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Abstract

Neural models for Japanese pronunciation esti-
mation often suffer from errors such as halluci-
nations (generating pronunciations that are not
grounded in the input) and omissions (skipping
parts of the input). Although attention-based
alignment has been used to detect such errors,
selecting reliable attention heads is difficult, and
developing methods that can both detect and
correct these errors remains challenging.

In this paper, we propose a simple method
called existence-based alignment check. In this
approach, we consider alignment candidates in-
dependently extracted from all attention heads,
and check whether at least one of these candi-
dates satisfies two conditions derived from the
linguistic properties of Japanese pronunciation:
monotonicity and pronunciation length per char-
acter. We generate multiple hypotheses using
beam search and use the alignment check as a
filtering mechanism to correct hallucinations
and omissions.

We apply this method to a dataset of Japanese
facility names and demonstrate that it im-
proves pronunciation estimation accuracy by
over 2.5%.

1 Introduction

The task of estimating the pronunciation for a given
text is crucial in Japanese NLP. This task is com-
monly formulated as translating text into phonetic
kana character strings. This is known as a chal-
lenging task because the Japanese writing system
intermixes ideographic kanji, alphanumeric char-
acters, and phonetic kana characters (Hatori and
Suzuki, 2011). Accurate pronunciation estimation
is important in various Japanese NLP applications
including information retrieval and text-to-speech
synthesis. Hereafter, pronunciation refers to its rep-
resentation in kana.
Neural models, notably Transformers (Vaswani

et al., 2017), are now widely used for this
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Figure 1: Illustration of pronunciation estimation for the
Japanese phrase丸の内仲通り read asまる/の/うち/
なか/どお/り Marunouchi Nakadori. When the model
correctly predicts the pronunciation (top), at least one
valid alignment exists among the alignment candidates
(indicated by a X). In contrast, if no such valid candi-
date is found (bottom), the output is judged to contain
hallucinations or omissions.

task (Jones et al., 2023). However, neural machine
translation is known to suffer from problems such
as hallucination (generating content unrelated to
the source text) and omission (failing to generate
content for parts of the source text) (Tu et al., 2016;
Ji et al., 2023). These problems are particularly
prevalent when training data resources are insuf-
ficient or contain significant noise (Raunak et al.,
2021).
A straightforward way to spot such an error

is to inspect the correspondence between source
and target tokens, i.e., the alignment. Because
Transformer-based sequence-to-sequence models
employ cross-attention, interpreting the attention
weights as a soft alignment and using them for de-
tection seems appealing. This strategy, however,
faces two fundamental challenges.
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First, selecting which attention head to in-
spect is non-trivial. Alignment information is
known to concentrate in only a few heads within
the Transformer’s multi-layer, multi-head atten-
tion (Kobayashi et al., 2020). Determining where
those heads are typically requires extra reference
data or computational overhead (Ferrando and
Costa-jussà, 2021; Wang et al., 2024). Second, al-
though many prior studies have investigated error
detection based on attention weights (Lee et al.,
2018; Berard et al., 2019; Raunak et al., 2021; Fer-
rando et al., 2022a; Guerreiro et al., 2023b), few
have explored methods for performing actual cor-
rection (Guerreiro et al., 2023c; Dale et al., 2023a).
In this paper, we propose a simple and training-

free method that detects and corrects hallucinations
and omissions in Japanese pronunciation estima-
tion, using only attention weights.
The key idea is to formulate a concise yet strict

condition for the valid alignment, which would be
obtained when the model output is free of hallu-
cinations and omissions, based on the linguistic
properties of Japanese pronunciation. Based on
this idea, we check whether the alignment candi-
date derived from the weights of each attention head
satisfies the validity condition. If and only if at least
one candidate satisfies the condition, the model out-
put is considered to be free of hallucinations and
omissions, as illustrated in fig. 1.
In this approach, we consider all heads simultane-

ously, so we do not need to identify specific heads
in advance. Moreover, by using the existence check
as a filter, we are able to correct hallucinations and
omissions.
We empirically investigated the effectiveness of

our method with its application to a map app pro-
vided by our company in mind. Specifically, we
created a benchmark dataset for pronunciation of
facility names registered in our in-house database,
and evaluated the accuracy of the pronunciation esti-
mation task. The experimental results demonstrated
that our method successfully improved estimation
accuracy by more than 2.5%.
The remainder of this paper is organized as fol-

lows. Section 2 provides background on Japanese
pronunciation estimation. Section 3 introduces our
proposed method to detect and correct hallucina-
tions and omissions. Sections 4 and 5 detail our
experimental setup and present an in-depth analysis
of the results. Section 6 discusses related work, and
Section 7 concludes the paper with suggestions for
future work. Section 8 discusses the limitations of

our work.

2 Characters and Pronunciations in
Japanese

The primary characters used in Japanese are kana
and kanji. In addition, alphanumeric characters and
various typographical symbols are also used.
Most kanji characters have multiple pronuncia-

tions expressed in kana, and the specific pronuncia-
tion used depends on the context. Although kanji
characters and their pronunciations are numerous
and diverse, we focus on one property common to
them all: the length of each pronunciation. For an
individual kanji, the length typically ranges from
one to four. Our survey of entries in UniDic (Den
et al., 2007) shows that pronunciations longer than
four kana occur in only about 0.1% of cases, and
most of these belong to infrequently used words.
Alphanumeric characters are often intermixed

within Japanese text. These non-Japanese charac-
ters are also frequently assigned kana-based pronun-
ciations through transliteration (Knight and Graehl,
1998), adapting their original pronunciations to the
Japanese phonetic system. Unlike kanji, lengths of
pronunciations for these cases cannot be defined
per character, but the ratio of word length to kana
length can be measured. This ratio typically falls
between zero and five. An analysis on the English-
to-Katakana dataset by Merhav and Ash (2018)
showed that fewer than 0.001% of the entries vio-
lated this condition.

3 Method

This section presents the proposed method. In sec-
tion 3.1, we briefly summarize Transformer models
for pronunciation estimation. Section 3.2 explains
how to extract alignment candidates from atten-
tion weights, and section 3.3 presents the proposed
existence-based alignment check. Section 3.4 dis-
cusses a filtering-based approach to correcting hal-
lucinations and omissions by using the alignment
check. Section 3.5 discusses alternative approaches
to extract alignment candidates.

3.1 Pronunciation Estimation Model

We define pronunciation estimation as a sequence-
to-sequence generation task: transducing Japanese
character sequences into kana sequences. For this
task, we employ a Transformer model (Vaswani
et al., 2017).
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We explore character-based, rather than subword-
based, Transformer models because our method
utilizes conditions of valid alignment (Section 3.3),
which are naturally defined at the character level
(not at subword level). Let s and t denote the lengths
of the source and target sequences, respectively.
The token indices for the source and target satisfy
i ∈ {1, . . . , s} and j ∈ {0, . . . , t+1}, where j = 0
and j = t+1 correspond to the BOS and EOS tokens,
respectively.
The decoding process is autoregressive. At the j-

th step, the decoder takes the (j−1)-th target token
as input to predict the j-th target token. Let l ∈
{1, . . . , L} and h ∈ {1, . . . , H} be the indices for
the decoder layer and head. The cross-attention
weight is denoted by α

(l,h)
ji , which represents the

contribution of the source token at position i to the
prediction of the target token at position j.

3.2 Alignment Candidates from Attention
Weight

We define an alignment as a sequence a =
(a1, ..., at), where each aj ∈ {1, . . . , s} represents
the source position that contributes most to the j-th
target token. Based on the cross-attention weights,
we obtain an alignment candidate from each layer l
and head h as follows:

a
(l,h)
j−1 = arg maxi α

(l,h)
ji . (1)

The subscript j−1 on the left-hand side signifies
that the alignment is calculated with a focus on the
input token for the j-th decoding step. Therefore,
this method is referred to as Alignment with Input
(AWI). In contrast, when the left-hand side of eq. (1)
is changed to a

(l,h)
j , it corresponds to the output

token and the method is called Alignment with
Output (AWO).

3.3 Validity Condition and Existence-Based
Alignment Check

Next, we formulate the validity condition C(a) by
focusing on the linguistic properties of pronuncia-
tions. Specifically, we impose two key constraints:
monotonicity and length.
The monotonicity constraint refers to the prop-

erty that the source character sequence is read se-
quentially. This is given by:

M(a) : a1 ≤ · · · ≤ at.

The length constraint refers to the possible length
of target (i.e., kana) character sequence corre-
sponding to a single source character. Let ci ∈

c Yc

Kana {1}
Kanji {1, 2, 3, 4}
Alphanumeric {0, 1, 2, 3, 4, 5}
Typographical Symbols {0}

Table 1: Pronunciation length of Japanese characters.

東
京
国
立
博
物
館

んかつぶくはうょきうとつりくこ

東
京
国
立
博
物
館

んえいてんかつぶくはつりくこ

(a) (b)

Figure 2: Invalid alignment examples for the Japanese
facility name 東京国立博物館 (Tokyo National Mu-
seum) read as とう/きょう/こく/りつ/はく/ぶつ/
かん Tokyo Kokuritsu Hakubutsukan. (a) violates the
monotonicity conditionM . (b) violates the length con-
dition R. No pronunciations for “国立” indicate an
omission, and excessively long pronunciation for “館”
indicate a hallucination.

{kanji, kana, . . . } be the character type at source
position i and Yc ⊂ N be a set of possible lengths of
target character sequence corresponding to a source
character of type c. Based on the discussion in sec-
tion 2, we adopt the sets for Yc in table 1. Then, the
length constraint is given by:

R(a) : ∀i, #{j | aj = i} ∈ Yci .

In this work, we use the validity condition defined
by the logical AND of the two constraints:

C(a) = M(a) ∧R(a). (2)

Figure 2 provides illustrative examples demonstrat-
ing that outputs affected by hallucination or omis-
sion errors violate the constraints.
Now, we define the set of all alignment candi-

dates A as:

A =
{

a(l,h)
∣∣∣l ∈ {1, . . . , L}, h ∈ {1, . . . , H}

}
.

Our core proposal is to perform an existence-based
alignment check: we judge the model output to be
valid if there exists at least one candidate in A that
satisfies the validity condition:

∃a ∈ A s.t. C(a)
⇒ Free of Hallucinations and Omissions.

(3)
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3.4 Correction of Hallucinations and
Omissions

Based on the criteria defined in eq. (3), we propose
a filtering-based method for correcting hallucina-
tions and omissions.

1. Output k pronunciation candidates using beam
search.

2. For each pronunciation candidate, check
whether it satisfies the criteria.

3. Among the valid candidates, select the one
with the highest model score as the output.

4. If none of the candidates are valid, select the
original output of the model.

This fallback step (Step 4) is designed to avoid a
loss in performance when our filtering process fails
to find any valid candidates.

3.5 Alternative Approaches of Alignment
Candidate Extraction

In this study, alignment candidates are defined as
in eq. (1); however, various other definitions have
been proposed in prior work. In our experiments,
we also evaluated several alternative definitions, as
described below.

Weight-based vs. Norm-based
Excluding bias terms, the cross-attention output yj
can be expressed as yj =

∑
i,h α

(l,h)
ji fi using the

attention weights α(l,h)
ji and the transformed vectors

fi. Kobayashi et al. (2020) proposed a method to
obtain the alignment candidate using the norm of
the weighted vector ‖α(l,h)

ji fi‖, instead of the raw
attention weight αji. While the original method
is referred to as the weight-based approach, this
method is called the norm-based approach.

Head-wise vs. Integration-per-Layer
The method described in section 3.2, which gen-
erates candidates for each head, is a head-wise
approach. An alternative is to integrate the con-
tributions from all heads within the same layer to
obtain a single candidate per layer, which we call
an integration-per-layer approach. For the weight-
based method, this can be done by summing the
weights

∑
h α

(l,h)
ji

1. For the norm-based method,
1This is the same as the averaged attention weights that

PyTorch’s MultiHeadAttention module outputs by default,
except for a constant factor.

by taking the norm of the sum of weighted vectors
‖∑h α

(l,h)
ji f(l,h)i ‖ (Li et al., 2019).

4 Experimental Setting

4.1 Data
We manage information on geographic entities—
such as names, addresses, and coordinates—for use
in our services. From this, pairs of facility names
and their pronunciations were obtained and used
as training data. The average length of the facility
names in the training data was 10 characters, and
the average pronunciation length was 15 kana char-
acters. The dataset was divided into training (~5
million items), validation (~10,000 items), and test
sets (~1,000 items). We manually re-annotated the
pronunciations for the test data to ensure the data
quality.

4.2 Model
As described in section 3, we employ a standard
encoder-decoder Transformer model in conjunction
with a character-level tokenizer.
The number of alignment candidates obtained

from attention weights is L×H , where L and H
denote the number of decoder layers and attention
heads, respectively. To investigate the relationship
between the number of alignment candidates and
accuracy of our method, we explored various con-
figurations of L and H while fixing the total num-
ber of layers (encoder + decoder) to 12 and the
embedding dimension d to 512 (thus keeping the
total number of parameters approximately constant).
Specifically, we varied the number of decoder layers
L ∈ {1, 2, 3, 6} and the number of attention heads
H ∈ {4, 8, 16}. To ensure robustness of our results,
each model configuration was trained three times
with different random seeds. For other parameters,
please refer to appendix A.

5 Results and Discussion

5.1 Accuracy Gains with Filtering
Table 2 shows the accuracy andmean F-score (Chen
et al., 2018), obtained after applying our filtering-
based correction method, across various combi-
nations of decoder layers L, attention heads H
and the number of candidates k. Our method
consistently improves accuracy in most configu-
rations. The most significant gain is observed when
L = 3,H = 16, and k = 16, where the accuracy
improves by over 2.5% compared to the baseline
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L
1 2 3 6

H k Acc ∆ F ∆ Acc ∆ F ∆ Acc ∆ F ∆ Acc ∆ F ∆

4
4 79.63 -1.34 96.27 -0.06 83.37 +1.30 97.03 +0.44 83.40 +1.30 97.02 +0.45 83.27 +1.54 96.97 +0.49
16 77.73 -3.24 96.10 -0.23 83.93 +1.86 97.16 +0.57 83.57 +1.47 97.10 +0.53 83.67 +1.94 97.10 +0.62
baseline 80.97 96.33 82.07 96.59 82.10 96.57 81.73 96.48

8
4 82.60 +1.00 96.86 +0.41 83.20 +1.03 97.00 +0.34 83.43 +1.76 97.07 +0.47 83.43 +1.80 97.05 +0.52
16 82.67 +1.07 96.94 +0.49 83.93 +1.76 97.17 +0.51 84.13 +2.46 97.24 +0.64 84.23 +2.60 97.22 +0.69
baseline 81.60 96.45 82.17 96.66 81.67 96.60 81.63 96.53

16
4 82.10 +0.70 96.83 +0.31 83.13 +1.46 97.04 +0.47 83.70 +1.53 97.12 +0.44 83.60 +1.83 97.03 +0.53
16 82.03 +0.63 96.88 +0.36 83.63 +1.96 97.18 +0.61 84.70 +2.53 97.34 +0.66 84.13 +2.36 97.14 +0.64
baseline 81.40 96.52 81.67 96.57 82.17 96.68 81.77 96.50

Table 2: Results after correction. The “k” column indicates the number of candidates, as defined in section 3.4. The
“baseline” row shows the original output of the model (top-1), without any correction. The “Acc” and “F” columns
indicate accuracy and mean F-score, respectively. The “∆” column shows the difference from the base performance.

(no correction), achieving the highest final score
among all settings. This configuration was used in
all subsequent analyses.
In our method, the quality of output candidates

is a critical factor for accuracy improvement. We
estimate the theoretical upper bound of improve-
ment by computing the difference between top-k
accuracy and top-1 accuracy. For k = 4, this value
is 10.90%; for k = 16, it is 13.96%, indicating a
difference of over 3%. As our method specifically
targets hallucinations and omissions, the actual gain
is typically limited to about 15–20% of the theoret-
ical maximum. Additional top-k accuracy values
are provided in appendix B for reference.
One potential drawback of our filtering approach

lies in cases where the top-1 output is correct but
fails to satisfy the criteria, while a lower-ranked one
does satisfy it. In such cases, filtering degrades the
output quality. Although the frequency of degra-
dation cases increases with the candidate size k,
the growth remains sufficiently small: 0.23% of
samples for k = 4, and 0.37% for k = 16. The
increase in improvements with k surpasses the cor-
responding rise in degradation: 1.77% of samples
for k = 4, and 2.90% of samples for k = 16.
We present a qualitative analysis of the output

changes for a model with a specific random seed
under the L = 3, H = 16, and k = 16 setting.
First, it is important to note that about 18% of the
errors in the baseline output (i.e., the top-1 out-
put of the model) include not only hallucinations
and omissions but also transliteration errors, fail-
ures in disambiguating kanji pronunciation, and
combinations of these. Because the contextual in-
formation available from facility names is limited,

(a) Hallucination (b) Omission

Figure 3: Examples of alignment candidates in the pres-
ence of a hallucination and an omission.

disambiguation failures are common. These errors
are inherently difficult to resolve without introduc-
ing some form of external knowledge. For example,
the kanji sequence山和 in a facility name can be
read as eitherさんわ Sanwa orやまわ Yamawa,
and it is extremely difficult to determine the correct
reading of山和 for an unknown facility name.
In the outputs we analyzed, our filtering method

achieved a 1.4% accuracy improvement by correct-
ing hallucinations and a 1.5% improvement by cor-
recting omissions. Conversely, filtering degraded
performance in 0.4% of the samples. Overall, this
resulted in a net improvement of 2.5%.
We present illustrative examples of improve-

ments below. Owing to contractual restrictions, the
examples are not taken directly from the original
dataset. Instead, they were created by referencing
publicly available facility names on the web that
resemble the confirmed cases.
As an example of a corrected hallucination, the

baseline model predicted the pronunciationぶん
きょうどうしょてんいちがやてん for the facil-
ity name文教堂市ヶ谷店 correctly read asぶん
きょうどういちがやてん Bunkyodo Ichigayaten.
Figure 3a shows one of the alignment candidates for
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Weight-based Norm-based

Method Acc F Acc F

Head-wise
AAWI 84.70 97.34 84.73 97.34
AAWO 82.00 96.95 82.03 96.99
AAWI ∪ AAWO 84.70 97.34 84.67 97.34

Integrated-per-Layer
AAWI 80.90 96.69 77.63 96.04
AAWO 81.97 96.89 80.53 96.56
AAWI ∪ AAWO 83.67 97.18 81.83 96.84

ALTI 79.73 96.40
baseline 82.17 96.68

Table 3: Comparison of alignment candidate extraction
methods. The “Acc” and “F” columns indicate accuracy
and mean F-score after filtering, respectively.

this incorrect output. Although the alignment is cor-
rect and satisfies the validity condition C(a) except
for theしょてん part, this hallucinated segment
violates the condition. Thus, due to the influence
of the hallucinated string, none of the alignment
candidates could satisfy condition. A complete list
of the obtained alignment candidates is provided
in appendix C.
As an example of a corrected omission, the base-

line model predicted the pronunciationかなめし
ょうがっこう for the facility name豊島区立要
小学校 correctly read asとしまくりつかなめし
ょうがっこう Toshimakuritsu Kanameshogakko,
omitting the first part of the pronunciation. Fig-
ure 3b shows one of the alignment candidates for
this incorrect output, demonstrating that the valid-
ity condition C(a) is violated because there is no
output corresponding to the豊島区立 part. A com-
plete list of the obtained alignment candidates is
also provided in appendix C.

5.2 Analysis of Alignment Candidate
Extraction

While the definition of alignment candidates in this
paper follows eq. (1), as discussed in sections 3.2
and 3.5, various alternative definitions have been
proposed in prior work. We also conducted exper-
iments to evaluate the accuracy when using these
alternative extraction methods.
LetAAWI andAAWO denote the sets of alignment

candidates obtained using the AWI and AWO ap-
proaches defined in section 3.2, respectively. We
consider three candidate sets: AAWI, AAWO, and
their unionAAWI∪AAWO. Following the discussion
in section 3.5, we also evaluate four combinations

of candidate extraction methods: using either the
weight-based or norm-based approach, and apply-
ing either head-wise extraction or integration across
heads within each layer.

Table 3 compares the performance. The most
significant finding is that head-wise extraction of
candidates using the AWI setting yields a substan-
tial improvement in accuracy. This corresponds to
the definition given in eq. (1). Using AAWO alone
resulted in degraded accuracy, and AAWI ∪ AAWO

showed no improvement over usingAAWI alone. Fi-
nally, extraction from integrated-per-layer setting
resulted in accuracy significantly lower than head-
wise extraction.

While Kobayashi et al. (2020) reported the supe-
riority of the norm-based method, our experiments
found no significant difference between it and the
weight-basedmethod. We attribute this discrepancy
to the absence of a source-side EOS token in our set-
ting. The primary advantage of norm-based analy-
sis is its ability to mitigate the over-concentration
of attention weights on the source-side EOS token,
which is sometimes introduced to handle target to-
kens without a corresponding source. However, in
our pronunciation estimation task, every target to-
ken is expected to align with some source token
by design. Therefore, there is no need to insert
a source-side EOS token, effectively nullifying the
main advantage of the norm-based method. In this
context, the simpler weights-based method is suffi-
cient.

ALTI (Ferrando et al., 2022b,a; Dale et al.,
2023a; Ferrando et al., 2023) is a method that ag-
gregates contributions from all attention modules
in both the encoder and decoder to quantify how
much each source token contributes to each target
token. Recent studies have used the aggregated con-
tribution per source or target token as an anomaly
score to detect hallucinations and omissions, mak-
ing ALTI a common baseline for such tasks (Dale
et al., 2023a,b; Guerreiro et al., 2023a,b). Table 3
also reports the results of applying our method to
hard alignments obtained from ALTI’s aggregated
weights. In this setting, the output quality degraded
compared to the original model. We attribute this to
a mismatch between the soft, continuous nature of
ALTI’s aggregated weights and our filtering criteria,
which require hard, discrete alignments.
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6 Related Work

6.1 Speech Processing
Methods focusing on the monotonicity between
source and target have been used in speech pro-
cessing. A typical approach is to restrict attention
to be inherently monotonic by changing model ar-
chitecture (Chiu and Raffel, 2018).
Wang et al. (2024) propose a decoding-time con-

straint method that prevents omission by focusing
on specific attention heads containing alignment
information. Unlike our method, their approach re-
quires reference data with gold alignments to iden-
tify the relevant attention heads.

6.2 Detection of Hallucinations and Omissions
Various methods have been proposed for detecting
hallucinations and omissions. Dale et al. (2023b)
categorize these into internal methods, which fo-
cus on the internal behavior of the model, such as
the attention weight, and external methods, which
make judgments using external models related to
sentence similarity or translation quality.
Approaches focusing on attention weights in-

clude methods that track the total weight assigned
to the source-side EOS token (Berard et al., 2019),
as well as entropy-based methods that detect over-
concentration on specific tokens (Lee et al., 2018).
In addition to these, log-likelihood-based methods
have also been proposed for hallucination detec-
tion (Guerreiro et al., 2023c).

7 Conclusions and Future Work

We formulated alignment conditions that are free of
hallucinations and omissions, based on the linguis-
tic properties of Japanese pronunciation. Further-
more, we proposed an existence-based alignment
check and a corresponding filtering method to cor-
rect hallucinations and omissions. Through experi-
ments, we demonstrated that our method effectively
reduces hallucinations and omissions, thereby im-
proving the accuracy of pronunciation estimation.
Although the absolute improvement of 2.5% may
appear modest, it corresponds to the correction of
hallucinations and omissions, which are infrequent
but critical errors. Considering that this method
has already been deployed in real-world products,
the improvement has substantial practical impact.
Currently, our method focuses solely on the char-

acter type on the source side, without leveraging
specific pronunciation patterns for individual char-
acters. Incorporating such information to define

stronger alignment conditions is a promising direc-
tion for future research. However, applying stricter
conditions directly as a filter may increase false pos-
itives and ultimately degrade overall accuracy. One
potential solution is to treat the detection results as
features and use them in a reranking model, rather
than applying them as a hard filter.

8 Limitations

Our method fundamentally relies on the existence
of hard, character-level alignments, particularly as-
suming a one-to-many correspondence between
source and target tokens. This assumption holds
well for most kanji and kana characters. However,
this assumption breaks down for alphanumeric char-
acters. In such cases, it is not uncommon for char-
acters to contribute nothing to the output, lead-
ing to a pronunciation length of zero. As a result,
our method may fail to detect omission errors for
these characters, since zero-length alignments are
allowed by design.
Furthermore, Japanese contains a linguistic phe-

nomenon known as Jukujikun, in which a single
word composed of multiple kanji characters is as-
signed a unique pronunciation that cannot be de-
composed into pronunciations for individual charac-
ters. In most cases, the length of the pronunciation
equals or exceeds that of the kanji string, which
enables our method to forcibly assign plausible—
though incorrect—character-level alignments with-
out triggering error detection. However, in rarer
cases such as百舌鳥 read asもず Mozu or再従
兄弟 read asはとこ Hatoko, the kana-based pro-
nunciation is shorter than the kanji representation,
breaking our underlying assumption. In such cases,
our current framework fails to produce a valid align-
ment, and ad-hoc handling becomes necessary.
Finally, our experiments were limited to short

text strings and facility names. However, this setup
directly reflects the motivation of solving practi-
cal business challenges, which guided the design
of this study. Of course, evaluating the method’s
effectiveness on longer texts remains an important
question for future investigation.

References
Alexandre Berard, Ioan Calapodescu, and Claude Roux.
2019. Naver labs Europe’s systems for the WMT19
machine translation robustness task. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages

590

https://doi.org/10.18653/v1/W19-5361
https://doi.org/10.18653/v1/W19-5361


526–532, Florence, Italy. Association for Computa-
tional Linguistics.

Nancy Chen, Rafael E. Banchs, Min Zhang, Xiangyu
Duan, and Haizhou Li. 2018. Report of NEWS 2018
named entity transliteration shared task. In Proceed-
ings of the Seventh Named Entities Workshop, pages
55–73, Melbourne, Australia. Association for Com-
putational Linguistics.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

David Dale, Elena Voita, Loic Barrault, and Marta R.
Costa-jussà. 2023a. Detecting and mitigating hal-
lucinations in machine translation: Model internal
workings alone do well, sentence similarity Even bet-
ter. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 36–50, Toronto, Canada.
Association for Computational Linguistics.

David Dale, Elena Voita, Janice Lam, Prangthip
Hansanti, Christophe Ropers, Elahe Kalbassi, Cyn-
thia Gao, Loic Barrault, and Marta Costa-jussà.
2023b. HalOmi: A manually annotated benchmark
for multilingual hallucination and omission detection
in machine translation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 638–653, Singapore. Asso-
ciation for Computational Linguistics.

Yasuharu Den, Toshinobu Ogiso, Hideki Ogura, Atsushi
Yamada, Nobuaki Menematsu, Kiyotaka Uchimoto,
and Hanae Koiso. 2007. The development of an elec-
tronic dictionary for morphological analysis and its
application to japanese corpus linguistics. Japanese
Linguistics, 22:101–123.

Javier Ferrando and Marta R. Costa-jussà. 2021. Atten-
tion weights in transformer NMT fail aligning words
between sequences but largely explain model predic-
tions. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 434–443,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Javier Ferrando, Gerard I. Gállego, Belen Alastruey,
Carlos Escolano, and Marta R. Costa-jussà. 2022a.
Towards opening the black box of neural machine
translation: Source and target interpretations of the
transformer. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8756–8769, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-
jussà. 2022b. Measuring the mixing of contextual
information in the transformer. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 8698–8714, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics.

Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas, and
Marta R. Costa-jussà. 2023. Explaining how trans-
formers use context to build predictions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5486–5513, Toronto, Canada. Association for
Computational Linguistics.

NunoM. Guerreiro, Duarte M. Alves, JonasWaldendorf,
Barry Haddow, Alexandra Birch, Pierre Colombo,
and André F. T. Martins. 2023a. Hallucinations
in large multilingual translation models. Transac-
tions of the Association for Computational Linguis-
tics, 11:1500–1517.

Nuno M. Guerreiro, Pierre Colombo, Pablo Piantanida,
and André Martins. 2023b. Optimal transport for un-
supervised hallucination detection in neural machine
translation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 13766–13784,
Toronto, Canada. Association for Computational Lin-
guistics.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023c. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059–1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

Jun Hatori and Hisami Suzuki. 2011. Japanese pro-
nunciation prediction as phrasal statistical machine
translation. In Proceedings of 5th International Joint
Conference on Natural Language Processing, pages
120–128, Chiang Mai, Thailand. Asian Federation of
Natural Language Processing.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Llion Jones, Richard Sproat, Haruko Ishikawa, and
Alexander Gutkin. 2023. Helpful neighbors: Lever-
aging neighbors in geographic feature pronunciation.
Transactions of the Association for Computational
Linguistics, 11:85–101.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
7057–7075, Online. Association for Computational
Linguistics.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo. 2018. Hallucinations in
neural machine translation. OpenReview, submitted
to ICLR2019.

591

https://doi.org/10.18653/v1/W18-2409
https://doi.org/10.18653/v1/W18-2409
https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.emnlp-main.42
https://doi.org/10.18653/v1/2023.emnlp-main.42
https://doi.org/10.18653/v1/2023.emnlp-main.42
https://doi.org/10.15084/00002185
https://doi.org/10.15084/00002185
https://doi.org/10.15084/00002185
https://doi.org/10.18653/v1/2021.findings-emnlp.39
https://doi.org/10.18653/v1/2021.findings-emnlp.39
https://doi.org/10.18653/v1/2021.findings-emnlp.39
https://doi.org/10.18653/v1/2021.findings-emnlp.39
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.595
https://doi.org/10.18653/v1/2022.emnlp-main.595
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.18653/v1/2023.acl-long.770
https://doi.org/10.18653/v1/2023.acl-long.770
https://doi.org/10.18653/v1/2023.acl-long.770
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://aclanthology.org/I11-1014/
https://aclanthology.org/I11-1014/
https://aclanthology.org/I11-1014/
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1162/tacl_a_00535
https://doi.org/10.1162/tacl_a_00535
https://aclanthology.org/J98-4003/
https://aclanthology.org/J98-4003/
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://openreview.net/forum?id=SkxJ-309FQ
https://openreview.net/forum?id=SkxJ-309FQ


Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and
Shuming Shi. 2019. On the word alignment from
neural machine translation. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1293–1303, Florence, Italy.
Association for Computational Linguistics.

Yuval Merhav and Stephen Ash. 2018. Design chal-
lenges in named entity transliteration. In Proceed-
ings of the 27th International Conference on Compu-
tational Linguistics, pages 630–640, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1172–1183, On-
line. Association for Computational Linguistics.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Hankun Wang, Chenpeng Du, Yiwei Guo, Shuai Wang,
Xie Chen, and Kai Yu. 2024. Attention-constrained
inference for robust decoder-only text-to-speech. In
2024 IEEE Spoken Language Technology Workshop
(SLT), pages 630–637.

A Model Parameters

Table 4 presents the detailed hyperparameters for
training.

B Performance of Baseline Model

Table 5 shows the baseline model performance. We
report both top-1 accuracy (Acc) and top-k accu-
racy. The difference between the Acc and the top-
k accuracy indicates the theoretical upper bound
for the accuracy improvement from our filtering
method.

C Examples of Alignment Candidates

Figures 4 to 7 denote the examples of extracted
alignment candidates.

embed dim 512
ffn embed dim 2048
layer norm ε 1e-6
norm first True
activation function ReLU
loss type cross entropy
label smoothing 0.1
optimizer Adam
Adam β1 0.9
Adam β2 0.98
Adam ε 1e-9

lr scheduler linear warmup &
inverse square decay

warmup steps 5000
batch size 1024
max epoch 20
drop out 0.1
number of GPUs used 4

Table 4: Hyperparameters of the model.

L

H 1 2 3 6

4

Acc 80.97 82.07 82.10 81.73
Top-4 Acc 92.13 92.70 92.20 92.13
Top-8 Acc 93.90 94.63 94.47 94.37
Top-12 Acc 94.83 95.53 95.17 95.17
Top-16 Acc 95.50 95.83 95.60 95.73

8

Acc 81.60 82.17 81.67 81.63
Top-4 Acc 92.27 92.43 93.00 92.17
Top-8 Acc 94.37 94.63 94.70 94.27
Top-12 Acc 94.93 95.40 95.50 95.50
Top-16 Acc 95.77 95.97 96.07 96.00

16

Acc 81.40 81.67 82.17 81.77
Top-4 Acc 92.33 92.70 93.07 92.50
Top-8 Acc 94.03 94.33 94.83 94.60
Top-12 Acc 94.90 95.33 95.57 95.30
Top-16 Acc 95.30 95.70 96.13 95.80

Table 5: Top-k accuracy for various L andH configura-
tions. Beam width is equal to k.
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Figure 4: Alignment candidates between the Japanese
phrase文教堂市ヶ谷店 and the correct pronunciation
ぶんきょうどういちがやてん
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Figure 5: Alignment candidates between the Japanese
phrase文教堂市ヶ谷店 and the incorrect pronuncia-
tion with hallucinationぶんきょうどうしょてんい
ちがやてん
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Figure 6: Alignment candidates between the Japanese
phrase豊島区立要小学校 and the correct pronuncia-
tionとしまくりつかなめしょうがっこう
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Figure 7: Alignment candidates between the Japanese
phrase豊島区立要小学校 and the incorrect pronunci-
ation with omissionかなめしょうがっこう
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