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Abstract

Interpreting the internal representations of large
language models (LLMs) is crucial for their
deployment in real-world applications, impact-
ing areas such as AI safety, debugging, and
compliance. Sparse Autoencoders facilitate
interpretability by decomposing polysemantic
activation into a latent space of monoseman-
tic features. However, evaluating the auto-
interpretability of these features is difficult and
computationally expensive, which limits scal-
ability in practical settings. In this work, we
propose SFAL, an alternative evaluation strategy
that reduces reliance on LLM-based scoring by
assessing the alignment between the semantic
neighbourhoods of features (derived from auto-
interpretation embeddings) and their functional
neighbourhoods (derived from co-occurrence
statistics). Our method enhances efficiency,
enabling fast and cost-effective assessments.
We validate our approach on large-scale mod-
els, demonstrating its potential to provide inter-
pretability while reducing computational over-
head, making it suitable for real-world deploy-
ment.

1 Introduction

Interpreting the internal representations of large
language models (LLMs) is a key challenge in re-
search and real-world applications (Sharkey et al.,
2025). Sparse Autoencoders (SAEs) are neural
networks designed to learn interpretable feature
representations from high-dimensional activations
in LLMs (Cunningham et al., 2023). They provide
a structured latent feature space where semantically
similar features are mapped closely, enabling poten-
tial improvements in model transparency (Räuker
et al., 2023). In practical deployments, under-
standing what a given feature represents is crucial
for debugging, safety, and compliance (Temple-
ton et al., 2024). Auto-interpretability (autoint-
erp) (Bills et al., 2023) methods attempt to generate
human-readable descriptions of these features by

analysing their activations and prompting LLMs
to create explanations. However, current evalu-
ation approaches for autointerp rely on scoring
methods that compare a feature’s activation exam-
ples with the generated interpretation using other
LLMs (Paulo et al., 2024). This process is prone
to noise and computationally expensive, requiring
multiple queries per feature, making it costly for
large-scale, real-world systems.

This work explores Semantic-Functional
Alignment Scores (SFAL), an alternative evaluation
strategy that reduces dependence on LLM-based
scoring, improving efficiency while maintaining
scoring quality. By leveraging the SAE feature
space’s structural properties, we propose a more
scalable and deployable method in real-world set-
tings, enabling more cost-effective interpretability
assessments. Unlike existing approaches, SFAL
introduces a principled alignment metric between
the latent structure of functional behaviour and the
semantic space derived from auto-interpretations;
a formulation that, to our knowledge, has not
been previously applied to evaluating feature
interpretability in sparse autoencoders.

Contribution. Our main contributions are as fol-
lows: (i) We propose SFAL, a novel approach to
evaluating autointerp quality that reduces depen-
dence on expensive LLM-based scoring. We aim
for auto-interpretability to be more efficient, less
noisy, and feasible for real-world deployments. (ii)
We validate our approach in a user study, com-
paring its robustness with previous methods and
considering practical constraints such as computa-
tional cost and resource limitations. (iii) To support
reproducibility, we release all code, processed data,
and scores produced in our experiments1.

1https://github.com/Crisp-Unimib/SFAL
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2 Preliminaries and State of the Art

Sparse Autoencoders (SAEs). SAEs distil high-
dimensional outputs of large language models into
interpretable representations (Cunningham et al.,
2023). They reconstruct input activations through a
sparse bottleneck layer to promote monosemantic
features, each representing a distinct, understand-
able concept (Bills et al., 2023). This architecture
aims to mitigate the superposition phenomenon,
where single neurons encode multiple unrelated
concepts (Bricken et al., 2023). Monosemantic-
ity is believed to promote better separation of fea-
ture representations, leading to clearer conceptual
neighbourhoods and forming a basis for mechanis-
tic interpretability efforts to identify computational
circuits within LLMs. Recent work reveals that
SAE feature spaces exhibit structured organisation
at multiple scales, with functionally related features
clustering together and forming meaningful geo-
metric patterns (Li et al., 2025b). Features that fre-
quently co-activate are likely functionally related,
suggesting that co-occurrence statistics can reveal
functional relationships. Beyond interpretability,
one can also perform targeted interventions on
features to steer the model toward specific be-
haviours (Potertì et al., 2025). Given the potential
scale of SAEs, which can learn millions of features,
there is a need for automated methods to gener-
ate human-understandable textual explanations for
these features, known as auto-interpretations (Bills
et al., 2023).

Auto-Interpretations. Auto-interpretability
methods generate human-readable explanations of
SAE features by analysing their activations (Bills
et al., 2023). Current evaluation approaches
rely heavily on LLM-based scoring methods
that compare feature activations with generated
interpretations. LLM-based methods include
fuzzy scoring (Paulo et al., 2024), where LLMs
classify whether highlighted tokens should activate
features based on their explanations, showing
a strong correlation with human judgments.
Other methods include detection scoring (LLM
identifies whether a sequence activates a latent
representation based on its explanation), surprisal
scoring (improvement in predicting contexts
given an interpretation), and embedding scoring
(semantic relevance of an interpretation to the
activating data). However, these methods face
significant limitations, including computational
expense, potential noise in LLM judgments,

scalability issues with millions of features, and the
risk of "deceptive interpretability", where plausible
explanations may mislead evaluators (Lermen
et al., 2025). Alternative approaches have emerged
to address these limitations. Intervention-based
evaluation assesses an explanation’s ability to
predict the consequences of actively manipulating
a feature’s activation (e.g., ablation) (Bhalla et al.,
2024). However, this approach faces challenges
such as the complexity of designing meaningful
interventions and the "predict/control discrepancy",
where features good for prediction may not be
effective for control, and vice versa. There
is also a growing interest in non-LLM-centric
metrics. Examples include classification-based
metrics (Cesarini et al., 2024; Malandri et al.,
2024), utilising SAE features for downstream tasks
such as toxicity detection (Gallifant et al., 2025),
hallucination mitigation (Abdaljalil et al., 2025),
and probing-based evaluation, where linear probes
are trained on SAE features to predict known
concepts (e.g., sentiment, specific n-grams) (Gao
et al., 2024).

While human evaluation remains a gold standard
for nuance and correctness, its inherent subjectivity,
cost, and slow pace make it impractical for the vast
number of features in large-scale SAEs. Our work
contributes by proposing an evaluation strategy that
leverages structural properties of the SAE feature
space itself, reducing reliance on expensive LLM-
based scoring while maintaining evaluation quality.

Open Platforms. Neuronpedia (Lieberum et al.,
2024a) is an open platform for mechanistic inter-
pretability research. It serves as both a public
database containing valuable data for researchers
(including activations, SAE features, their auto-
interpretations, metadata, and scores from various
methods) and a suite of tools facilitating the storage
and management of these interpretability artefacts.

3 Methods

Our core objective is to quantify the alignment
between the semantic interpretation of an SAE
feature and its functional interactions with other
features. The core assumption is that meaning-
ful auto-interpretations should be consistent with
the feature’s behaviour in the model (Olah et al.,
2020). This reflects a principle of internal coher-
ence also found in mechanistic interpretability: fea-
tures with distinct and well-described semantic con-
tent should exhibit functionally cohesive patterns
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Figure 1: Pipeline for generating Semantic-Functional Alignment Scores (SFAL). SAE features are processed via
a co-occurrence matrix to derive representations in a functional space. Auto-interpretations are passed through
an encoder to generate representations in a semantic space. Top K-ranked lists of elements from these respective
spaces are used to calculate Discounted Cumulative Gain (DCG) and Ideal Discounted Cumulative Gain (IDCG),
yielding the final SFAL score that quantifies the alignment between the semantic and functional characteristics of the
elements.

of co-activation. To achieve this, for each SAE
feature, we define and compare its semantic neigh-
bourhood and its functional neighbourhood. This
comparison results in a Semantic-Functional Align-
ment Score (SFAL). An overview of our methodol-
ogy is presented in Fig 1.

3.1 Representations of SAE Features

Let S = {s1, s2, . . . , sn} denote a set of n SAE
features. For each feature si ∈ S, we aim to cap-
ture both its semantic meaning and its functional
behaviour. This involves defining appropriate rep-
resentations.

Semantic Representations. Each SAE feature
si is associated with an auto-interpretation, a
textual description of its learned function. The
semantic representation of feature si is the
auto-interpretation vector ai ∈ Rd. These d-
dimensional real-valued vectors are generated by
encoding the textual auto-interpretations using an
encoder language model. The set of all such vec-
tors, A = {a1,a2, . . . ,an}, constitutes the seman-
tic space.

Functional Representations. The functional be-
haviour of feature si is characterised by how often
it co-activates with other features. We capture this
through co-occurrence statistics between feature
pairs (si, sj), following (Li et al., 2025b), result-
ing in a co-occurrence matrix. For each pair, we
construct a 2 × 2 contingency table m(i, j) with

entries m11, m10, m01, and m00 representing the
joint activation counts, along with their marginal
totals m1•, m0•, m•1, and m•0. For example, m11

is the number of instances where both si and sj are
active, m00 is the number of cases where neither
is active, and m1• is the total number of instances
where si is active, regardless of whether sj is ac-
tive.

3.2 Defining Semantic and Functional
Neighbourhoods

Based on the representations above, we define se-
mantic and functional neighbourhoods for each
SAE feature si.

Semantic Neighbourhood (NS). The semantic
neighbourhood NS(i) of an SAE feature si con-
sists of other features sj (j ̸= i) whose auto-
interpretations are semantically similar to that of
si. This similarity is measured using their auto-
interpretation vectors ai and aj from the semantic
space. We use cosine similarity to quantify the
likeness between two auto-interpretation vectors.

For a given feature si, its semantic neighbour-
hood NS(i) is formally defined as the set of KS fea-
tures sj (for j ̸= i) with the highest simcos(ai,aj)
scores. While we employ a fixed top-K neighbour-
hood for clarity and reproducibility, SFAL is not
restricted to this setting; adaptive strategies (e.g.,
thresholds based on feature sparsity) are feasible
and will be explored in future work.
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Functional Neighbourhood (NF ). The func-
tional neighbourhood NF (i) of an SAE feature
si comprises other features sj (j ̸= i) that exhibit a
strong functional association with si, based on the
co-occurrence table m(i, j).

To measure the strength of association between
a pair of features si and sj from their 2 × 2 co-
occurrence counts and associated marginals (previ-
ously defined as m1•,m0•,m•1,m•0), we employ
the phi coefficient (ϕij) (Yule, 1912), also utilised
in (Li et al., 2025b):

ϕij =
m11(i, j)m00(i, j)−m10(i, j)m01(i, j)√

m1•m0•m•1m•0

This coefficient ϕij ranges from -1 (perfect negative
association) to +1 (perfect positive association),
with 0 indicating no association, and it is well-
suited for measuring the association between binary
variables (the active/inactive states of features).

For a feature si, its functional neighbourhood
NF (i) is formally defined as the set of KF features
sj (for j ̸= i) with the highest positive ϕij values.

3.3 Computing SFAL

We introduce the Semantic-Functional Alignment
Score (SFAL) to quantify for each SAE feature si
how well its semantic neighbourhood NS(i) aligns
with its functional neighbourhood NF (i). This
score is calculated using Normalised Discounted
Cumulative Gain (NDCG) (Järvelin and Kekäläi-
nen, 2002), a well-established measure for evaluat-
ing the consistency between two rankings (Malan-
dri et al., 2025; Pallucchini et al., 2025). A score
close to 1 indicates strong alignment between the
feature’s semantic interpretation and its functional
co-occurrence behaviour, while a score near 0 sug-
gests divergence.

3.4 Computational Efficiency
Our method is designed to scale efficiently with the
number of SAE features n. For each feature si ∈
S, we compute the semantic and the functional
neighbourhood.

Computing the cosine similarity between all
pairs of n auto-interpretation vectors (each of di-
mension d) requires O(n2d) operations. Since d
is fixed (determined by the embedding model, e.g.,
768 or 1024), this simplifies to O(n2). To com-
pute functional neighbourhoods, we build a co-
occurrence histogram from a corpus and then cal-
culate the phi coefficient (ϕ) for every feature pair.
The co-occurrence histogram is built by processing

a corpus of D documents with an average token
length of T . The text is segmented into chunks
of length k. Since only a small subset of features
is active in any given chunk, we can compute the
outer product over sparse binary vectors. For each
chunk, we identify the set of Kchunk active fea-
tures, where Kchunk ≪ n (e.g., typically 20–50).
The number of required updates per chunk is only
O(K2

chunk). This optimisation makes the construc-
tion of the histogram significantly more scalable,
with an effective complexity of:

O
(
D · T
k

· E[K2
chunk]

)

where E[K2
chunk] is the average squared number

of active features per chunk. After the histogram
is populated, calculating the ϕij coefficient for all
≈ n2/2 pairs is an O(n2) operation.

With the semantic and functional matrices com-
puted, we rank the neighbours for each feature
with a complexity of O(n logK), leading to a to-
tal of O(n2 logK). Given K ≪ n, this term is
effectively O(n2). The final step, computing the
NDCG@K score for each feature, takes O(K), for
a negligible total cost of O(nK).

Therefore, the overall computational bottleneck
is the O(n2) cost of the pairwise matrix compu-
tations. This framework offers a substantial effi-
ciency improvement over LLM-based evaluation
pipelines, which, while scaling linearly with n, in-
cur prohibitively high per-feature overhead due to
the financial costs associated with using large mod-
els. For the millions of features in large-scale SAEs,
these combined expenses become intractable. In
contrast, our approach is far more scalable and
cost-effective.

In practice, our experiments required just 2 GPU
hours on a single NVIDIA A100 GPU, underscor-
ing the practical scalability and low resource re-
quirements of our approach.

4 Results

Our study focused on the 16k features version
of the SAEs for gemma-2-9b2 (Lieberum et al.,
2024b) and the 32k features version of llama-3.1-
8b3 (He et al., 2024). To ensure a robust compari-
son, encoder models used to compute the semantic
neighbourhood were selected from the top perform-
ers on the MTEB leaderboard (Muennighoff et al.,
2022) at the time of our experiments.

2gemma-scope-9b-pt-res
3Llama3_1-8B-Base-LXR-8x
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Different layers within a transformer architec-
ture learn features at varying levels of abstraction,
from simple, local patterns in the early layers to
complex, semantic concepts in the deeper layers.
The interpretability of these features is hypothe-
sised to vary accordingly (Paulo et al., 2024). We
select five layers from each model: the initial layer
(0), three intermediate layers (8, 17, and 25), and
the final layer (41 for Gemma-2-9 b and 31 for
Llama-3.1-8 b). For the Gemma-2-9 b model, we
computed the fuzzy score ourselves since it was
not available on Neuronpedia, employing Gemini-
2.0-flash, which at the time of execution offered
the best performance-to-cost ratio among closed-
source models. The process amounted to about
$100 in API fees. We computed the co-occurrence
matrices for both models by processing 50k docu-
ments from their respective SAE training datasets,
using a chunk size of 256 tokens.

In Fig. 2, we show the distribution of fuzzing
scores with Gemini-2.0-Flash against SFAL. Our
scoring system generally assigns lower values over-
all, reflecting a more selective approach in recognis-
ing autointerpretations as the correct interpretations
of features.

User study design. To evaluate the practical ef-
ficacy of our proposed scoring method, we con-
ducted a user study following the human evalua-
tion methodology outlined by (Paulo et al., 2024).
A pool of four expert users participated in the
assessment. We sampled 100 examples of auto-
interpretations and their corresponding top activa-
tions, following (Paulo et al., 2024). These ex-
amples were drawn from five distinct layers (20
examples for each layer) of the Gemma-2-9b and
Llama-3.1-8b models. Stratification by SFAL scores

Figure 2: Comparison of score overall distribution be-
tween SOTA methods and SFAL.

was employed during sampling to deliberately in-
clude examples spanning the full range of potential
scores, thus preventing bias towards predominantly
positive or negative evaluations and ensuring raters
encountered varied levels of interpretation quality.
The expert users reviewed the auto-interpretations
and the associated top activations for each of the
100 sampled features. Users rated the alignment
between the feature’s interpretation and activa-
tions on a 1-to-4 Likert scale for the soundness
and completeness metrics proposed by Sokol and
Flach (2020). Soundness refers to how truthful and
aligned the generated auto-interpretation is with the
actual behaviour and activations of the SAE fea-
ture it’s meant to explain. Completeness describes
how well that auto-interpretation covers and ex-
plains all or most significant top activations for
that particular feature. To be complete, an auto
interpretation must be sufficiently broad to encom-
pass the feature’s diverse manifestations in the data,
rather than being narrowly focused on just a few
activation examples. Additionally, users reported
a confidence score for each rating. The overall
median confidence from users was 3 with an in-
terquartile range of 1 for both Gemma and Llama
evaluation sets. To ensure the robustness of our
human evaluations, the inter-rater agreement level
was quantified using Krippendorff’s ordinal α. The
calculated agreement was 0.64 for the gemma-2-9b
set, and 0.57 for the llama-3.1-8b set, indicating
substantial agreement between the evaluators.

User scores (soundness and completeness) for
each feature were averaged to create a composite
human rating. A visual comparison of the score
distributions in Fig. 2 shows that fuzz scores ap-
pear more skewed and potentially over-optimistic
in their assessment of feature interpretability com-
pared to SFAL scores. We analysed the correlation
(Spearman, Pearson, Kendall) between the two sets
of averaged human judgments and seven sets of au-
tomated scores: those from fuzz scoring and those
generated by our proposed alignment-based scoring
method, varying the embedding model to assess the
consistency of our process. As Table 1 shows, SFAL
demonstrated a stronger positive correlation com-
pared to the fuzzing score for all the embedding
models tested on the Gemma-2-9b SAEs human
evaluation set. However, SFAL slightly underper-
forms the fuzzing score for Llama-3.1-8b.
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Figure 3: Comparison of score distribution against human judgement. On the left, we show the computed fuzz
score, while on the right, we show the SFAL results.

Gemma-2-9b Llama-3.1-8b

Metric Pearson Spearman Kendall Pearson Spearman Kendall

Fuzz score (Paulo et al., 2024) 0.47 (***) 0.56 (***) 0.40 (***) 0.59 (***) 0.60 (***) 0.44 (***)

SFAL Bilingual Emb (Thakur et al., 2020) 0.63 (***) 0.62 (***) 0.45 (***) 0.53 (***) 0.56 (***) 0.41 (***)

SFAL gte-Qwen2-7B-instruct (Li et al., 2023) 0.53 (***) 0.50 (***) 0.37 (***) 0.48 (***) 0.53 (***) 0.39 (***)

SFAL Qwen3-Emb-8B (prompted) (Zhang et al., 2025) 0.66 (***) 0.63 (***) 0.46 (***) 0.56 (***) 0.60 (***) 0.43 (***)

SFAL Qwen3-Emb-8B (Zhang et al., 2025) 0.66 (***) 0.63 (***) 0.47 (***) 0.49 (***) 0.55 (***) 0.39 (***)

SFAL Qwen3-Emb-0.6B (Zhang et al., 2025) 0.64 (***) 0.62 (***) 0.46 (***) 0.45 (***) 0.53 (***) 0.37 (***)

SFAL Qwen3-Emb-4B (Zhang et al., 2025) 0.64 (***) 0.61 (***) 0.44 (***) 0.52 (***) 0.58 (***) 0.41 (***)

Table 1: Correlation coefficients (Pearson, Spearman, Kendall) between fuzz, SFAL scores and human evaluation
conducted by expert raters on the Gemma-2-9b and Llama-3.1-8b SAEs. The prompted version of Qwen3 uses
an instruction to specialise the embedding for retrieval queries, while the normal version is for general similarity.
Significance markers: (∗)p ≤ 0.05, (∗∗)p ≤ 0.01, (∗∗∗)p ≤ 0.001, (N.S.) = not significant (p > 0.05).

5 Discussion

Autointerpretation quality. As shown in Fig. 2,
the distributions of SFAL and the fuzz score dif-
fer substantially. SFAL tends to assign lower val-
ues overall, showing a more selective behaviour in
identifying autointerpretations as the correct inter-
pretation of features.

Bridging semantic and functional evaluation.
Our method’s correlation with human judgments
validates our framework. Instead of relying on
costly LLM "oracles," we enforce internal con-
sistency by aligning a feature’s semantic mean-
ing with its functional behaviour, derived from co-
occurrence statistics. This captures a functional
signal that purely semantic checks, often focused
on static human-understandability, can overlook (Li
et al., 2025a). We note that the semantic–functional
alignment assumption can fail in cases where fea-
tures are functionally correlated yet semantically
dissimilar (e.g., a transitive predicate and its di-
rect object), which explains some of the observed

noise and highlights the complementary role of
SFAL alongside more precise causal methods.

Impact of embedding models employed. Ta-
ble 1 shows the correlations of the human evalua-
tion with both the fuzz score and SFAL, computed
using several embedding models. We assess the
consistency of SFAL, varying the encoder used to
create the auto-interpretation embedding. Results
show that scores are consistently significant across
all tested embedding models for both SAE evalu-
ations. Model size appears to be a minor factor in
scoring performance, as indicated by the small dif-
ferences between models within the Qwen family.

6 Conclusion

In this work, we introduced a novel, distributional
approach for evaluating the auto-interpretations of
SAE features by quantifying the alignment between
a feature’s semantic and functional neighbour-
hoods. Unlike traditional methods that rely heavily
on expensive and often opaque LLM-based scoring,
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our approach grounds interpretability assessment
in the model’s internal structure by capturing func-
tional relationships through co-activation patterns
and semantic intent through auto-interpretation em-
beddings. We demonstrated that this alignment-
based metric is not only computationally efficient
and scalable but also correlates well with human
judgment. By reducing evaluation costs and im-
proving scalability, this work opens the door to
more practical and widespread assessments of in-
terpretability in large-scale language models. Fu-
ture work will explore more expressive similarity
metrics and investigate how our generalises across
architectures and domains.
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Limitations

Co-occurrence is a powerful but imperfect proxy
for true functional linkage. However, the core con-
tribution of this work is a significant lowering of the
cost-utility frontier for auto-interpretation evalua-
tion. We demonstrate performance comparable to
expensive, closed-source LLM-based metrics while
operating at a fraction of the computational and
financial cost. Ultimately, by making robust evalua-
tion economically feasible, our method enables the
field to systematically and comprehensively assess
millions of features, a critical step toward genuinely
understanding and trusting these complex systems.
Beyond the reliance on co-activation as a proxy for
function, SFAL has two additional limitations: (i)
the fixed-K neighbourhoods may not fully adapt to
varying sparsity across features, and (ii) our human
evaluation involved only a small pool of expert
raters, motivating future work on adaptive neigh-
bourhood selection and larger-scale, more diverse
user studies.
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