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Abstract
The growing volume of daily disclosed soft-
ware vulnerabilities imposes significant pres-
sure on security analysts, extending the time
needed for analysis - an essential step for ac-
curate risk prioritization. Meanwhile, the time
between disclosure and exploitation is reduc-
ing, becoming shorter than the analysis time
and increasing the window of opportunity for
attackers. This study explores leveraging Large
Language Models (LLMs) for automating vul-
nerability risk score prediction using the indus-
trial CVSS standard. From our analysis across
different data availability scenarios, LLMs can
effectively complement supervised baselines in
data-scarce settings. In the absence of any anno-
tated data, such as during the transition to new
versions of the standard, LLMs are the only
viable approach, highlighting their value in im-
proving vulnerability management. We make
the source code of AutoCVSS public at https:
//github.com/nec-research/AutoCVSS.

1 Introduction

Over the past 25 years, the Common Vulnerabil-
ities and Exposures (CVE) program established
as the de–facto standard to identify and catalog
publicly-disclosed software vulnerabilities (CVE,
2024b). In this context, the number of CVE records
have steadily increased over the past decade, with
a 38% rise from 2023 to 2024 (CVE, 2024a). To
help organizations manage this growing volume
and effectively assess risk, the National Vulner-
ability Database (NVD, 2024e) enhances CVE
records with severity scores using the Common
Vulnerability Scoring System (CVSS), a widely
adopted industrial standard (FIRST, 2024b). Se-
curity experts, mainly associated with NVD, man-
ually assess the severity of new vulnerabilities by
relying on detailed information from CVE records
and publicly available data: they compute eight
CVSS Metrics (FIRST, 2023b), concisely repre-
sented as CVSS Vectors (an example is provided

in Table 1), and calculate the Severity Score on a
scale of 0 to 10 (NVD, 2024a). Both the individ-
ual metrics and the aggregated severity score are
critical components of various stages of vulnerabil-
ity management, e.g., risk assessment, mitigation
planning, and incident response.

However, previous studies (Costa et al., 2022;
Aghaei et al., 2022) highlighted a delay of sev-
eral days between CVE announcements and the
publication of corresponding CVSS scores that pre-
vents timely vulnerability management. This is-
sue is exacerbated by the growing volume of pub-
lished vulnerabilities that significantly increases
analysts’ burden: the median manual analysis de-
lay increased from 2.7 days in 2019 to 8.2 days
in 2023 (Pan et al., 2024). In contrast, attackers
are acting faster: the average time to exploit vul-
nerabilities has decreased sharply, from 44 days in
2019 to just 5 days in 2023 (Google, 2024), with
25% of high-risk vulnerabilities exploited on the
day they are published (Qualys, 2023), extending
the window of opportunity for attackers.

To mitigate these delays, several works have
proposed automating CVSS score assignment for
new CVEs using Natural Language Processing
(NLP). Most approaches rely on supervised learn-
ing, which require annotated data. Although the
NVD hosts hundreds of thousands of CVEs (NVD,
2024f), multiple CVSS versions have been released
over time and not all records include CVSS val-
ues for every version (NVD, 2024a). Specification
updates hinder the rapid adaptation of these tech-
niques until sufficient data labeled in the new for-
mat becomes available. This issue is particularly
critical during version transitions, such as the re-
cent release of CVSS v4.0 (FIRST, 2023c), when
annotated data for the new version is scarce.

Large Language Models (LLMs) have demon-
strated remarkable performance across various
NLP tasks (Yang et al., 2024). Leveraging the
textual CVE descriptions, this study explores the
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feasibility of employing LLM-based approaches
to develop a robust and scalable solution for au-
tomating CVSS prediction. We evaluate different
prompting strategies, spanning zero-shot to few-
shot, and leveraging Retrieval-Augmented Gener-
ation (RAG) techniques. We consider both open-
source and closed-source LLMs, also including the
recent Large Reasoning Models (LRMs) variants,
in the black-box setting and compare them against
fine-tuned BERT supervised baselines1.

Our study highlights three key findings:
① With abundant annotated data, LLM-based solu-
tions have competitive performance, but they are
surpassed by supervised baselines fine-tuned for
the specific CVSS prediction task.
② With limited labeled data, supervised baselines
based on the most recent encoder-only models per-
form best. However, when admitting a hybrid ap-
proach, LLMs can complement them by offering
better prediction performance on half of the CVSS
metrics, overall achieving better results.
③ With extremely scarce or unavailable data (e.g.,
transitioning to v4.0), LLMs remain effective with
minimal prompt adaptations to align with the new
specification. Although their performance is lower
than previous scenarios due to reliance on zero-shot
settings, LLMs still aid analysts by outperforming
conservative worst-case approaches. Additionally,
they facilitate the adoption of new CVSS versions
by providing initial predictions, even in the absence
of labeled v4.0 data. Then, as more labeled data be-
comes available, the approach can evolve to more
effective hybrid or fully-supervised methods, en-
hancing accuracy and scalability.

These findings demonstrate the practical poten-
tial of LLMs to address vulnerability risk prioriti-
zation and their suitability for real-world applica-
tions, significantly contributing to automating and
streamlining vulnerability management processes.
To facilitate reproducibility and further research,
we make the source code of AutoCVSS public.

2 CVSS metrics prediction

Several studies considered the prediction of CVSS
metrics from CVE descriptions. This paper fo-
cuses on predicting the CVSS v3.1 Base Metric
group, which evaluates the inherent, time- and
environment-independent characteristics of a vul-
nerability (see Table 1). We classify existing pre-

1In this paper, LLMs refer to decoder-only models like
GPT, not including encoder-only models like BERT.

Table 1: List of metrics and possible values, sorted
by decreasing severity, for the CVSS v3.1 Base
Metric group. The CVSS Vector uses the abbreviated
metric name reported in parenthesis. For example the
CVSS Vector assigned by NVD to CVE-2023-35359 is
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H.

CVSS Metric Labels

Attack Vector (AV) Network (N), Adjacent (A),
Local (L), Physical (P)

Attack Complexity (AC) Low (L), High (H)
Privileges Required (PR) None (N), Low (L), High (H)
User Interaction (UI) None (N), Required (R)
Scope (S) Changed (C), Unchanged (U)
Confidentiality Impact (C) High (H), Low (L), None (N)
Integrity Impact (I) High (H), Low (L), None (N)
Availability Impact (A) High (H), Low (L), None (N)

diction approaches into three categories.

Individual CVSS Metrics (Cat. I). Like our work,
it uses distinct multi-class classification models to
predict the eight CVSS metrics. Most approaches
leverage transfer learning with pre-trained BERT
models (Devlin et al., 2019) or their variants fine-
tuned for this task. Shahid and Debar (2021) uses
BERT-small, while Costa et al. (2022) and Kühn
et al. (2023) employ DistilBERT. Aghaei et al.
(2023) applies SecureBERT. Babalau et al. (2021)
and Shan et al. (2023) propose multi-task mod-
els combining BERT with BiLSTM. Other works
combine bag-of-words representations (Elbaz et al.,
2020) or word embeddings (Kekül et al., 2024)
with traditional Machine Learning (ML) models.

Qualitative CVSS Severity Ratings (Cat. II). It
predicts Qualitative Severity Ratings (None, Low,
Medium, High, Critical) derived from the 0–10
CVSS score (FIRST, 2023a) as a single 5-class
classification task. Kai et al. (2023) and Babalau
et al. (2021) fine-tune DistilBERT and BERT-small,
respectively. Li et al. (2023) explores prompt learn-
ing with BERT and RoBERTa, while Ni et al.
(2022) combines fine-tuned BERT with a CNN.

CVSS Severity Score (Cat. III). It directly pre-
dicts the CVSS severity score (0–10 range) as
a regression task. Pal et al. (2023) employs T5
model (Raffel et al., 2020) in a multi-task setting,
including CVSS prediction. Vasireddy et al. (2023),
Babalau et al. (2021), and Zhang et al. (2022) in-
stead exploits ML-based models.

2.1 LLM-based CVSS Prediction

Few studies have explored LLMs for predicting
CVSS v3.1 metrics, each with notable limitations.

McClanahan et al. (2024) evaluates GPT mod-
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els (OpenAI, 2024b) to retrieve CVSS scores and
vectors for a given CVE ID using only pre-trained
knowledge without using its description in input.
By design it cannot predict data for new CVEs
disclosed after the model’s knowledge cutoff date.

CTIBench (Alam et al., 2024) benchmarks Chat-
GPT and LLaMA3 using zero-shot prompting to
predict CVSS vectors. It only tests 1000 samples
and ignores supervised approaches.

CVEDrill (Aghaei et al., 2023) compares their
fine-tuned SecureBERT models with ChatGPT.
The evaluation, including only 100 CVEs, seems
to only consider zero-shot prompting.

CVECenter (Luo et al., 2024) predicts CVSS
metrics with zero-shot prompting using GPT mod-
els leveraging multi-source vulnerability records.
Their target is the specialization of the CVSS for
different Linux distributions, having the NVD’s
CVSS in the inputs rather than as predicted output.

Liu et al. (2024) proposes CyberBench, a bench-
mark for cybersecurity NLP tasks, including CVSS
prediction. Although they compared fine-tuned
BERT models against few-shots LLMs and fine-
tuned LLaMA2 models, their focus is on coarse-
grained CVSS severity ratings (Category II).

Isogai et al. (2024) shows that BERT outper-
forms gpt-4o-mini, with and without fine-tuning,
when predicting CVSS v3.1 vectors with zero-shot
prompting, with an approach similar to CTIBench.

Positioning of Our Work. Unlike previous stud-
ies, our work explores multiple LLM approaches
beyond zero-shot prompting, extensively covering
closed- and open-source LLMs (also considering
recent LRM variants specialized for reasoning),
compares supervised baselines (also including lat-
est advances in encoder-only models), and extends
evaluations to both CVSS v3.1 and the latest CVSS
v4.0 specification, providing a more comprehen-
sive approach and practical assessment of LLMs
to the evolving vulnerability scoring needs. Our
work belongs to Category I: predicting the indi-
vidual CVSS metrics has the best value because it
enhances transparency by showing which factors
contribute to the overall score for better decision-
making. In addition, from Category I metrics, we
can always derive Categories II and III metrics,
whereas the reverse is not possible.

3 AutoCVSS Methodology

Following prior works from Category I (Sec.2), we
predict each CVSS metric as an independent multi-

Figure 1: AutoCVSS high-level architecture.

class classification task. We evaluate multiple ap-
proaches, considering the closed-source OpenAI
GPT-4o (OpenAI, 2024a) and o3-mini (OpenAI,
2025), and open-source Meta LLaMA3 (Grattafiori
et al., 2024) and DeepSeek-R1 (DeepSeek-AI,
2025) models. We consider the LLMs general-
domain black-box models: LLM fine-tuning for
the security domain or CVSS-specific tasks is out
of the scope of this paper.2 We implement the
approach depicted in Fig.1 with Instructor (Liu,
2024), an open-source framework for structured
output generation with LLMs. We explored both
zero-shot and few-shots prompting. Appx. A in-
cludes more details for reproducibility and exam-
ples of prompts.
Zero-shot Prompting Approaches. They leverage
the LLM’s inherent knowledge and generalization
capabilities without task-specific examples.
Simple Task Description (STD): It relies only on
the LLM’s pre-trained understanding of CVSS met-
rics. The task description provides only the name
of the CVSS metric to predict and the set of possi-
ble labels without any additional context or details.
Detailed Task Description (DTD): It leverages the
CVSS specification to enhance the prompt with
more context. The task description includes a de-
tailed explanation of the CVSS metric and its labels,
directly borrowed from the CVSS Specification
Document provided by FIRST (2023b).
Full Vector Prediction (FVP): It directly predicts
the entire CVSS vector with a single prompt. In-
dividual CVSS metrics are then extracted with
a regular expression. We include this variant as
an approach similar to CTIBench (Alam et al.,
2024). FVP employ Chain-of-Thought (CoT) rea-
soning (Wei et al., 2022), enabling the LLM to rea-
son step-by-step. This enhances decision-making
by dividing complex tasks into smaller, sequential
steps, aligning with FVP’s holistic approach.
Few-shot Prompting Approaches. They lever-
age LLMs’ in-context learning (ICL) capabili-

2For completeness, Appx. C includes a preliminary evalua-
tion of LLM fine-tuning, discussing its scope and limitations.
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ties (Brown et al., 2020) by including a small set of
(CVE description, label) examples in the prompt
to guide classification. For each test sample, RAG
constructs a prompt with the most semantically sim-
ilar training examples, retrieved through semantic
search in a vector database. We use Chroma (2024)
to store and query text embeddings generated with
a SBERT model (Reimers and Gurevych, 2019).
These examples help the LLM predict labels based
on similar descriptions. Although all the zero-shot
methods can theoretically be extended to few-shot
settings, adapting CoT prompting would require ex-
tensive manual annotation of reasoning chains, ren-
dering it impractical. Hence, we focus on few-shot
variants of STD and DTD. Also, we exclude LRMs
from this approach because their providers suggest
that few-shot prompting may produce poor results
(Guo et al., 2025; OpenAI, 2024c). In terms of
number of training samples (shots) for the prompt,
we tested values from 1 to 32 and found 24 to have
the best cost-improvement trade-off for our task.

To handle cases where the LLM cannot make
an informed decision, we introduced an additional
label, Don’t Know (DK), across all strategies de-
scribed in this section. This allows the LLM to
indicate when the provided description cannot as-
sess the metric. As a final step, samples classified
with the DK label are mapped to the most severe
label for the CVSS metric (e.g., NETWORK for At-
tackVector), following the conservative worst-case
approach recommended by NVD (2024d) for miss-
ing or unclear information.3 To further examine the
implications of consistently applying this approach
to all the samples, Sec. 4 includes an additional
baseline based on this conservative policy.

4 Evaluation

We evaluate the different LLM-based approaches
against four baselines, considering three different
data availability settings and two CVSS versions.

Baseline approaches. We selected two related
works from the literature, both based on fine-tuned
BERT models: DistilBERT-E (Costa et al., 2022)
and CVEDrill (Aghaei et al., 2023). DistilBERT-
E relies on DistilBERT (Sanh et al., 2019), a
smaller and faster version of BERT, to predict
the CVSS metric using eight separate multi-class
classification models. CVEDrill adopts a simi-
lar approach, with eight models, but employs Se-

3Although the DK-labeled samples are negligible, this
mapping is beneficial in most of the cases (cf. Appx. B).

cureBERT (Aghaei et al., 2022), a cybersecurity-
specific variant of BERT built on RoBERTa (Liu
et al., 2019) and pre-trained on a large corpus
of cybersecurity data. As an additional baseline,
we also fine-tuned ModernBERT models, a re-
cent general-domain state-of-the-art encoder-only
model (Warner et al., 2024). Finally, we added
the Worst Case Label (WCL) baseline, which as-
signs each sample the most severe label for each
CVSS metric, following the conservative strategy
described in Sec. 3.

Evaluation Metrics. We adopt the same eval-
uation metrics used in related works (Category I,
Sec. 2), namely Accuracy (A), weighted F1-score
(wF1), and Macro F1-score (MF1). Although our
work does not directly predict the CVSS sever-
ity score, we extend our evaluation to also align
with works from Categories II and III. From the
eight predicted metrics, we compute the severity
score (NVD, 2024b) and report the Mean Average
Error (MAE) and Mean Squared Error (MSE). Ad-
ditionally, we quantize the computed severity score
into the Qualitative Severity Rating Scale (QSRS)
and discuss the results in detail in Appendix E.

Dataset. For our evaluation, we used all the public
CVE records published in the NVD between Jan-
uary 2023 and April 2024, retaining only those with
CVSS v3.1 information released by the NVD and
obtaining a dataset of over 27k CVE records. Fig. 2
illustrates the class proportions for the eight CVSS
Metrics and the distributions for the severity scores
values and for the CVE description lengths, in char-
acters. We perform a stratified 80/20 train/test split
on the dataset. We stratify the split by the CVSS
vector to ensure that (1) class proportions are con-
sistent in both sets and (2) each CVE ID appears
exclusively in either the train or test set for all eight
models. Performances are computed on the test set,
while the train set is used either to fine-tune models
(for supervised baselines) or to populate the Vector
Store (for few-shot LLM-based methods).

4.1 Full dataset evaluation

Table 2 summarizes the performance metrics, aver-
aged across the eight CVSS metrics, when consid-
ering the entire dataset. For the 0-shot approaches,
we only report the top-6 configurations:4 closed-
source models offer the best performance with
LRM variants better than LLM. Although the best
0-shot configurations, dominated by o3-mini, show

4Table 6 in Appx. D includes the remaining configurations.
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Figure 2: Dataset statistics: class proportions for the
eight CVSS Metrics and distributions for the Severity
Scores values and for the CVE Description Lengths.

Table 2: Full dataset evaluation. Top-3 values are
marked in bold, italic bold and italic, respectively.
LLMs use [Prompt Strategy][Model] naming (Sec. 3).

Method A wF1 MF1 MAE MSE
Worst Case Label 0.595 0.466 0.276 2.836 11.094
DistilBERT-E 0.903 0.897 0.739 0.762 1.983
ModernBERT 0.928 0.927 0.858 0.554 1.270
CVEDrill 0.929 0.928 0.858 0.549 1.231
0s FVP o3-mini 0.846 0.836 0.722 1.200 3.991
0s FVP GPT-4o 0.754 0.743 0.643 1.655 4.861
0s STD o3-mini 0.804 0.793 0.676 1.609 6.000
0s STD GPT-4o 0.757 0.765 0.651 1.317 3.343
0s DTD o3-mini 0.767 0.755 0.654 2.095 8.747
0s DTD GPT-4o 0.750 0.751 0.634 1.494 4.573
24s STD GPT-4o 0.915 0.915 0.842 0.608 1.469
24s STD LLaMA3 0.905 0.903 0.825 0.667 1.623

that FVP works best, when moving to few-shots
approaches, we had to limit to STD and DTD, only
considering LLMs without LRMs (cf. Sec. 3). We
thus picked the best among STD and DTD, i.e.,
STD, for both GPT-4o and LLaMA3 models.

Results indicate that the best LLM-based ap-
proach (GPT-4o few-shots) surpasses DistilBERT-
E, but falls short of ModernBERT and CVEDrill.
Table 10 in Appx. F breaks down numbers by
CVSS metric. The stronger performance of Mod-
ernBERT and CVEDrill can be attributed to their
larger model size (150 and 125 million parameters,
nearly double DistilBERT-E’s 65 million). In ad-
dition, CVEDrill also received a pre-training on a
cybersecurity-specific corpus before fine-tuning.
The Worst Case Label baseline, serving as the
lower bound, delivers the poorest performance, sig-
nificantly underperforming even the worst LLM-
based baseline. As noted in Sec.4, we also report
the MAE and MSE of the severity score calculated
from the eight predicted metrics, observing that the
general ranking of methods is preserved. A similar
outcome is observed when analyzing the results in

Table 3: Low-resource setting. Top-3 values are marked
in bold, italic bold and italic, respectively. Notice that
the marking of top values excludes the hybrid approach.

Method A wF1 MF1 MAE MSE
Worst Case Label 0.600 0.470 0.278 2.798 11.145
DistilBERT-E 0.869 0.858 0.673 0.899 2.334
ModernBERT 0.921 0.920 0.848 0.631 1.767
CVEDrill 0.887 0.876 0.695 0.868 2.308
24s STD GPT-4o 0.909 0.908 0.833 0.655 1.835
24s STD LLaMA3 0.896 0.893 0.821 0.715 2.013
SL+LLM Hybrid 0.922 0.920 0.860 0.677 1.894

terms of QSRS (Cat. III metrics, cf. Appx. E).
Our results align with recent findings (Yang et al.,

2024) and validate them for our CVSS prediction
task: while both LLMs and fine-tuned models per-
form well with abundant annotated data, fine-tuned
models generally outperform LLMs in traditional
NLU tasks like text classification. The authors
also suggest that LLMs may outperform fine-tuned
models in scenarios with limited annotated data. In
the next section, we explore this aspect for our task
by considering a low-resource setting, with limited
train data for fine-tuning and for the Vector Store.

4.2 Low-resource setting evaluation

In this setting, we considered a subset of the dataset
by only including the 2.1k vulnerabilities disclosed
in 20245 and evaluated the same set of methods
from Sec. 4.1. Since the previous considerations
for zero-shot approaches from Section 4.1 still ap-
ply, for the sake of brevity, we omit their values
here and report them in Table 7 in Appendix D.

Table 3 shows that the best-performing LLM
configurations are now just behind ModernBERT,
which proves to be more robust to the reduced fine-
tuning data compared to other supervised baselines.
A similar ranking, with both few-shots LLMs enter-
ing the top-3 positions, can be observed when ana-
lyzing the results in terms of QSRS (cf. Appx. E).
Although ModernBERT has the best-averaged per-
formance, it is outperformed by LLMs on specific
CVSS metrics (cf. Table 11 in Appx. F). By envi-
sioning a scenario where each metric is predicted
by a different method, LLMs can complement Mod-
ernBERT by offering better performance on 4 out
of 8 metrics, overall achieving the best results
("SL+LLM Hybrid" configuration in Table 3).

This low-resource setting is particularly relevant
when considering the limited availability of labeled

5The dataset, roughly 10% of the original size, is again
divided into train/test sets with a stratified 80/20 splitting.
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Table 4: CVSS v4.0. Top-3 values are marked in bold,
italic bold and italic, respectively.

Method A wF1 MF1 MAE MSE
Worst Case Label 0.560 0.437 0.250 2.305 7.528
0s FVP o3-mini 0.701 0.684 0.519 1.268 2.763
0s STD o3-mini 0.715 0.710 0.564 1.187 2.596
0s DTD o3-mini 0.780 0.765 0.586 2.103 9.970
0s DTD DeepSeek 0.739 0.727 0.536 1.179 3.309
0s DTD GPT-4o 0.691 0.710 0.547 1.242 2.975
0s DTD LLaMA3 0.689 0.697 0.522 1.984 7.969

data, like in the transition from CVSS v3.1 to v4.0.
In this phase, hybrid solutions combining super-
vised methods and LLMs could perform better than
supervised ones alone. CVSS v4.0 was officially
launched in General Availability (GA) in Novem-
ber 2023 (FIRST, 2023c), but at the time of writing,
more than one year later, just a few CVE records in-
clude v4.0 data. In the next section, we investigate
whether LLMs in a zero-shot setting can provide
a good enough solution for the challenging setting
of a complete lack of labeled data, which prevents
a priori the adoption of both the supervised and the
LLM few-shot methods.

As additional evaluation, in Appx. G we consid-
ered a subset of test set CVEs whose CVSS has
been released after LLMs’ knowledge cutoff dates.
Despite this temporal holdout, results are in line
with those observed in Section 4.1 and in this sec-
tion, suggesting that for this task the performance
of LLMs should not be attributed to the memo-
rization of specific examples the LLM may have
encountered during its pre-training process.

4.3 Towards CVSS v4.0

CVSS v4.0 introduces key updates: a new attack-
Requirements metric, removal of the scope metric,
updates to userInteraction labels, and additional
Impact metrics, totaling 11 metrics. To the best of
our knowledge, this is the first practical evaluation
of CVSS v4.0. The lack of sufficient labeled sam-
ples calls for a zero-shot setting, but the CVSS v4.0
Specification Document (FIRST, 2023d) facilitates
the prompts’ adaptation. The NVD provides mini-
mal data for CVSS v4.0, but FIRST (2024a) offers
a supplementary document with 38 annotated CVE
records suitable as test data in our evaluation.

Table 4 includes the top-6 configurations6 and
shows that, in contrast to previous results, here
LRMs with a DTD approach are the two best-
performing configurations. This can be attributed

6Table 8 in Appx. D includes the remaining configurations.

to the GA date closely aligning with the LLMs’
knowledge cutoff dates7, as well as the limited
adoption of the new standard, which likely results
in poor CVSS v4.0 knowledge in the pre-training
data. In this case, a more detailed task descrip-
tion in the prompt, combined with the enhanced
reasoning capabilities of LRMs, offer the best per-
formance. The different ranking for MAE/MSE
may stem from the CVSS scoring formula, which
assigns different weights to metrics (NVD, 2024c).

Although performance in absolute terms is lower
than in previous sections, especially due to the up-
dated metrics (cf. Table 12 in Appendix F), the re-
sults demonstrate that LLMs can produce an initial
set of labels with performance up to 33 percentage
points higher than the most conservative baseline
(WCL). This provides a valuable tool to support
the adoption of the new release. As more labeled
data becomes available, the process can transition
to a low-resource scenario, enabling more effective
hybrid approaches, and, eventually, more power-
ful fully-supervised methods. Considering that the
minor version update from v3.0 to v3.1 took sev-
eral months to reach the first 1,000 samples post-
announcement, the adoption timeline for a major
version update like v4.0 is likely to be even longer.

5 Conclusions

The current cybersecurity landscape, with a grow-
ing number of vulnerabilities disclosed and attack-
ers acting faster, poses a significant challenge for
analysts to keep up with the emerging threats. This
work explored the potential of Large Language
Models (LLMs) for automating CVSS prediction
across different data availability settings. Our find-
ings demonstrate that when abundant labeled data
is available, LLMs are competitive, but are sur-
passed by supervised approaches. LLMs are, in-
stead, a valuable solution in scenarios of scarce
data availability, complementing the best super-
vised baseline for half of the CVSS metrics. Finally,
in extreme data scarcity, such as during transitions
to new CVSS versions, LLMs are the only viable
approach and can provide better predictions than
conservative approaches and support the adoption
of updated scoring systems. These findings high-
light LLMs’ practical potential to enhance vulnera-
bility risk prioritization. Future works will expand
predictions to consider temporal and environmental
factors for a more comprehensive risk assessment.

7Oct. and Dec. 2023 for OpenAI and Meta models used.
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Limitations

This study has two main limitations. First, our
evaluation is based on specific LLM snapshots, de-
tailed in Appx. A. Given the pace of advancement
in LLMs, newer and more powerful LLMs may pro-
vide improved performance for AutoCVSS with-
out requiring significant changes to the proposed
system. Second, due to the scarce availability of
labeled data, the CVSS v4.0 evaluation is restricted
to LLMs in the zero-shot setting. As the adoption
of the latest release increases, the availability of
a larger amount of labeled data would enable a
more comprehensive evaluation including the com-
parison against supervised baselines and few-shots
LLMs approaches.
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A Appendix: Reproducibility

This section provides the implementation details
for the methods evaluated in Section 4. For
DistilBERT-E we directly used the open-source
implementation from the authors (Cabral, 2022).
Due to the lack of an open-source implementa-
tion, we re-implemented CVEDrill based on the
pre-trained SecureBERT model available on Hug-
ging Face, 2023. Similarly, we fine-tuned Mod-
ernBERT starting from the pre-trained model pro-
vided on Hugging Face, 2024a. For the closed-
source LLMs we tested the gpt-4o-2024-11-20
and o3-mini-2025-01-31 snapshots via OpenAI
APIs. For the open-source models, we locally run
Meta-Llama-3.1-70B (Hugging Face, 2024b) and
deepseek-r1:70b (DeepSeek-AI, 2025) on our
server with vLLM (Kwon et al., 2023) and ollama
(Ollama, 2025), respectively. For the Vector Store’s
text embeddings we used the all-MiniLM-L6-v2
SBERT model (Hugging Face, 2021).

The rest of the section includes examples of the
prompts used in the different strategies described
in Section 3 for reproducibility of our results. All
the prompts reported below are system messages
(falling back to user messages when not supported
by the LLM, e.g. DeepSeek-R1) which are then
followed by an user message containing the actual
description of the CVE to be classified. We also
provide the Response Model used by Instructor to
get structured output data from LLMs. For the sake
of brevity we only report examples for one of the
eight CVSS metrics, i.e. the Attack Vector. The
rest of the prompts and Reponse Models can be
found in our GitHub repository.
Simple Task Description (STD). The same
prompt is used for zero-shot and few-shots setting:
the text in bold is only present for the latter.� �
You are an expert cybersecurity analyst from NVD.
Your task is to extract the CVSS v3.1 Attack Vector metric
label for the provided CVE description.

Here are some relevant examples.

CVE description: [...]
LABEL: [...]

...� �
Detailed Task Description (DTD). As for STD,
the same prompt is used for zero-shot and few-
shots setting: the text in bold is only present for
the latter. For the sake of brevity, we omitted the
full definitions of the labels, which can be found
in the CVSS v3.1 Specification (FIRST, 2023b). A
similar prompt is also adopted for CVSS v4.0.
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� �
You are an expert cybersecurity analyst from NVD.
Your task is to extract the CVSS v3.1 Attack Vector metric
label for the provided CVE description.

The Exploitability metrics reflect the characteristics of
the thing that is vulnerable, [...]

The Attack Vector metric reflects the context by which
vulnerability exploitation is possible [...]

The possible values for the Attack Vector metric are:
- NETWORK: The vulnerable component is bound to the network
stack and the set of possible attackers extends [...]
- ADJACENT_NETWORK: [...]
- LOCAL: [...]
- PHYSICAL: [...]
- DON_KNOW: The information provided is not sufficient to
evaluate the attack vector.

Here are some relevant examples.

CVE description: [...]
LABEL: [...]

...� �
Both STD and DTD approaches share the fol-

lowing Response Model expressed as a Pydantic8

BaseModel, the most widely used data validation
library for Python and core part of Instructor.

class AttackVector(BaseModel):
attack_vector: Literal["NETWORK", "ADJACENT_NETWORK",

"LOCAL", "PHYSICAL", "DONT_KNOW"
] = Field(

description="The Attack Vector CVSS v3.1 metric.
DONT_KNOW is used when the information provided
is not sufficient to evaluate the attack
vector."

↪→
↪→
↪→

)

Full Vector Prediction (FVP). As commented in
Section 3, only for this scenario, all the 8 metrics
are concurrently predicted with a single prompt.� �
You are an expert cybersecurity analyst from NVD.
Your task is to extract the eight CVSS v3.1 metrics from
the provided CVE description.
If for any of the metrics the information provided is not
sufficient to answer the question, use the value
"DONT_KNOW".� �

B Appendix: Impact of Don’t Know label

This section examines the impact of the Don’t
Know (DK) label, focusing on the top-2 LLM con-
figurations for both the full dataset (FD) and low-
resource (LR) scenarios from Sec. 4.1 and 4.2: i.e.
"24s STD GPT-4o" and "24s STD LLaMA3". The
"DK" columns in Table 5 show the number and
percentage of samples predicted as DK for each
CVSS metric. The "WCL OK" columns indicate
cases where converting a DK label to the Worst
Case Label (WCL) matches the Ground Truth. For
example, GPT-4o predicted DK for 1% and 1.8% of
samples in the full dataset (FD) and low-resource
(LR) scenarios, respectively. While the DK sample

8https://docs.pydantic.dev/latest/

Table 5: Analysis of Don’t Know (DK) labels: number
of cases and impact on performance.

CVSS 24s STD GPT-4o (FD) 24s STD GPT-4o (LR)
Metric DK WCL OK DK WCL OK

AV 55 (1.0%) 33 (60%) 7 (1.6%) 5 (71%)
AC 40 (0.7%) 33 (82%) 6 (1.4%) 6 (100%)
PR 54 (1.0%) 29 (54%) 5 (1.2%) 1 (20%)
UI 69 (1.3%) 49 (71%) 12 (2.8%) 6 (50%)
S 31 (0.6%) 7 (23%) 5 (1.2%) 4 (80%)
C 60 (1.1%) 23 (38%) 7 (1.6%) 4 (57%)
I 37 (0.7%) 17 (46%) 10 (2.3%) 4 (40%)
A 100 (1.8%) 53 (53%) 9 (2.1%) 5 (56%)

AVG 55 (1.0%) 30 (55%) 7 (1.8%) 4 (57%)

quota is small, using WCL improves performance
in over half of these cases for both data availability
scenarios. LLaMA3 is omitted from the table be-
cause, interestingly, never returned any DK label
for all the 8 CVSS metrics in both data scenarios.

C Appendix: LLM Fine-tuning

This section includes a preliminary evaluation of
LLM fine-tuning for GPT-4o via OpenAI APIs (o3-
mini does not support fine-tuning yet). Due to high
costs, we restricted ourselves to the low-resource
setting (fine-tuning on the full dataset would cost
10 times more). We also excluded fine-tuning of the
two local open-source models due to our limited
resources. Starting from the same train/test sets
split of Sec. 4.2, performances are computed on the
test set, while the train set is used for LLM fine-
tuning. In terms of prompt strategies, we excluded
both few-shots prompting (the train set samples
are required for fine-tuning itself and cannot be
also re-used in the Vector Store) and zero-shot FVP
(it’s impractical to manually annotate the reasoning
chains for the whole train set, cf. Sec. 3), and we
selected the best zero-shot approach for GPT-4o,
i.e. STD (cf. Table 7). With reference to Table 3
from Sec. 4.2, fine-tuning "0s STD GPT-4o" outper-
forms ModernBERT on A (92.3%), has the same
wF1 (92.0%), but has a worse MF1 (84.2%). In
summary, when considering an absolute ranking
based on the average of A, wF1, and MF1, Mod-
ernBERT still maintains its top-1 position. Due to
the limitations described above, we kept LLM fine-
tuning out of the scope of the paper and we leave a
more comprehensive analysis for future works.

D Appendix: All zero-shot configurations

Tables 6, 7 and 8 in this section include the entire
set of zero-shot methods, grouped by configuration,
for the three data availability settings described in
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Table 6: CVSS v3.1 full dataset evaluation of all the
zero-shot prompting approaches with four LLMs.

Method A wF1 MF1 MAE MSE
0s FVP o3-mini 0.846 0.836 0.722 1.200 3.991
0s FVP GPT-4o 0.754 0.743 0.643 1.655 4.861
0s FVP LLaMA3 0.739 0.733 0.593 1.694 6.178
0s FVP DeepSeek 0.614 0.532 0.352 2.654 10.235
0s STD o3-mini 0.804 0.793 0.676 1.609 6.000
0s STD GPT-4o 0.757 0.765 0.651 1.317 3.343
0s STD DeepSeek 0.741 0.740 0.617 1.430 3.815
0s STD LLaMA3 0.709 0.700 0.561 1.554 5.009
0s DTD o3-mini 0.767 0.755 0.654 2.095 8.747
0s DTD GPT-4o 0.750 0.751 0.634 1.494 4.573
0s DTD DeepSeek 0.736 0.731 0.618 1.597 5.306
0s DTD LLaMA3 0.697 0.676 0.562 2.934 15.788

Table 7: CVSS v3.1 low-resource setting evaluation of
all the zero-shot prompting approaches with four LLMs.

Method A wF1 MF1 MAE MSE
0s FVP o3-mini 0.843 0.830 0.722 1.196 3.909
0s FVP GPT-4o 0.747 0.727 0.626 1.756 5.366
0s FVP LLaMA3 0.743 0.735 0.601 1.574 5.308
0s FVP DeepSeek 0.613 0.526 0.344 2.701 10.956
0s STD o3-mini 0.805 0.790 0.669 1.653 6.380
0s STD GPT-4o 0.770 0.772 0.657 1.305 3.294
0s STD DeepSeek 0.741 0.736 0.625 1.401 3.773
0s STD LLaMA3 0.726 0.713 0.595 1.537 4.564
0s DTD o3-mini 0.763 0.749 0.649 2.071 8.552
0s DTD GPT-4o 0.752 0.750 0.631 1.448 4.443
0s DTD DeepSeek 0.741 0.733 0.625 1.391 4.093
0s DTD LLaMA3 0.706 0.682 0.592 2.774 14.687

Sections 4.1, 4.2 and 4.3, respectively. Within each
configuration, the entries are sorted in descending
order according to the average of A, wF1, and MF1.

E Appendix: Qualitative Severity Rating
Scale (QSRS)

This section evaluates the performance of the meth-
ods from Sec.4 in the light of works from Category
II (see Sec.2). As done for the MAE/MSE computa-
tion for severity scores, we start from the predicted
8 CVSS metrics for each sample and compute the
resulting severity score with the CVSS v3.1 Calcu-
lator (NVD, 2024b). This score is then quantized
into the 5 levels (None, Low, Medium, High, Criti-
cal) defined by the Qualitative CVSS Severity Rat-
ings (QSRS) (FIRST, 2023a). Notice that no model
is trained/fine-tuned here: we simply re-evaluate
performance as a five-class classification problem.
While we still report the same types of metrics used
in Tables 2 and 3 in Sec. 4, the results in this section
refers to a completely different task, and therefore
direct numerical comparisons across tasks are not
applicable. Table 9 shows results for the same data
availability scenarios as Secs.4.1 and 4.2. In the
former (left) the best LLM-based method still falls

Table 8: CVSS v4.0 dataset evaluation of all the zero-
shot prompting approaches with four LLMs.

Method A wF1 MF1 MAE MSE
0s FVP o3-mini 0.701 0.684 0.519 1.268 2.763
0s FVP LLaMA3 0.660 0.680 0.523 1.850 6.614
0s FVP GPT-4o 0.629 0.624 0.486 1.379 3.545
0s FVP DeepSeek 0.543 0.442 0.251 2.334 7.648
0s STD o3-mini 0.715 0.710 0.564 1.187 2.596
0s STD DeepSeek 0.627 0.616 0.473 1.092 1.886
0s STD LLaMA3 0.615 0.591 0.460 1.313 3.150
0s STD GPT-4o 0.548 0.539 0.439 1.171 2.371
0s DTD o3-mini 0.780 0.765 0.586 2.103 9.970
0s DTD DeepSeek 0.739 0.727 0.536 1.179 3.309
0s DTD GPT-4o 0.691 0.710 0.547 1.242 2.975
0s DTD LLaMA3 0.689 0.697 0.522 1.984 7.969

Table 9: QSRS Full dataset (left) and low-resource set-
tings (right) evaluation. Top-3 values for each setting
are marked in bold, italic bold and italic, respectively.

Full dataset Low-resource
Method A wF1 MF1 A wF1 MF1
Worst Case Label 0.173 0.051 0.074 0.211 0.074 0.087
DistilBERT-E 0.718 0.722 0.454 0.677 0.677 0.412
ModernBERT 0.792 0.793 0.542 0.791 0.797 0.580
CVEDrill 0.792 0.792 0.534 0.691 0.696 0.422
24s STD GPT-4o 0.773 0.775 0.515 0.770 0.776 0.580
24s STD LLaMA3 0.759 0.761 0.496 0.784 0.792 0.612

behind CVEDrill and ModernBERT (which, how-
ever, swapped their respective positions). When
moving to the low-resource case (right), the two
few-shots LLMs enter again in the top-3 positions.
The Worst Case Label (WCL) baseline performs
poorly, reflecting class distribution. With only 17%
and 21% of samples labeled Critical in the two data
scenarios, respectively, assigning this label to all
samples yields 17% and 21% Accuracy by design
(cf. left and right part of Table 9, respectively).

F Appendix: Performance breakdown by
CVSS metric and SL+LLM Hybrid
configuration

Tables 10, 11 and 12 break down by individual
CVSS metrics the performance for the top-3 meth-
ods in the three scenarios from Tables 2, 3, and 4,
as detailed in Secs. 4.1, 4.2, and 4.3. The maximum
value in each row, for a fixed performance metric, is
marked in bold. As discussed in Section 4.2, differ-
ent configurations may perform better for specific
CVSS metrics and considering an hybrid configu-
ration can provide the overall best results. Table
11 highlights in gray the method that maximises
the average of A, wF1, and MF1, showing that
the optimal "SL+LLM Hybrid" should combine
ModernBERT for UI, S, C and I CVSS metrics,
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Table 10: CVSS v3.1 full dataset evaluation. Perfor-
mance of top-3 methods, split by CVSS metric. The
maximum value in each row for a given performance
metric is marked in bold.

CVSS CVEDrill ModernBERT 24s STD GPT-4o
Metric A wF1 MF1 A wF1 MF1 A wF1 MF1

AV 0.938 0.937 0.798 0.941 0.941 0.830 0.944 0.944 0.834
AC 0.976 0.974 0.802 0.975 0.969 0.750 0.965 0.963 0.734
PR 0.851 0.849 0.826 0.857 0.857 0.835 0.854 0.853 0.833
UI 0.957 0.957 0.952 0.957 0.957 0.952 0.933 0.934 0.926
S 0.976 0.976 0.962 0.974 0.974 0.959 0.946 0.947 0.920
C 0.906 0.905 0.891 0.906 0.905 0.891 0.893 0.892 0.874
I 0.911 0.911 0.909 0.901 0.901 0.899 0.887 0.886 0.882
A 0.921 0.917 0.724 0.914 0.913 0.745 0.902 0.902 0.732

AVG 0.929 0.928 0.858 0.928 0.927 0.858 0.915 0.915 0.842

Table 11: CVSS v3.1 low-resource dataset evaluation.
Performance of top-3 methods, split by CVSS metric.
The maximum value in each row for a given perfor-
mance metric is marked in bold.

CVSS ModernBERT 24s STD GPT-4o 24s STD LLaMA3
Metric A wF1 MF1 A wF1 MF1 A wF1 MF1

AV 0.942 0.941 0.874 0.942 0.943 0.854 0.937 0.938 0.916
AC 0.956 0.949 0.732 0.949 0.946 0.737 0.963 0.957 0.780
PR 0.852 0.850 0.783 0.856 0.852 0.785 0.831 0.826 0.746
UI 0.942 0.942 0.938 0.914 0.915 0.909 0.903 0.903 0.897
S 0.961 0.960 0.943 0.940 0.940 0.916 0.905 0.897 0.848
C 0.884 0.883 0.872 0.875 0.875 0.859 0.882 0.882 0.866
I 0.919 0.919 0.917 0.879 0.879 0.873 0.858 0.858 0.850
A 0.916 0.913 0.725 0.916 0.912 0.730 0.889 0.886 0.666

AVG 0.921 0.920 0.848 0.909 0.908 0.833 0.896 0.893 0.821

"24s STD GPT-4o" for PR and A, and "24s STD
LLaMA3" for AV and AC.

G Appendix: LLM knowledge
cutoff-aware additional evaluation

This section provides an additional evaluation
where the test data only includes CVEs whose
CVSS has been published after the LLMs’ knowl-
edge cutoff dates: this ensures that the models
could not have been possibly exposed to those ex-
amples during pre-training. We filtered the results
from Tables 2 and 3, retaining only the vulnera-
bilities whose CVSS publication is after the latest
of the LLMs’ cutoff dates, i.e. December 2023.
After the filtering process, we obtained 875 and
431 CVE test samples for the full dataset and the
low-resource scenarios, respectively. For brevity,
Table 13 only reports the supervised baselines and
LLM few-shot configurations. Notice that the low-
resource scenario already includes only samples
disclosed in 2024 (cf. Sec. 4.2), thus, by design, all
of them have the corresponding CVSS published
after December 2023. In other words, the right part
of Table 13 is identical to Table 3 and is included
here just for the convenience of the reader. From

Table 12: CVSS v4.0 evaluation. Performance of top-3
methods, split by CVSS metric. The maximum value in
each row for a given performance metric is marked in
bold.

CVSS 0s DTD o3-mini 0s DTD DeepSeek 0s STD o3-mini
Metric A wF1 MF1 A wF1 MF1 A wF1 MF1

AV 0.947 0.947 0.962 0.789 0.787 0.774 0.868 0.865 0.836
AC 0.974 0.961 0.493 0.921 0.934 0.479 0.974 0.978 0.826
AT 0.789 0.804 0.756 0.632 0.659 0.604 0.526 0.559 0.504
PR 0.921 0.920 0.889 0.921 0.917 0.855 0.921 0.918 0.836
UI 0.868 0.859 0.590 0.868 0.856 0.650 0.868 0.819 0.562
VC 0.500 0.543 0.373 0.553 0.589 0.375 0.763 0.759 0.500
VI 0.816 0.806 0.680 0.789 0.757 0.561 0.816 0.781 0.580
VA 0.711 0.684 0.470 0.763 0.763 0.522 0.737 0.727 0.498
SC 0.605 0.553 0.361 0.605 0.551 0.365 0.368 0.345 0.263
SI 0.658 0.604 0.456 0.605 0.530 0.353 0.474 0.485 0.462
SA 0.789 0.732 0.418 0.684 0.656 0.360 0.553 0.579 0.338

AVG 0.780 0.765 0.586 0.739 0.727 0.536 0.715 0.710 0.564

Table 13: LLM knowledge cutoff-aware evaluation on
full dataset (left) and low-resource settings (right). Top-
3 values for each setting are marked in bold, italic bold
and italic, respectively.

Full dataset (875) Low-resource (431)
Method A wF1 MF1 A wF1 MF1
Worst Case Label 0.602 0.474 0.278 0.600 0.470 0.278
DistilBERT-E 0.897 0.890 0.729 0.869 0.858 0.673
ModernBERT 0.921 0.919 0.839 0.921 0.920 0.848
CVEDrill 0.920 0.918 0.829 0.887 0.876 0.695
24s STD GPT-4o 0.909 0.908 0.827 0.909 0.908 0.833
24s STD LLaMA3 0.893 0.891 0.798 0.896 0.893 0.821

this table, it is possible to draw conclusions sim-
ilar to what has been previously observed in Sec-
tions 4.1 and 4.2. For the full dataset case (left), the
best LLM-based method is still "24s STD GPT-4o"
and is still outperformed by CVEDrill and Mod-
ernBERT, which however swapped their respective
positions in the ranking. For the low-resource case
(right), as already discussed in Section 4.2, GPT-
4o and LLaMA3 move just behind ModernBERT.
This additional evaluation suggests that the perfor-
mance of LLMs for this prediction task should not
be attributed to the memorization of examples the
LLM may have been exposed to during the pre-
processing phase.
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