,
2025). This suggests that simply adding more het-
erogeneous task data does not guarantee better per-
formance. Therefore, to ensure optimal training
outcomes, it is crucial to identify an appropriate
data mixing strategy, especially for solutions de-
signed for industrial environments.

6.3 Curriculum Learning
Some studies have proposed training strategies that
progress from easy to hard, suggesting that such ap-
proaches can enhance the model’s reasoning ability
(Ji et al., 2025). However, our results show that sim-
ply partitioning data difficulty based on the number
of reasoning steps is not effective, highlighting
that more difficulty levels do not guarantee better
outcomes if they are misaligned with actual com-
plexity. Designing more fine-grained, task-relevant
difficulty hierarchy and effectively incorporating
the curriculum learning principles into the training
process both warrant further investigation.

7 Conclusion

In this work, we systematically evaluate exist-
ing mathematical reasoning datasets and synthesis
methods based on an industrial pipeline. Table 5
summarizes our key findings in a direct compari-
son between "More Data" and "Better Data", which
underscores that better-curated, high-quality data
consistently outperforms simply increasing data
volume. Overall, our study helps bridge the gap
between theoretical research and real-world deploy-
ment, offering concrete guidance for cost-effective
data curation and scalable model enhancement.

Limitations

Although our work summarizes practical experi-
ences in data selection and synthesis, there are still
several limitations that should be acknowledged.
Our evaluation and analysis mainly focus on the
mathematical reasoning capabilities of models, and
the insights are drawn from representative methods
and datasets. However, the scope of our study is
limited, which may not fully generalize to other
settings and future research. Another limitation
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is that the base models used in our experiments
have relatively small parameter sizes. This choice
helps ensure feasible training and reproducibility
in industrial settings, but may underestimate the
effectiveness of data synthesis methods for larger
models. Besides, in industrial workflows, statisti-
cal validation (e.g., confidence intervals, p-values)
is often challenging to implement due to scale and
computational constraints. Therefore, we comple-
ment performance metrics with case studies to vali-
date the approach’s effectiveness instead. We leave
more comprehensive study across boarder tasks
and larger model scales for future work.
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A Prompt for Chinese Mathematical
Corpus

Figure 2 and 3 illustrates the prompt we use to
construct Chinese mathematical pretraining data.

B Detailed Experimental Results

B.1 Open-source Datasets

Benchmark
IC2-Math opc-fineweb-math

Score ∆ Score ∆

MMLU 63.28 1.29 60.95 -1.04
MMLU-Pro - - - -
CMMLU 77.29 1.63 75.14 -0.49
GPQA-Diamond 33.84 8.59 26.26 1.01

HellaSwag - - - -
BBH 56.14 -6.28 61.45 -0.97
DROP 64.03 0.74 62.85 -0.44

MATH 36.74 -3.7 32.9 -0.14
GSM8K 72.86 2.81 70.89 0.84
MathBench-a 32.27 1.94 29.33 -1
MathBench-t 51.12 -3.46 52.41 -2.17

OpenAI-Humaneval 47.56 -0.61 45.12 -3.05
Sanitized-MBPP 59.53 -1.17 56.81 -3.89

Table 6: Performance of the model trained on datasets
collected through web scraping. "∆" denotes the differ-
ence in performance compared to the baseline model.

Benchmark
LIMO s1K

Score ∆ Score ∆

MMLU 75.98 -0.18 76.09 -0.07
MMLU-Pro 52.41 0.23 52.77 0.59
CMMLU 84.65 0.08 84.54 -0.03
GPQA-Diamond 31.31 0 29.29 -2.02

HellaSwag 91.35 0.06 91.31 0.02
BBH 74.07 -0.25 73.87 -0.45
DROP 72.18 -0.5 73.06 0.38

MATH 54.9 -0.28 54.52 -0.66
GSM8K 86.58 -0.15 89.01 2.28
MathBench-a 47.67 -0.13 47.67 -0.13
MathBench-t 82.4 0.29 82.58 0.47

OpenAI-Humaneval 50.61 0 48.78 -1.83
Sanitized-MBPP 65.37 -1.17 64.98 -1.56

Table 7: Performance of the model trained on samll
yet high-quality datasets. "∆" denotes the difference in
performance compared to the baseline model.
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Below is a passage related to mathematics. You need to write an educational, detailed, and
thorough article for both undergraduate and graduate students based on this passage.
"<EXTRACT>"
First, read the entire passage carefully, and list one by one the knowledge points mentioned
but not explained in the passagethat is, the background knowledge the reader should have.
Then provide explanations for each knowledge point. After that, proceed to write the main
body of the article.
Before writing the main body, first consider the outline of the article. Then write the main
body according to the outline.
In the main body, you need to elaborate extensively on the original passage, ensuring that
all content from the original paragraphs is covered without omissions. Do not simply list
concepts; instead, explore each concept in depth before moving on to the next.

Please pay special attention to the following points:
- Rigor: Ensure an in-depth analysis of each concept or section.
- Engagement: Use an academic, professional, and captivating writing style to stimulate the
readers interest.
- Format: Avoid using titles and introductory statements. Do not include images. After
completing your reasoning, please output in the following format (do not add any other
explanations):

==Background Knowledge==
(1) {Knowledge Point 1 and its explanation}
(2) {Knowledge Point 2 and its explanation}
...
==Main Body==
{Main body content}
==End==

Figure 2: English version of the prompt for refining Chinese mathematical corpus.

下面是一段数学相关篇章，你需要基于这段篇章为本科生以及研究生撰写一篇具有教育
性的、详实且细致的文章。
"<EXTRACT>"
首先，通读全文，逐个列出篇章中涉及到但并未解释的知识点，即读者应具有的背景知
识。并对知识点展开解释说明。然后进入正文撰写部分。
在撰写正文之前，先思考文章的大纲。然后按大纲撰写正文。
在正文部分，需要对原篇章进行详尽的展开，并确保覆盖原段落的所有内容，不能有遗
漏。请勿简单罗列概念，而应在深入探讨每个概念后再转向下一个。

请重点关注以下几点：
严谨性：确保对每个概念或部分进行深入剖析。
吸引力：采用学术性、专业性且引人入胜的写作风格，以激发读者的兴趣。
格式：避免使用标题和介绍性语句。请勿使用图片。在结束思考后，请按如下格式输出
（不要添加其他说明）：
==背景知识==
(1) {知识点1及其解释}
(2) {知识点2及其解释}
...
==正文==
{正文部分}
==结束==

Figure 3: Chinese version of the prompt for refining Chinese mathematical corpus.
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Benchmark
OpenR1-Math

Score ∆

MMLU 65.29 –0.41
MMLU-Pro 12.94 -0.57
CMMLU 78.32 0.29
GPQA-Diamond 32.83 -2.02

HellaSwag 80.43 0.37
BBH 63.19 0.26
DROP 62.36 0.42

MATH 52.2 8.96
GSM8K 81.65 0.91
MathBench-a 35.87 0.54
MathBench-t 60.54 -2.22

OpenAI-Humaneval 50.61 -3.05
Sanitized-MBPP 48.25 -3.11

Table 8: Performance of the model pretrained on the
OpenR1-Math. "∆" denotes the difference in perfor-
mance compared to the baseline model.

B.2 Pretraining Datasets

Table 9 illustrates the detailed performance of mod-
els pretrained on the Math-Cosmo dataset. As
shown in table, our synthesized dataset lead to im-
provements in the model’s mathematical reasoning
ability, thereby demonstrating the effectiveness of
rewriting data into interpretable format.

Benchmark
Math-Cosmo

Score ∆

MMLU 65.02 –0.39
MMLU-Pro 14.33 1.14
CMMLU 78.03 0.12
GPQA-Diamond 26.77 –5.05

HellaSwag 80.53 –1.26
BBH 64.07 1.36
DROP 63.26 0.42

MATH 49.48 1.72
GSM8K 82.41 –0.08
MathBench-a 37.93 1.33
MathBench-t 63.80 0.03

OpenAI-Humaneval 59.76 1.22
Sanitized-MBPP 53.70 –0.77

Table 9: Performance of the model pretrained on the
Math-Cosmo dataset. "∆" denotes the difference in
performance compared to the baseline model.

B.3 Textbook-based Datasets

Table 10 illustrates the performance of models fine-
tuned on the textbook-based datasets. Two datasets
constructed with the same method result in signif-
icantly different performance gains for the model.

We believe this is related to the data mixing strat-
egy.

Benchmark Intermediate Algebra-QA Calculus-QA
Score ∆ Score ∆

MMLU 65.30 -0.11 63.71 -1.70
MMLU-Pro 15.04 1.85 - -
CMMLU 77.82 -0.09 78.39 0.48
GPQA-Diamond 25.76 -6.06 36.87 5.05

HellaSwag 81.67 -0.12 79.26 -2.53
BBH 60.08 -2.63 61.51 -1.2
DROP 62.91 0.07 62.53 -0.31

MATH 47.52 -0.24 52.42 4.66
GSM8K 82.18 -0.31 84.53 2.04
MathBench-a 36.67 0.07 33.67 -2.93
MathBench-t 63.18 -0.59 57.9 -5.87

OpenAI-Humaneval 62.8 4.26 59.15 0.61
Sanitized-MBPP 55.64 1.17 55.64 1.17

Table 10: Performance of the model fine-tuned on the
textbook-based dataset. "∆" denotes the difference in
performance compared to the baseline model.
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