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Abstract
Video Content Discovery (VCD) is to iden-
tify the specific videos defined by a certain
pre-specified text policy (or constraint), which
plays a crucial role in building a healthy and
high-quality Web content ecology. Currently,
related works typically employ multiple clas-
sifiers or similarity-based systems to support
VCD. However, these approaches are difficult
to manage, lack generalization power, and suf-
fer from low performance. To tackle these
problems, this paper presents a new Vision-
Language Large Model (VLLM)-driven VCD
system called VENUS (the abbreviation of
Video contENt UnderStander). Concretely, we
first develop an automatic policy-guided se-
quential annotator (APSA) to generate high-
quality, VCD-specific, and reasoning-equipped
instruct-tuning data for model training, then
extend the VLLM inference to support VCD
better. Following that, we construct a real VCD
test set called VCD-Bench, which includes
a total of 13 policies and 57K videos. Fur-
thermore, to evaluate its practical efficacy, we
deploy VENUS in three different simulation
scenarios. Extensive experiments on both the
VCD-Bench and public evaluation datasets for
various VCD-related tasks demonstrate the su-
periority of VENUS over existing baselines.

1 Introduction

With the popularity of the Web and its applications,
an increasing number of video streaming services
are deployed on the web, rapidly accumulating
more and more videos. These videos, while enrich-
ing a vibrant web community ecology, also pose
challenges to various video content tasks (Jiang
et al., 2019). Among these tasks, video content dis-
covery (Cao et al., 2016; Helff et al., 2024), which
aims to distinguish relevant or irrelevant videos ac-
cording to a certain pre-specified text policy, serves
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Figure 1: Illustration of VCD scheme comparison. (a)
The video content discovery (VCD) task; (b) A solution
based on multiple classifiers (MPC); (c) A similarity-
based system (SBS); (d) A typical VLLM-based ap-
proach, utilized to do general question-answering and
VCD; (e) Our VENUS that takes video and policy as
input, outputs judge, reason, and confidence score to
discover relevant videos; and (f) The new techniques
proposed in VENUS to support VCD.

as a fundamental technique for the construction of
a healthy and compliant community. As shown in
Fig. 1(a), given a video and a policy specifying
drug-related content, a VCD system first under-
stands the policy, then analyzes the content, finally
decides whether any videos match the policy via
answering “Yes/No” so that subsequent operations
(i.e., reject the video or distribute it to users) can
be conducted to avoid harmful video content poi-
soning the community and distribute high-value
healthy contents. Compared with typical classifi-
cation and retrieval tasks, in reality VCD has the
following three characteristics: 1) VCD should
be able to handle massive amounts of streaming
videos, while focusing on understanding related
content and having few-shot/zero-shot learning ca-
pabilities, which are lacking in traditional tasks.
2) The policy (a.k.a query/prompt/text input) for
VCD covers complex requirements and definitions,
and changes frequently, which is different from
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keywords and short sentences utilized in typical
retrieval systems (Zhao et al., 2023). 3) VCD has
to handle extremely rare visual content, which may
be lacking in generic datasets. These features re-
quire a VCD system to have stronger text and video
understanding ability.

Thanks to the rapid advance of artificial intelli-
gence (AI) techniques, various deep neural network
(DNN) paradigms have been proposed to support
VCD. Early attempts usually rely on various DNN
structures (e.g. CNN (Li et al., 2021), ViT (Doso-
vitskiy et al., 2020)) to do VCD in a video classifi-
cation manner (Karpathy et al., 2014). For example,
as shown in Fig. 1(b), given a policy, researchers
develop a specialized model for binary classifica-
tion. Nevertheless, because of the evolving nature
of the Web environment, such a solution cannot
adapt well to new video content and new policies.
Besides, with the increase of policies, many clas-
sifiers are required, which inevitably incurs huge
deployment and maintenance difficulties and costs.

To address the aforementioned drawback, re-
cently, powered by progressive text-image align-
ment skills (Radford et al., 2021), similarity-based
systems (SBS) have been widely used in VCD
tasks. Taking Fig. 1(c) for example, researchers
build a gallery that contains several representative
videos (a.k.a. seeds) so that when a new video
comes, the discovery task can be converted into the
similarity measurement between the input video
and the seeds. However, the performance of SBS
is highly impacted by the seeds. For some rare or
new policies that only have a limited number of or
even no seeds, SBS shows poor performance.

Then, how to establish an effective video content
discovery system? Fortunately, with the assistance
of advanced Large Language Models (LLMs) (Tou-
vron et al., 2023; Achiam et al., 2023) and support
techniques (Liu et al., 2022; Peng et al., 2023),
Vision Language Large Models (VLLMs) (Liu
et al., 2023a, 2024b) can offer us a new solution, as
shown in Fig. 1(d). The core idea of this paradigm
is to utilize VLLMs’ strong understanding ability
for content discovery. However, since the train-
ing data of typical VLLMs are always common
web content, these off-the-shelf models cannot
effectively deal with long-tailed and rare-to-see
videos (e.g. drugs, terror, self-mutilation etc.) and
frequently changing policies, as also illustrated
in Fig. 1(d). In addition, the textual output (i.e.,
“Yes/No”) can not support threshold adjustment
well. This situation indicates that it is urgent to

build powerful VLLM-driven VCD systems.

In this paper, we present a new VLLM-driven
system for VCD, namely VENUS (the abbrevia-
tion of Video contENt UnderStander). Fig. 1(e)
illustrates the rationale behind VENUS. Given a
video and a policy, VENUS is required to pro-
vide not only an answer of “Yes/No” but also (1)
the understanding process of what is seen, what
is expected by the policy, thus making the final
decision, and (2) the confidence score of the deci-
sion for downstream applications. To this end, as
shown in Fig. 1(f), on the one hand, VENUS pro-
poses a novel automatic policy-guided sequential
annotator (APSA) to generate high-quality instruct-
tuning data for model training. Compared with
typical data engines (Chen et al., 2024; Liu et al.,
2024b) used by existing VLLMs. APSA not only
generates reasoning-equipped question-answering
(QA) data according to the policy, but also pro-
poses a sequential cross-evaluation procedure to
offer a quality evaluation phase for each gener-
ated data. On the other hand, VENUS extends the
classic inference procedure to not only output the
traditional text answers, but also offer confidence
scores for wide usages like threshold adjustment
and various downstream applications. In addition,
as existing benchmarks either consider only gen-
eral visual question-answering ability or exclude
popular online live streams and short videos, which
makes them unsuitable to evaluate VCD systems.
Ergo, we construct a new, real-world, large-scale
VCD-dedicated benchmark called VCD-Bench that
contains 13 text policies and 57K videos.

The contributions of this paper are summarized
as follows: 1) We propose a new VLLM-driven
system called VENUS for video content discov-
ery. VENUS uses a new automatic policy-guided
sequential annotator to lift model’s diverse policy
processing ability, and provides both text and con-
fidence outputs for better downstream usage. 2)
We construct a high-quality and real video content
discovery benchmark called VCD-Bench. 3) With
VCD-Bench and public VLLM evaluation datasets,
we conduct extensive experiments that show the
advantages of VENUS over existing SOTA ap-
proaches. 4) We deploy VENUS in 3 simulation
scenarios, including a large-scale running VCD
system, a zero-shot retrieval task, and a few-shot
setting. Testing results show that VENUS can boost
performance well in all these scenarios.
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Figure 2: The architecture of VENUS (a-c) and the dy-
namic high-resolution module (d). The overall training
procedure can be divided into three phases, including
(a) Projector pre-training; (b) Caption pre-training; and
(c) Joint instruct-tuning.

2 The VENUS System

In this section, we give the detailed techniques of
VENUS, with focus on the architecture and the
implementation of the data engine. The goal of
VENUS Φ is to generate a response R and a confi-
dence score s based on the image/video I and the
policy prompt P , i.e., (R, s) = Φ(I, P ).
Architecture. The architecture and training proce-
dure of VENUS are illustrated in Fig. 2. VENUS
contains 5 major modules: a ViT Φvit used for vi-
sual feature extraction, a feature projector Φprj

for visual feature projection, a LLM Φllm that is
applied to generating the response based on the
projected feature and the prompt P , a dynamic
high-resolution module (Liu et al., 2023a) Φdhr

for high-resolution image processing, and a infer-
ence support module Φism utilized to derive score
s. The response R and score s is generated as
follows:

R = Φllm(Φprj(Φvit(Φdhr(I))), P ), (1)

s = Φism(Φllm(Φprj(Φvit(Φdhr(I))), P )). (2)

Concretely, given an image/video I , we first
adopt the visual feature encoder Φvit to obtain its
preliminary visual feature fvis=Φvit(I). However,
this naive approach has two shortcomings. First,
existing ViTs can only support fixed input sizes
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Figure 3: Illustration of inference support for VENUS.

(e.g. 384 * 384 for SigLIP (Zhai et al., 2023)),
which makes the model be unable to utilize useful
fine-grained pixel information. Second, capturing
redundant pixel information for a long video is
quite inefficient. Considering the massive amounts
of high-quality image data, we propose a solution
that supports both images and videos simultane-
ously. Accordingly, we extend the dynamic high-
resolution technique (Liu et al., 2023a) Φdhr for
better visual extraction, i.e., fvis = Φvit(Φdhr(I)).
In particular, as shown in Fig. 2(d), given an in-
put video, we sample 6 frames to form an image
I ′ ∈ R(2×384)×(3×384). Then, we pre-define a 2×3
grid to crop 6 patches (384 × 384) from I ′ and
extract 6 image-level features solely from these
patches. We also directly downsample image I to
obtain a global feature of the video. Finally, all the
7 features are concatenated, which is then fed into a
multilayer perceptions projector Φprj and projected
to the language domain, i.e., fprj = Φprj(fvis).

Finally, we feed the projected feature fprj and
the prompt P to the LLM to auto-regressively gen-
erate the response R as follows:

Rj =

{
Φllm([fvis, P ]| < BOS >) (j = 0)

Φllm([fvis, P ]|[< BOS >,Rt<j ]) (j ̸= 0)
(3)

where [·] and < BOS > denote the concatenat-
ing operation and the beginning of sequence to-
ken, respectively. We also exploit the inference
support module to compute the confidence score
s=Φism(ht), where ht is the t-th feature outputted
by the LLM.
Inference Support for VCD. Given an im-
age/video, the VCD model should generate an ad-
ditional confidence score s. Then, we can adjust
threshold ϵ to check whether or not the image/video
hits the policy. In VENUS, we design an inference
support module Φism to obtain the corresponding
score s. In particular, denote the t-th feature out-
putted by the LLM as ht, we obtain the response
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Figure 4: Illustration of our proposed automatic policy-
guided sequential annotator (APSA).

Rt via two sequential functions:

St = Softmax(ht),

Rt = Argmax(St),
(4)

where St ∈ R|V| is the t-th predicted probability
distribution, V is the vocabulary, and |V| denotes
the size of the vocabulary. As shown in Fig. 3, in
VENUS we cache all the distributions to form the
final score table S = {S1, S2, .., SL}, where L is
the index of the <EOS> (end of sequence) token.
Then, we can easily obtain the confidence score
by parsing the response R. For example, consider
a binary classification prompt, the key token in R
should be “Yes” (or “No”). Let the index of the key
token in the response and the vocabulary be i and
j, respectively. The score s can be extracted as fol-
lows: s = Si,j. During inference, once key tokens
are generated, the system can immediately return
the score instead of continuing unnecessary com-
putations, thus saving computational resources.
Automatic Policy-guided Sequential Annotator
(APSA). This section focuses on the data engine to
create training data. A straightforward solution is
to write some policy-specific questions and then di-
rectly use a strong VLLM (e.g. GPT-4O) to answer
the questions. However, because of the challenge
of rare policies and content in the VCD scenario,
even powerful VLLMs cannot always provide cor-
rect answers. Inspired by existing similarity-based
systems and forced teaching techniques, we pro-
pose a automatic policy-guided sequential annota-
tor (APSA) to generate high-quality yet economic
policy-specific data such that we can mix these data
with public data for model training.

As shown in Fig. 4(a), ASAP consists of three
phases: data collection, policy-guided force label-
ing, and quality evaluation. The data collection
phase is to get rich candidate data. Concretely,
given some policies, we try to collect a batch of
videos from the video service platform that are
relevant/irrelevant to these policies. To this end,

we consider two data collection methods. First,
we use the existing similarity-based system (SBS)
to capture high-confidence videos from the plat-
form, namely online sweeping. Second, we use
crowdsourcing to obtain some relevant videos from
medium-confidence videos. As for the second
phase, we not only input the definitions and expec-
tations of the policies but also provide a pre-judged
conclusion to force the VLLM to write step-by-step
reasoning — what is seen, what meets the defini-
tions, and why is relevant/irrelevant. However, in
practice, there are two major causes that may lead
to low-quality data. On the one hand, due to the
possibility of errors in SBS, some videos will be
provided with wrong conclusions, which thus im-
pair the annotation in the first phase. On the other
hand, for the sake of VLLM’s own lack of expertise
of rare policies and videos, the VLLM may refute
our predefined conclusions, even if they are correct.
Therefore, we introduce an additional quality eval-
uation phase to evaluate each sample we generate.
As shown in Fig. 4(a), we feed the video, the ques-
tion, and the answer to the VLLM to judge whether
or not the QA pair is correct. We only maintain
the data passed the quality evaluation phase. Case
studies are given in Appendix D.

In this way, we finally obtain around 0.7M high-
quality question-answer pairs for instruct-tuning.

Model Training. Here, we explain the process
of VENUS training, which can be divided into
three phases: projector pre-training, better cap-
tion pre-training, and joint instruct-tuning. As
shown in Fig. 2(a), the first pre-training stage is uti-
lized to align the projector Φprj via coarse-grained
image-caption pairs. We prompt the LLM with
“Please describe the photo.” in this stage. After
preliminarily aligning the projector, we apply more
fine-grained image-caption data for a fine-grained
alignment, namely better caption technique (Chen
et al., 2023, 2024). The prompt is also changed
to “Please describe the photo in detail.”. In ad-
dition, we train both the visual feature encoder
Φvit and the projector Φprj to enhance the fine-
grained encoding performance. Finally, we unlock
all the modules in VENUS and apply diverse and
high-quality instruct-tuning data to boost VENUS’s
prompt-following ability. In the implementation,
we use commercially-allowed data to develop the
model — LCS-558K (Liu et al., 2024b) for pre-
training, 1.2M data for better caption, and a total
of 2.2M public + APSA data for instruct-tuning.
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3 The VCD-Bench

Data Collection. The data collection procedure
can be divided into four steps. First, we consider
the discovery policies. To better validate the model
performance, we select a total of 13 most popular
discovery queries from the platform to serve as the
policies. As a test set for VCD, its quality must be
high, and the proportion of relevant and irrelevant
videos (a.k.a. density) should be close to that in
the real world. However, the real density of a rare
policy is too low (around 1:10000 or even lower).
Building a million-level dataset is clearly not con-
ducive to offline testing and evaluation. Ergo, we
adjust the density according to its original density
and a scale factor K = 10. After the determination
of each policy’s density, what we should do is grab
relevant/irrelevant videos from the Web based on
the density. By taking the annotation cost into con-
sideration, we propose to apply different strategies
for relevant and irrelevant videos. On the one hand,
since the goal of VCD is to find relevant videos,
we only sample high-quality human-labeled videos
via crowdsourcing to form the relevant subset. On
the other hand, when it comes to the irrelevant sub-
set, considering its enormous quantity, we use the
similarity-based system (SBS) to automatically re-
trieve irrelevant videos that do not hit any policies.
So far, we finalize the data collection.

Distribution Analysis. Here we present the statis-
tics of our collected VCD-Bench. First, the volume
of our dataset (57,308 videos) is significantly larger
than some typical VLLM benchmarks, like MME
(1187 images) and POPE (1485 images). In addi-
tion, the density of our VCD-Bench is also very
close to reality. For example, the average density
of VCD-Bench is 1:176.4, which means that for all
176 videos, only one is relevant. This density is
more consistent with that of our running system.

Dataset Evaluation Protocol. In VCD-Bench, we
consider two major evaluation metrics, which are
average precision (AP) and recall at precision=0.5
(R@P0.5). We do not apply the regular classifica-
tion accuracy score. The reason lies in that 1) the
goal of VCD is to pick out relevant videos as many
as possible through threshold adjustment; 2) Given
a low density, the majority of videos in the test set
are labeled as irrelevant. Thus, the accuracy score
will be greatly affected by these irrelevant videos.

Table 1: Performance comparison between VENUS
and state-of-the-arts on various discovery and generic
benchmarks. The metrics for VCD are AP and R@P0.5.
‘-’ means the corresponding method cannot do this task.

Approach
VCD VQA

AP R@P0.5 TextVQA MME-P SEED-Img MM-Vet
MPC 0.450 0.389 - - - -
SBS 0.313 0.285 - - - -

SigLIP 0.212 0.177 - - - -
CLIP 0.191 0.151 - - - -

LLaVA-Guard 0.232 0.190 49.9 1425.4 20.1 28.7
LLaVA-Next 0.202 0.153 65.7 1502.9 72.2 47.3
ShareGPT4V 0.309 0.301 60.4 1567.4 69.7 37.6
LLaVA-1.5 0.360 0.315 62.6 1549.7 71.2 53.8
LLaVA-OV 0.430 0.475 73.8 1584.8 75.4 52.7

VENUS 0.565 0.573 73.2 1618.8 75.2 54.8

4 Performance Evaluation

Implementation Details. VENUS is developed
on 80 NVIDIA H100 GPUs with 80GB memory.
We use WarmupCosineLR with a learning rate of
1e-3, 2e-5, and 1e-5 for three different training
stages, respectively. Batch sizes for these stages
are set to 128, 128, and 160 accordingly. We use
AdamW (Loshchilov and Hutter, 2017) as the opti-
mizer, and all the data is learned for one epoch. We
use QWEN2.5-7B1 and SigLIP (Zhai et al., 2023)
to implement the LLM and visual feature encoder.
Compared with SOTAs. Here, we evaluate the
effect of VENUS on both discovery and general
capabilities. Accordingly, in addition to our VCD-
Bench, we also test a total of 4 general VQA bench-
marks, including TextVQA (Singh et al., 2019),
MME (Fu et al., 2023), SEED-Bench (Li et al.,
2023b), and MM-Vet (Yu et al., 2023). We re-
port the accumulated score for MME and accu-
racy for the rest. Besides, we compare VENUS
with various advanced approaches, including 1)
two advanced internal systems, which are Multi-
ple Policy Classifier (MPC) and Similarity-based
System (SBS), 2) two public similarity-based meth-
ods — SigLIP (Zhai et al., 2023) and CLIP (Rad-
ford et al., 2021), and some popular VLLMs, i.e.,
LLaVA-OV (Li et al., 2024), LLaVA-Next (Liu
et al., 2024a), ShareGPT4V (Chen et al., 2023),
LLaVA-1.5 (Liu et al., 2024b), and the content-
safefy-specific approach LLaVAGuard (Helff et al.,
2024). For a fair comparison, we use the 7B ver-
sion of all these VLLMs. The LLMs for these
VLLMs are set as follows: QWEN2.5 for LLaVA-
1.5, QWEN2 (Yang et al., 2024) for LLaVA-OV,
Mistral (Jiang et al., 2023) for LLaVA-Next, and
Vicuna (Zheng et al., 2024) for ShareGPT4V. To
support VCD, we install the inference technique il-

1https://qwenlm.github.io/blog/qwen2.5-llm/
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lustrated in Sec. 2 to get the confidence score. Note
that SBS, SigLIP, and CLIP require a seed gallery,
we use each relevant video in the test set to serve as
a high-quality seed to search for the other videos.
All the experimental results are presented in Tab. 1.

We first check the VCD performance. From
Tab. 1 we can see that the best VCD performance is
achieved by VENUS. This indicates that VENUS
is strong enough to beat the internal state-of-the-
art MPC, the public VLLM LLaVA-OV, and the
content-specific VLLM LLaVAGuard. Besides,
MPC is a system with 13 different classifiers while
VENUS has only a single model. Therefore, com-
pared with MPC, VENUS is much easier to man-
age. Thus, we demonstrate VENUS’ high discov-
ery performance.

Then, we check the general performance. Ob-
viously, the general performance of VENUS is
comparable to that of LLaVA-OV. In particular,
VENUS outperforms LLaVA-OV on MME and
MM-Vet. As for the rest datasets, the performance
gap is very slight. As a result, jointly considering
both discovery and general VQA tasks, VENUS
wins 3 tasks, outperforming LLaVA-OV (winning
2 tasks). Additionally, by taking the training cost
of VENUS (80 GPUs and 2.2M fine-tuning data)
into consideration, compared with LLaVA-OV that
uses 128 ∼ 256 GPUs and 4.8M fine-tuning data,
the overall training cost of VENUS is much lower
than that of LLaVA-OV. So far, both the VCD and
general performance of VENUS are verified.

Finally, we additionally sumarize some interest-
ing observations as follows: 1) There is a posi-
tive correlation between the VCD ability and the
general VQA ability. Specifically, a strong gen-
eral ability can ensure a good VCD ability (See
LLaVA-OV, its VCD ability outperforms LLaVA-
Next, ShareGPT4V, and LLaVA). As a result, in
VENUS, we decide to jointly optimize general abil-
ity and VCD performance. 2) Even though we have
utilized the relevant videos in the VCD-Bench test
set to serve as the seeds, the performance results of
SBS, SigLIP, and CLIP are still inferior to that of
MPC and VENUS. This indicates that similarity-
based approaches are inferior to some high-level
understanding models in practice. Ablation studies
on VENUS design are given in Appendix B.

5 Applications in Simulation Scenarios

In this section, we present 3 different simulation de-
ployment scenarios, which are illustrated in Fig. 5.
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Figure 5: Three simulation deployment scenarios of
VENUS. (a) Cooperating with an existing running sys-
tem for VC; (b) Zero-shot application for retrieval; and
(c) Fine-tuning VENUS with LoRA for urgent applica-
tions.

The first scenario is applying VENUS to a run-
ning system to exploit some harmful policies (i.e.,
excrement, etc) that are unsuitable to be distributed
on the Web, which is illustrated in Fig. 5(a). Specif-
ically, owing to VENUS’s query-per-second (QPS),
we stack VENUS at the end of the VCD system
to process what the current system cannot process
well. Based on the results of our one-week running
data, among the given policies that VENUS ex-
cels in, we can additionally discover 7.67% tough
cases (around 2K videos), saving 46.3% human
discovery cost.

Secondly, we apply VENUS to a zero-shot re-
trieval setting. As shown in Fig. 5(b), we evaluate
VENUS on an internal test set that includes 10k
hotels and attractions videos and 500 pre-defined
hot queries. VENUS is required to retrieve the last
20 videos based on the relevance score and we find
that compared with the existing system, the nor-
malized Discounted Cumulative Gain (nDCG) is
significantly boosted from 0.209 to 0.610, which
leads to an online order quantity increase of 12%.

Lastly, notice that owing to the rapid expansion
and evolution of the Web, new policies need to be
quickly responded by VENUS. We design a fast
response mechanism based on LoRA (Hu et al.,
2021) to quickly provide customized temporary
services to these high-demand policies via VENUS.
We fine-tune the fully connected layer of each atten-
tion layer for ViT and LLM in VENUS using LoRA
on specific datasets. In deployment, as shown in
Fig. 5(c), only a small split of VENUS parameters
are merged to support these new policies. As an ex-
ample, we evaluate a new quality discerning policy
and find this VENUS can boost the AP value from
0.746 to 0.894 with only 1K data, demonstrating
VENUS’s effectiveness in few-shot setting.
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6 Conclusion

In this paper, we develop a new VLLM-driven
video content discovery system called VENUS,
and construct a high-quality and real VCD dataset
called VCD-Bench. Extensive experiments on our
constructed VCD-Bench and public general evalu-
ation datasets, and online evaluations validate the
advantages of VENUS over existing SOTAs.

7 Limitation and Future Work

As mentioned before, the main limitation of
VENUS is its efficiency. Compared with MPC
and SBS which has a QPS of 60, our VENUS is
only 5. This indicates that VENUS is currently
unable to completely replace the current system.
It can only be used as a post-processing method
to handle difficult samples that the current system
cannot handle. In the future, we will continue to
explore more useful application paradigms as well
as optimize VENUS in terms of efficiency and per-
formance: 1) Consider using techniques such as
distillation (Polino et al., 2018) and inference ac-
celeration (Pagliardini et al., 2023) to boost the ef-
ficiency of VENUS. 2) Further enhance the perfor-
mance of VENUS using techniques such as Chain
of Thought (CoT) (Wei et al., 2022) and Mixture
of Experts (MoE) (Du et al., 2022).
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To avoid potential societal risk, we have processed
our data. The data containing personal privacy
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and government relationship team.

Acknowledgements

The work was supported in part by a ByteDance
Research Collaboration Project.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,

Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Juan Cao, Yongdong Zhang, Rongrong Ji, Fei Xie, and
Yu Su. 2016. Web video topics discovery and struc-
turalization with social network. Neurocomputing,
172:53–63.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and
Radu Soricut. 2021. Conceptual 12m: Pushing web-
scale image-text pre-training to recognize long-tail
visual concepts. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 3558–3568.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang,
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong
Chen, Jianquan Li, Xiang Wan, and Benyou Wang.
2024. Allava: Harnessing gpt4v-synthesized data
for a lite vision-language model. arXiv preprint
arXiv:2402.11684.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023. Sharegpt4v: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. InstructBLIP: Towards
general-purpose vision-language models with instruc-
tion tuning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive
evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai
Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yun-
hang Shen, Mengdan Zhang, et al. 2024. Video-mme:
The first-ever comprehensive evaluation benchmark

56

https://openreview.net/forum?id=vvoWPYqZJA
https://openreview.net/forum?id=vvoWPYqZJA
https://openreview.net/forum?id=vvoWPYqZJA


of multi-modal llms in video analysis. arXiv preprint
arXiv:2405.21075.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904–6913.

Jiaxian Guo, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Boyang Li, Dacheng Tao, and
Steven Hoi. 2023. From images to textual prompts:
Zero-shot visual question answering with frozen
large language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10867–10877.

Lukas Helff, Felix Friedrich, Manuel Brack, Kristian
Kersting, and Patrick Schramowski. 2024. Llava-
guard: Vlm-based safeguards for vision dataset
curation and safety assessment. arXiv preprint
arXiv:2406.05113.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang
Sun. 2023. Ciem: Contrastive instruction evaluation
method for better instruction tuning. arXiv preprint
arXiv:2309.02301.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700–6709.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
et al. 2023. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint
arXiv:2312.06674.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Yudong Jiang, Kaixu Cui, Bo Peng, and Changliang
Xu. 2019. Comprehensive video understanding:
Video summarization with content-based video rec-
ommender design. In Proceedings of the IEEE/CVF
international conference on computer vision work-
shops, pages 0–0.

Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
2014. Large-scale video classification with convolu-
tional neural networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recogni-
tion, pages 1725–1732.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023a. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. 2024. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023b. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao,
Hanwang Zhang, Wei Ji, Wenqiao Zhang, Tat-Seng
Chua, Siliang Tang, and Yueting Zhuang. 2023c.
Empowering vision-language models to follow inter-
leaved vision-language instructions. arXiv preprint
arXiv:2308.04152.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023d. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, pages 12888–12900. PMLR.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023e. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and
Jun Zhou. 2021. A survey of convolutional neural net-
works: analysis, applications, and prospects. IEEE
transactions on neural networks and learning sys-
tems, 33(12):6999–7019.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning

57

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2023b. Mm-
bench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281.

Shangbang Long, Xin He, and Cong Yao. 2021. Scene
text detection and recognition: The deep learning
era. International Journal of Computer Vision,
129(1):161–184.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Larry R Medsker, Lakhmi Jain, et al. 2001. Recurrent
neural networks. Design and Applications, 5(64-
67):2.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
2011. Im2text: Describing images using 1 million
captioned photographs. Advances in neural informa-
tion processing systems, 24.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and
François Fleuret. 2023. Faster causal attention over
large sequences through sparse flash attention. arXiv
preprint arXiv:2306.01160.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Antonio Polino, Razvan Pascanu, and Dan Alistarh.
2018. Model compression via distillation and quanti-
zation. arXiv preprint arXiv:1802.05668.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. 2022. Laion-5b: An open
large-scale dataset for training next generation image-
text models. Advances in Neural Information Pro-
cessing Systems, 35:25278–25294.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2556–2565.

Baoguang Shi, Xiang Bai, and Cong Yao. 2016. An
end-to-end trainable neural network for image-based
sequence recognition and its application to scene text

recognition. IEEE transactions on pattern analysis
and machine intelligence, 39(11):2298–2304.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8317–8326.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. 2023a. Ureader: Univer-
sal ocr-free visually-situated language understand-
ing with multimodal large language model. arXiv
preprint arXiv:2310.05126.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023b.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Dong Yu and Lin Deng. 2016. Automatic speech recog-
nition, volume 1. Springer.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975–11986.

Minyi Zhao, Jie Wang, Zhaoyang Li, Jiyuan Zhang,
Zhenbang Sun, and Shuigeng Zhou. 2024. Effec-
tively enhancing vision language large models by
prompt augmentation and caption utilization. arXiv
preprint arXiv:2409.14484.

Minyi Zhao, Jinpeng Wang, Dongliang Liao, Yiru
Wang, Huanzhong Duan, and Shuigeng Zhou. 2023.

58



Keyword-based diverse image retrieval by semantics-
aware contrastive learning and transformer. In Pro-
ceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1262–1272.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

59



A Related Work

A.1 Video Content Discovery

Video content discovery (VCD) (Cao et al., 2016),
which aims to explore videos based on a given pol-
icy, plays an important role in building a healthy
Web ecology. Typical VCD approaches can be
roughly divided into two categories: classifier-
based and similarity-based, respectively. The
classifier-based approaches usually apply vari-
ous DNN models (e.g. CNN (Li et al., 2021),
RNN (Medsker et al., 2001), ViT (Dosovitskiy
et al., 2020)) for classification. Additionally, some
optical character recognition (OCR) (Shi et al.,
2016; Long et al., 2021) and automatic speech
recognition (ASR) (Yu and Deng, 2016) techniques
are applied to extract texts to assist the discov-
ery. As for the similarity-based methods (Radford
et al., 2021; Zhai et al., 2023), they usually utilize
massive vision-language data (Schuhmann et al.,
2022) and contrastive learning (Khosla et al., 2020)
techniques to develop an alignment model so that
the VCD problem is converted to a matching task.
However, these methods above have obvious draw-
backs. The former requires a large number of classi-
fiers when there are many policies to handle, while
the performance of the latter is heavily dependent
on the video seeds. More recently, some safeguards
(i.e., LLama Guard (Inan et al., 2023) and LLava
Guard (Helff et al., 2024)) are proposed to discover
harmful contents from the Web with the help of
large language model.

A.2 Vision Language Large Models

Thanks to the remarkable achievements of large
language models (LLMs), many powerful vision-
language large models (VLLMs) (Guo et al., 2023;
Bai et al., 2023; Li et al., 2023c; Ye et al., 2023b;
Li et al., 2024) have been proposed to integrate
LLMs with visual encoders for various visual lan-
guage understanding tasks. Generally, from the
aspect of model structure, these VLLMs first use a
visual encoder (e.g. ViT (Dosovitskiy et al., 2020),
CLIP (Radford et al., 2021), and SigLIP (Zhai
et al., 2023)) to capture visual features from the
input images or videos. Then, various structures
(e.g. linear projector (Liu et al., 2024b; Zhu et al.,
2023), Q-Former (Li et al., 2023d)) are utilized
to project the visual features into the language do-
main. When it comes to training, BLIP (Li et al.,
2022, 2023d) and InstructBLIP (Dai et al., 2023)
collect millions data from CC3M (Sharma et al.,

Table 2: A qualitative comparison between VENUS and
major existing methods from three dimensions: data
engine, VCD and generic VQA capabilities.

Method Data engine VCD capability Generic VQA capabilities

CLIP Vision-language pairs Depend on the seeds ✗

LLaVA Generic QA Low Medium
LLaVA-OV Knowledge pre-training Medium High

LLaVA-Guard Human-labeled 5K Discovery tasks ✗

VENUS (Ours) APSA High High

2018), SBU (Ordonez et al., 2011), and Concep-
tual 12M (Changpinyo et al., 2021) for pre-training.
LLaVA (Liu et al., 2024b), ALLaVA (Chen et al.,
2024), Otter (Li et al., 2023a), ShareGPT4V (Chen
et al., 2023), and LLaVA-OV (Li et al., 2024)
propose various data engines to generate generic
instruct-tuning data for fine-tuning. Furthermore,
some techniques have also been developed to boost
various downstream abilities of VLLMs, for ex-
ample, anti-hallucination (Li et al., 2023e; Hu
et al., 2023), OCR (Ye et al., 2023a), and prompt-
processing (Zhao et al., 2024). Despite their suc-
cesses, these models mainly focus on the generic
ability and are ineffective in processing rare video
content and discovery policies.

A.3 Vision Language Large Model Evaluation
Datasets

Nowadays, many evaluation datasets have been
constructed to evaluate VLLM performance. These
datasets can be roughly divided into two categories:
generic and specific. The generic datasets try
to comprehensively review VLLM’s various ca-
pabilities, for example, MME (Fu et al., 2023),
VideoMME (Fu et al., 2024), MMBench (Liu et al.,
2023b) etc. In contrast, specific ones aim at one ma-
jor aspect, like anti-hallucination (Li et al., 2023e;
Hu et al., 2023), OCR (Singh et al., 2019), reason-
ing (Yu et al., 2023) and so on. Obviously, these
datasets of evaluating common abilities in real life
cannot cover some rare and uncommon Web cases,
and are irrelevant to VCD. Therefore, constructing
new datasets for the VCD task is urgently neces-
sary.

A.4 Comparison Between Our Work and
Existing Approaches

To clarify the differences between VENUS and
typical existing methods, in Tab. 2 we present a
qualitative comparison from three dimensions: the
data engine used to generate training data and mod-
els’ VCD and generic VQA capabilities. From
Tab. 2 we can see that CLIP is designed for simi-
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larity match and cannot do VQA. When it comes
to the VCD capability, the model performance is
influenced by the quality of the seeds. As for the
recent off-the-shelf VLLM methods LLaVA and
LLaVA-OV, although LLaVA-OV succeeds in lift-
ing VCD and generic VQA capabilities with the
help of new proposed knowledge pre-training stage,
its VCD performance is limited because of the
rare-to-see VCD policies and contents. In contrast,
Our VENUS has a new data engine called auto-
matic policy-guided sequential annotator (ASAP).
ASAP not only offers rich reasoning texts for differ-
ent VCD policies but also evaluates the generated
data. Extensive experiments show the advantages
of VENUS over the existing approaches.

B Ablation Study

In this section, we conduct extensive ablation stud-
ies to demonstrate the advantages of the VLLM
design of VENUS. Because of the cost of running
large-scale VCD evaluation and the correlation be-
tween VCD and general performance, we report the
results on 4 common general evaluation datasets —
TextVQA, MME-P, SEED-Img, and MM-Vet. All
the results are in Tab. 3.

B.1 The effect of visual feature extractor
We start by checking the selection of the visual fea-
ture extractor (VFE). In this paper, we consider two
widely used extractors, which are CLIP (Radford
et al., 2021) and SigLIP (Zhai et al., 2023). As
shown in the 1st and the 2nd rows in Tab. 3, SigLIP
wins 3 tasks among all the 4 tasks compared with
CLIP. Ergo, we choose SigLIP as the visual feature
extractor in VENUS.

B.2 The effect of various LLMs
Then, we explore the LLM selection. Here, we
consider a total of 4 different LLMs, which are
Vicuna-1.5 (Zheng et al., 2024), Mistral-0.2 (Jiang
et al., 2023), QWEN2 (Yang et al., 2024) and its
upgraded version QWEN2.5. Experimental results
correspond to the 1st, 3rd, 4th, and 5th rows of
Tab. 3. Obviously, all the best results are achieved
by QWEN2.5. Therefore, we install QWEN2.5 in
VENUS.

B.3 The effect of dynamic high-resolution
technique

Here, we check the effect of the dynamic high-
resolution (DHC) technique used to enhance vi-
sual resolution. To this end, we compare two

variants with/without DHC. As shown in the 2nd
and 6th rows in Tab. 3, DHC significantly boosts
the performance from 61.8/1524.3/71.6/37.0 to
66.6/1625.5/73.6/36.3. This shows the advantage
of DHC.

B.4 The effect of multi-stage training

Subsequently, we install the multi-stage training
(MST) to the baseline model, corresponding to the
7th row of Tab. 3. Comparing the results in the 6th
and 7th rows, MST lifts the model performance
on TextVQA (from 66.6 to 70.4) and MM-Vet (an
noticeable improvement of 18.6). This indicates
that MST is beneficial for VENUS.

B.5 The effect of batch size

Here we check the effect of the batch size se-
lected in VENUS. Two typical settings adopted
by LLaVA (Liu et al., 2024b) and LLaVA-OV (Li
et al., 2024) are 128 and 256, respectively. In this
paper, we consider four different batch sizes, which
are 80, 128, 160, and 256. As shown in the 2nd,
8th, 9th, and 10th rows of Tab. 3, we can see that
when picking batch size=160, the win rate against
80, 128, and 256 are all 2:2. This justifies that 160
is a good hyper-parameter.

B.6 The effect of APSA

Here, we step into the ablation of the proposed auto-
matic policy-guided sequential annotator (APSA).
Tab. 4 presents the experimental results.

From the 1st and 2nd rows in Tab. 4 we can see
that 1) APSA does not impair general performance,
and 2) APSA can significantly boost VCD perfor-
mance. For example, the AP/R@P0.5 values are
significantly lifted from 0.379/0.369 to 0.746/0.788.
These results indicate that APSA has the ability to
efficiently enhance video content discovery with-
out compromising the general capabilities. Fur-
thermore, scaling up training data with APSA can
also lift VCD performance. For example, as shown
in the 2nd and 3rd rows in Tab. 4, 0.7M version
outperforms 6K version in VCD performance.

B.6.1 The effect of quality evaluation in APSA
As described in Sec. 2, we design a quality evalu-
ation phase in ASAP to ensure the high quality of
the generated data. To evaluate the performance
of the quality evaluation phase, we generate 12K
data. For all these 12K data, this quality evaluation
phase rejects half of them and accepts 6K data for
training. Here, we remove the quality evaluation
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Table 3: Ablation studies on the design of visual feature extractor (VFE), LLM, multi-stage training (MST), dynamic
high-resolution (DHC), and batch size (BS).

ID VFE LLM MST DHC BS TextVQA MME-P SEED-Img MM-Vet

1 CLIP QWEN2 ✗ ✗ 128 58.6 1562.2 69.7 35.6
2 SigLIP QWEN2 ✗ ✗ 128 61.8 1524.3 71.6 37.0
3 CLIP QWEN2.5 ✗ ✗ 128 62.6 1549.7 71.2 53.8
4 CLIP Vicuna1.5 ✗ ✗ 128 58.2 1510.7 66.1 31.1
5 CLIP Mistral0.2 ✗ ✗ 128 54.8 1403.5 67.0 30.1
6 SigLIP QWEN2 ✗ ✓ 128 66.6 1626.5 73.6 36.3
7 SigLIP QWEN2 ✓ ✓ 128 70.4 1624.3 74.0 54.9
8 SigLIP QWEN2 ✗ ✗ 80 61.8 1524.3 71.6 37.0
9 SigLIP QWEN2 ✗ ✗ 160 61.1 1590.5 71.8 35.8
10 SigLIP QWEN2 ✗ ✗ 256 61.5 1592.5 71.2 35.6
11 SigLIP QWEN2.5 ✓ ✓ 160 72.4 1590.7 74.9 56.5

Table 4: Ablation study on the data engine utilized for data generation. We report the average AP and R@P0.5 of all
13 policies for VCD.

Configuration TextVQA MME-P SEED-Img MM-Vet AP R@P0.5

Baseline 72.8 1608.5 74.9 56.8 0.379 0.369
+0.7M qualified APSA data 73.2 1618.8 75.2 54.8 0.565 0.573
+6K qualified APSA data 72.4 1590.7 74.9 56.5 0.482 0.491

+12K APSA data without qualification 71.6 1580.0 75.0 50.7 0.464 0.483

phase and utilize all the 12K data as a variant. The
corresponding results are given in the 4th row of
Tab. 4. Obviously, both the general performance
and the VCD performance are inferior to the 6K
version. For example, MM-Vet and AP of VCD are
deteriorated from 56.6/0.482 to 50.7/0.464, respec-
tively. This indicates that increasing the amount of
data without considering quality cannot guarantee
desirable performance.

C Results on more benchmarks

Here, we give results on more evaluation bench-
marks to better demonstrate the generality of our
VENUS system. Accordingly, in addition to the
13 discovery policies in our VCD-Bench, we test a
total of 10 general VLLM benchmarks, including
VQAv2 (Goyal et al., 2017), GQA (Hudson and
Manning, 2019), TextVQA (Singh et al., 2019),
POPE (Li et al., 2023e), MME (Fu et al., 2023),
MMBench (Liu et al., 2023b), SEED-Bench (Li
et al., 2023b), MM-Vet (Yu et al., 2023), Original
CIEM (CIEM-Org) (Hu et al., 2023), and Prompt-
augmented CIEM (CIEM-Aug) (Zhao et al., 2024).
All the experimental results are given in Tab. 5.

From Tab. 5 we can see that VENUS is supe-
rior to LLaVA-OV in not only VCD tasks but

also a wide scope of VQA tasks like GQA, MME,
MM-Vet, CIEM-Org, and CIEM-Aug. As a result,
VENUS wins 7 different tasks. This indicates the
strong performance of our VENUS system.

D Case Study of APSA

To better understand the advantages of our pro-
posed APSA, we provide three cases (two for dif-
ferent kinds of animals and one for gambling pol-
icy) comparisons with the typical data engine that
directly requires the VLLM to answer the question.
As shown in the 1st case in Fig. 6, when querying
Larvivora cyane, a rare bird, due to lack of specific
knowledge, the VLLM may mistakenly recognize
it as a more regular bird – blue jay. In contrast, with
the help of our ASAP, the VLLM can provide de-
tailed and correct reasoning to recognize Larvivora
cyane. Similar results can also be observed from
the rest two cases.

E Visual Case of VENUS

In this section, we provide a visualization of
VENUS on the aforementioned image quality dis-
cerning policy to better demonstrate the workflow
of our system. As shown in Fig. 7, given a detail
text policy that describes the definition and expecta-
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Table 5: Performance comparison between VENUS and state-of-the-arts on various discovery and generic bench-
marks. The metrics for VCD are AP/R@P0.5. ‘-’ means the corresponding method cannot do this task.

Datasets VENUS LLaVA-OV LLaVA-NeXT ShareGPT4V LLaVA-1.5

VCD
AP 0.565 0.430 0.202 0.309 0.360

R@P0.5 0.573 0.475 0.153 0.301 0.315

VQA

VQAv2 84.0 84.5 82.2 80.6 81.1
GQA 63.3 62.2 64.8 63.3 63.4

TextVQA 73.2 73.8 65.7 60.4 62.6
POPE-All 87.8 89.1 86.7 86.8 87.5
MME-P 1618.8 1584.8 1502.9 1567.4 1549.7

MMBench-En 79.9 80.8 68.7 68.8 76.1
SEED-Img 75.2 75.4 72.2 69.7 71.2
MM-Vet 54.8 52.7 47.3 37.6 53.8

CIEM-Org 90.6 90.5 88.5 89.3 89.9
CIEM-Aug 87.8 87.6 84.0 82.7 87.0

#Total Wins 7 5 0 0 1

By typical data engine:
User: Does this photo contains any Larvivora cyane?
Agent: No, there is no Larvivora cyane. The bird in the image is a Blue Jay.
By ours: 
The bird in the image is indeed a Larvivora cyane, commonly known as the Siberian Blue Robin. 
The key characteristics that confirm this identification include: Coloration: … Size and Shape: ... 
Distinctive Features: ….
By typical data engine:
User: Does this photo contains any eels?
Agent: Yes, the photo contains an eel. The fish in the image has a long, slender body 
and lacks pelvic fins, which are characteristic features of eels.
By ours: 
The image likely does not contain an eel because the creature shown exhibits characteristics 
inconsistent with eels ….

Case 1

Case 2

Case 3 By typical data engine:
User: Does this photo contain any gambling content?
Agent: No, the image shows a laptop screen displaying a video slot machine game.

By ours: 
Yes, this image contains gambling content. The screen displays a slot machine …

Figure 6: Visualization comparisons between a typical existing data engine and our APSA.

tions of low-quality, VENUS can correctly analyze
the visual inputs and provide scores and textual
reasons. Thus, the scores can be storaged as a fea-
ture for downstream applications like retrieval and
recommendation.
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Policy:
You are an expert in discerning low-quality images. According to business 
requirements, there are 3 categories of low-quality image classification: Border 
Image, Text Image, and Stitched Image.
The definitions of each category are as follows:
1. The definition of a Border Image refers to images with the following 
characteristics:
a. The image has obvious border lines or frames at the top, bottom, left, or right;
b. The border can clearly distinguish the content of the image from the 
background, enhancing visual focus;
c. The top, bottom, left, or right of the image has a solid color area or a frosted 
glass area;
2. The definition of a Text Image is:
a. There is text on the image and the text does not belong to the photo shooting 
scene itself, it is made by additional post-production;
Note: If the text is included in the subject of the shot itself, such as the brand 
name on a cup, or the shop name captured in the shot, it is not a Text Image;
b. There is a watermark on the image;
If an image meets any of the above two definitions of a Text Image, it can be 
considered a Text Image;
3. The definition of a Stitched Image is: The image is made up of 2 or more 
stitched images;
If it meets any of the low-quality categories, it is a low-quality image.
Input an image, please determine whether it is a low-quality image.

VENUS

Text output: The image contains 
text in the bottom right corner 
that appears to be a watermark. 
This text does not belong to the 
photo shooting scene itself and is 
made by additional post-
production. Therefore, this image 
meets the definition of a Text 
Image. Therefore, the answer is 
yes, this is a low-quality image.
Yes score: 0.834

Text output: The image does not have 
any obvious border lines or frames at the 
top, bottom, left, or right. There is no 
solid color area or frosted glass area that 
distinguishes the content from the 
background. Additionally, there is no text 
or watermark present on the image, and it 
is not made up of stitched images. 
Therefore, the answer is no, this is not a 
low-quality image.
Yes score: 0.002

Figure 7: Visualization of VENUS on low-quality image discerning policy.
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