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Abstract

We present a new benchmark for evaluating
Deep Search—a realistic and complex form of
retrieval-augmented generation (RAG) that re-
quires source-aware, multi-hop reasoning over
diverse, sparse, but related sources. These in-
clude documents, meeting transcripts, Slack
messages, GitHub, and URLs, which vary in
structure and often contain human-to-human
interactions. We build it using a synthetic
data pipeline that simulates business workflows
across product planning, development, and sup-
port stages, generating interconnected content
with realistic noise and multi-hop questions
with guaranteed ground-truth answers. We
release our benchmark with both answerable
and unanswerable queries, and retrieval pool
of 39,190 enterprise artifacts, enabling fine-
grained evaluation of long-context LLM and
RAG systems. Our experiments reveal that
even the best-performing agentic RAG meth-
ods achieve an average performance score of
32.96 on our benchmark. With further analy-
sis, we highlight retrieval as the main bottle-
neck: existing methods struggle to conduct
deep searches and retrieve all necessary evi-
dence. Consequently, they often reason over
partial context, leading to significant perfor-
mance degradation 1.

1 Introduction

RAG has gained widespread adoption in enter-
prise applications for tasks that require grounded
responses (Packowski et al., 2024; Cohen et al.,
2025; Yu et al., 2025). However, current multi-
hop RAG benchmarks typically build questions
over clusters of related documents, connected
through explicit entity or topical links inferred by
LLMs (ExplodingGradients, 2024). This approach
makes weak connection between text chunks, and
the questions generated on top of these chunks can

1 § https://github.com/SalesforceAIResearch/HERB

https://huggingface.co/datasets/Salesforce/HERB

be artificial and superficial. For example, consider
a query from the MultiHop-RAG benchmark (Tang
and Yang, 2024): “Which platform is at the cen-
ter of discussions in articles from Music Business
Worldwide, Polygon, and FOX News - Health, con-
cerning the policing of AI-driven voice replication,
the debate over "reaction" content, and being the
most used app overnight by young people?” The
question is overly specific and unnatural, and does
not reflect real-world use cases. These benchmarks
also involve limited reasoning using shallow search,
allowing RAG systems to achieve high scores.

To better reflect the challenges of real-world
Deep Search tasks, we introduce HERB, a
Heterogeneous Enterprise RAG Benchmark in-
spired by common use cases in the software in-
dustry. Deep Search is a retrieval-centric task that
requires not only determining what information to
search for but also where to search for it—often
relying on real-world knowledge to navigate hetero-
geneous sources and identify the most relevant con-
text. For instance, determining who provided feed-
back to a document may seem straightforward us-
ing structured document metadata (e.g., comment
or edit history). However, feedback can be pro-
vided across unstructured sources like Slack mes-
sages or meeting, which are only surfaced through
a deeper search. We define Deep Search as distinct
from Deep Research (Shao et al., 2024; OpenAI,
2025), the latter involves conducting multi-step re-
search on a topic, often using web browsing, data
analysis, coding, and report generation.

We build HERB by first collecting common en-
terprise queries on content, people, artifact, and cus-
tomer. Then, to generate the contextual data needed
to answer these queries, we use LLMs to simu-
late realistic enterprise environments. Inspired by
CRMArena (Huang et al., 2025a,b), which demon-
strated the effectiveness of LLMs for scalable en-
terprise data generation, we construct a represen-
tative enterprise scenario centered on three stages
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Figure 1: Overview of the workflow-guided data synthesis framework. Team roles(e.g., Architect) engage through
meetings and slack channels. Interactions generate artifacts (e.g., meeting transcripts, GitHub PRs, documents)
which form the basis for query generation.

of the software product lifecycle: planning, devel-
opment, and deployment (Figure 1). The planning
stage focuses on defining goals and roadmaps, the
development stage centers on implementing fea-
tures and coordinating engineering tasks, and the
deployment stage involves resolving customer is-
sues and shipping fixes. For each stage, we design
three realistic workflows that reflect typical enter-
prise processes, enabling the generation of rich
contextual data. For example, a development-stage
workflow may involve teams coordinating through
meetings, assigning engineering tasks, tracking
progress via Slack, and managing implementation
using GitHub—closely mirroring real-world soft-
ware development practices.

Using our pipeline, we generate a comprehen-
sive synthetic dataset that reflects the scale and het-
erogeneity of a small-scale software organization.
Our simulated enterprise includes 530 employees
working across 30 products. For each product, we
simulate three-stage workflows (planning, devel-
opment, and deployment), resulting in a total of
39,190 data artifacts spanning structured and un-
structured sources. We generate 815 answerable
queries, each supported by specific evidence found
within a subset of relevant artifacts. Additionally,
to support robust evaluation of model precision and
failure modes, HERB also includes 699 unanswer-
able queries, inspired by Peng et al. (2025), by
mapping realistic questions to workflows that lack
any supporting evidence.

We evaluate a range of RAG systems and
LLM configurations on HERB to assess their abil-

ity to handle complex, enterprise-style queries.
Our results show that standard RAG meth-
ods—whether using linear chunking or graph-
based retrieval—struggle with the complexity of
enterprise data. The best-performing baseline, a
hybrid of dense and sparse retriever, achieves only
an average performance of 20.61. Agentic RAG
systems with planning and tool-use capabilities per-
form best overall but still achieve only a modest
average performance of 32.96, highlighting signifi-
cant room for improvement.

Designed to stress-test RAG systems, HERB cap-
tures complex, dispersed knowledge across hetero-
geneous sources, features natural multi-hop ques-
tions requiring cross-source reasoning, and empha-
sizes realistic, information-seeking queries aligned
with enterprise needs—addressing key limitations
of prior datasets.

2 Related Work

Multihop RAG Evaluation: Multihop RAG
benchmarks typically follow a post-hoc approach,
where they first form clusters of related documents
or claims and then generate questions over the
linked content. For example, HotpotQA (Yang
et al., 2018), 2WikiMultihopQA (Ho et al., 2020),
MuSiQue (Trivedi et al., 2022), and MultiHo-
pRAG (Tang and Yang, 2024) created multihop
questions by linking claims through bridging enti-
ties. Recently, MHTS (Lee et al., 2025) replaced
entity-based linking with clustering, grouping se-
mantically similar claims to form multihop queries.
RAGAS (ExplodingGradients, 2024) presents a
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general framework that connects claims or doc-
uments using various similarity signals, such as en-
tity overlap, topical similarity or shared keywords.

Query-First Synthesis of Evaluation Data:
SummHay (Laban et al., 2024) presented a query-
first design, generating documents conditioned on
predefined topics and insights. HERB builds on this
approach but introduces two key innovations. First,
whereas SummHay emphasizes shallow reasoning
over explicit insights, HERB targets deeper induc-
tive reasoning over implicit information. Second,
SummHay operates exclusively on a single unstruc-
tured source, while HERB integrates both struc-
tured data and unstructured text, enabling cross-
format reasoning. To the best of our knowledge, no
existing RAG benchmark supports implicit reason-
ing across heterogeneous data formats.

Synthetic Enterprise Environment: Recent
work (Drouin et al., 2024; Styles et al., 2024; Yao
et al., 2024; Drouin et al., 2024; Boisvert et al.,
2024; Xu et al., 2025; Huang et al., 2025a,b) has in-
troduced synthetic enterprise environments to eval-
uate LLM agents on task execution. In contrast,
our work focuses on answering complex multihop
queries that require agents to model and reason
about enterprise processes. Instead of complet-
ing tasks directly, agents must identify which data
sources contain relevant information, determine
what to retrieve, and integrate evidence across het-
erogeneous formats to produce a correct answer.

3 Data Generation Pipeline

To address the challenges with post-hoc synthetic
RAG evaluations, HERB adopts a query-first data
synthesis strategy. It begins by manually defining
realistic enterprise queries and then synthesizing
the supporting evidence required to answer them.
We first describe the synthetic enterprise setup
(§3.1), followed by our query selection method-
ology (§3.2), the workflow-based data generation
process (§3.3), and the final dataset statistics (§3.4).

3.1 Data Schema Setup
We construct an enterprise schema that reflects the
structure of a simplified modern software company.
The environment comprises six functional organi-
zations (Slack, Sales, Einstein, Salesforce, Tableau,
and Mulesoft), each managing five fictional prod-
ucts with distinct descriptions. Each organization
has 10 cross-functional roles, such as software en-
gineers and product managers, with one or more

employees assigned to each role per team. Ev-
ery employee is assigned a unique employee ID,
while real-world ambiguity is preserved by allow-
ing duplicate names for different individuals. To
incorporate customer-facing interactions, we also
generate customer profiles, each of which contains
a named contact, a unique customer ID, a company
name, and a list of associated products.

Each employee interacts across multiple Slack
channels, and each channel is corresponding to
a specific phase of the product lifecycle. For ex-
ample, product planning channels include product
managers, marketing managers, and engineering
leads, while development channels involve soft-
ware engineers and other relevant roles. Employ-
ees also participate in meetings, each of which
is associated with a transcript and may include a
chat log if participants share additional informa-
tion, such as URLs. In addition, employees author
and review documents, create and review pull re-
quests (PRs), and share documents, PRs, and URLs
through Slack messages or during meetings. This
structure mirrors real-world enterprise settings. Ex-
amples of different data objects are shown in Ap-
pendix C.1.

3.2 Realistic Query Selection
We focus on four prevalent enterprise search in-
tents: (1) content-based queries (e.g., employee
activities or product feedback), (2) people-search
queries (e.g., internal employee information), (3)
artifact-search queries (e.g., GitHub pull requests,
documents, or URLs), and (4) customer-search
queries (e.g., customer-related information). From
these categories, we focus on complex queries that
require multi-hop reasoning. For each selected
query, we construct one or more corresponding rea-
soning scenarios grounded in real-world enterprise
contexts, explicitly outlining the inference steps
needed for resolution. Table 1 presents example
queries for each content type.

To support precise evaluation, we avoid under-
specified questions that admit multiple plausible
answers. For example, instead of the ambiguous
formulation “Which customer has the highest num-
ber of unresolved bugs in {product}?” we use a de-
terministic alternative: “Find the name of the com-
pany with the highest number of unresolved bugs
in {product}.” This explicitly constrains the ex-
pected answer format to the company name, avoid-
ing ambiguity between possible alternatives such
as customer ID, contact person, or company name.
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Stage Type Query Reasoning Scenario

Planning People Find employee ID of the au-
thor and reviewers of the {prod-
uct}’s PRD?

Locate the Product Requirements Document (PRD) for {product} → Identify the
author of the PRD → Trace related evidence across slack and meeting transcripts
→ Identify individuals who provided feedback → Link all identified individuals
to employee IDs

Development Content What features for {product}
were discussed but not imple-
mented?

Extract proposed features from Slack threads and meeting transcripts/ chats → Map
features to implementation records in GitHub PRs → Identify features without
corresponding implementations

Support Customer Find the name of company that
has the the highest number of
unresolved bugs in {product}?

Identify all unresolved bugs for {product} (i.e., bugs without a linked PR) →
Associate each bug with the relevant customer using Slack discussions or meeting
transcripts → Aggregate counts to find the customer with the most open issues

All Artifact Find the demo URLs shared by
team members for {product}’s
competitor products?

Search Slack and meeting transcripts for competitor product names → For each
identified competitor product, search Slack and meeting transcripts again to extract
any shared demo URLs

Table 1: Examples of queries and the reasoning required to answer them using structured and unstructured data.

All query selection and reasoning scenario design
steps are performed manually by domain experts to
ensure clarity and alignment with enterprise search.

In total, we define 41 query templates (see Ap-
pendix Table 8): 12 for content-based queries, 14
for people-search, 8 for artifact-search, and 7 for
customer-search. We then use these templates to
generate specific queries conditioned on product
context and other metadata such as employee roles
or document types.

3.3 Human-Designed Workflows

After defining realistic queries, we generate sup-
porting evidence using manually designed work-
flows aligned with the reasoning required for each
query. These workflows simulate how information
is produced and shared in enterprise settings, yield-
ing artifacts such as Slack discussions and meeting
transcripts. Some artifacts contribute directly to an-
swering a query, while others serve as distractors,
reflecting the ambiguity and noise typical of real-
world scenarios. Workflows are organized around
three core stages of the product lifecycle:

• Product Planning: Teams set goals, analyze com-
petitors, and draft roadmaps through documents,
slack discussions, and planning meetings.

• Product Development: Teams coordinate tasks,
review sprints, and create GitHub PRs to imple-
ment features.

• Product Support: Teams discuss customer issues,
assign owners, track progress, and submit PRs to
deploy fixes.

Each query is linked to one or more consecu-
tive stages and workflows based on its reasoning
requirements. See table 1 for examples, where each
query is paired with one possible reasoning path.

For each stage, we define three workflows captur-
ing different enterprise activity patterns, and group
queries with similar reasoning needs within the
same workflow. We provide an overview of all
nine workflows in Appendix Table 7. To discour-
age overfitting, full workflow specifications are not
released publicly but are available upon request for
research purposes.

An Example Workflow: In Figure 2, we illus-
trate an example Stage 1 (Product Planning) work-
flow. A common people-centric query at this stage
involves identifying contributors to key planning
artifacts, such as the Product Requirements Doc-
ument (PRD). In enterprise settings, these docu-
ments are typically drafted and refined through
iterative collaboration across Slack discussions and
meetings.

The process begins by selecting the product
metadata, relevant team members, and associated
customers, which together provide shared context
across all three stages. It then orchestrates a se-
quence of collaborative activities that reflect typi-
cal enterprise behavior. For example, in Figure 2,
employee e1 drafts the PRD and shares it in Slack,
where e7 provides feedback. e1 then revises the
document and presents it in a planning meeting,
where e3 and e6 offer additional suggestions. The
meeting transcript includes only participant names,
introducing ambiguity consistent with real-world
records. A separate structured source maps unique
employee IDs to their names, enabling entity dis-
ambiguation. After incorporating the feedback, e1
finalizes the PRD. All generated data are times-
tamped to enable RAG systems to leverage time-
based reasoning when needed.

Query Grounding and Answer Generation: As
each workflow is executed, artifacts are explicitly
linked to the queries they support to ensure trace-
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Figure 2: Illustration of a product-planning workflow from the HERB dataset. A product manager shares a product
requirements document (PRD) for review via Slack, updates it based on feedback, and then presents a revised draft
in a meeting. The team provides additional input, leading to further iterations. These interactions and artifacts form
the basis for query generation in HERB.

ability between questions and evidence. For exam-
ple, in Figure 2, Slack messages, PRD documents,
and meeting transcripts related to the PRD review
are linked to the query: “Can you provide the em-
ployee IDs of the author and all reviewers involved
in the CRM analytics PRD?”

To construct an answer, we do not directly use an
LLM to generate responses given linked evidence,
as this can be unreliable for multi-hop questions.
Instead, we break the task into interpretable steps.
We first aggregate all artifacts associated with a
query and then apply a structured, query-specific
inference process. For the example question above,
we 1) identify utterances in the linked Slack mes-
sages and meeting transcript that contain review-
related feedback, and 2) the authors of the PRD
documents. We then resolve the corresponding
speakers and authors by mapping their names to
employee IDs to obtain the final answer.

Unanswerability Evaluation Motivated by
UAEval4RAG (Peng et al., 2025), HERB also
includes unanswerable queries to evaluate a RAG
system’s ability to recognize when information is
missing. These queries are drawn from the full set
of query templates but are paired with workflows
that lack the required supporting evidence. For
example, since the workflow in Figure 2 do not
contain discussion about competitor products, we
define unanswerable queries such as: “Find the
demo URLs shared by team members for CRM

Analytics’s competitor products.”

Realistic Noise in Workflows-Generated Data
Our data naturally includes noise, as enterprise
workflows often involve overlapping activities and
partial information. For example, in Figure 2, while
the PRD review is underway, e5 simultaneously
authors a system design document and shares it
in Slack for feedback. These concurrent actions
distribute relevant evidence across Slack messages
and meeting transcripts, requiring the model to
aggregate and filter context from multiple sources.

To further increase task complexity, we intro-
duce distractor content that mirrors the noise com-
monly found in real-world enterprise settings. For
instance, multiple teams may appear to contribute
to the same product during the planning stage, al-
though only one continues development in later
phases. Additionally, beyond discussing their own
pull requests (PRs), teams may reference PRs from
open-source libraries or other internal projects. We
list the full set of distractor types in Appendix C.2.

3.4 Dataset Statistics
In total, the dataset includes 530 employees dis-
tributed across three teams per organization, cov-
ering 30 products. It contains 302 Slack chan-
nels with 33,632 messages, 400 documents, 3,562
pull requests, 575 shared URLs, 321 meeting
transcripts, 50 meeting chats, and 120 customer
profiles. The dataset comprises 815 answerable
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queries, including 238 content-based, 260 people-
search, 130 customer-search, and 187 artifact-
search queries. In addition, it includes 699 unan-
swerable queries. While the dataset is primarily de-
signed for evaluating RAG systems, it also supports
long-context reasoning, where LLMs are provided
with all product-related content and must reason
over large, structured and unstructured contexts to
answer complex queries.

4 Experiments

4.1 Experimental Settings
Models: We evaluate seven RAG configurations:
zero-shot prompting (without retrieval), vector re-
triever, hybrid of vector and BM25 (Robertson
and Zaragoza, 2009) retrievers, Raptor (Sarthi
et al., 2024), and three graph-based methods:
GraphRAG (GRAG, Edge et al.), HippoRAG 2
(HRAG, Gutiérrez et al.), and Proposition-Graph
RAG (PGRAG, Choubey et al.). We use text-
embedding-3-large from OpenAI embedding for
vectorizing text and GPT-4o (OpenAI et al., 2024)
for response generation. For agentic RAG, we
adopt the ReAct (Yao et al., 2023; Liu, 2022) frame-
work, which combines a vector index for unstruc-
tured retrieval with eight structured search tools
for querying employees, customers, GitHub PRs,
and URLs (see Appendix A.2 for details). We
evaluate ReAct using proprietary and open-source
LLMs, including GPT-4o, o4-mini, Gemini-2.5-
Flash (gem2.5f ), DeepSeek-R1 (DSr1, DeepSeek-
AI et al.), Llama-3.1-405B-Instruct (lam405B),
Llama-3.1-70B-Instruct (lam70B , Grattafiori et al.),
Llama-4-Maverick-17B-128E-Instruct (lam4Mav,
Meta AI), and DeepSeek-V3 (DSv3, DeepSeek-AI
et al.). Additional implementation and hyperparam-
eter details are provided in Appendix A.1.

Evaluation Metrics: We follow standard RAG
evaluation practices (ExplodingGradients, 2024)
and use GPT-4o to assess answer quality. For
content-based queries, we ask the LLM to rate each
predicted answer on a Likert scale from 1 to 100
based on its factual accuracy and relevance, using
the question and ground-truth answer as reference.
For the other three query types, we use extraction-
based evaluation. We prompt the LLM to extract
specific information from the answer—such as
URLs or pull request links for artifact-search, em-
ployee ID for people-search, and company name
for customer-search. We then normalize the ex-
tracted text (e.g., by lowercasing and removing

punctuation) and compute the F1 score based on ex-
act matches with the ground-truth answer. For over-
all comparison, we also report the average score
across all four query types, combining the Likert
ratings for content queries and F1 scores for others.

4.2 RAG Evaluation
In table 2, we compare the performance of differ-
ent RAG approaches on the HERB dataset in the
full-RAG setting, where relevant evidence must be
retrieved from the entire dataset given a question.

The 0-shot baseline, which relies solely on the
built-in knowledge of GPT-4o without any retrieval,
performs very poorly. It achieves 0% accuracy
on people-, customer-, and artifact-search queries.
This result highlights that the model cannot infer
answers without access to context, even though
the dataset itself was generated by GPT-4o. The
questions require reasoning over specific enterprise
artifacts, which are not part of the model’s internal
knowledge.

All standard RAG systems show limited per-
formance on the HERB dataset. Notably, ad-
vance methods like Raptor and GraphRAG perform
much worse than the simple vector baseline, while
HippoRAG-2 and proposition-graph RAG perform
only slightly better. The basic Hybrid baseline
achieves the highest average performance score of
20.61, but overall performance remains low.

The ReAct agent leads to a significant im-
provement in performance over all standard
RAG approaches. Using GPT-4o as the underly-
ing model, ReAct achieves an average performance
score of 32.96, 12.35 points higher than the Hy-
brid baseline. This highlights the effectiveness of
combining reasoning and retrieval in an interactive,
agent-based framework. ReAct benefits from struc-
tured search tools that improve retrieval quality and
enable effective multi-step reasoning, particularly
for non-content queries that involve structured data.

All RAG systems struggle to reliably identify
unanswerable queries. Among baseline meth-
ods, GraphRAG performs best, correctly identi-
fying 63.41% of unanswerable queries, while the
hybrid method lags at 25.32%. Although ReAct
enhances reasoning over retrieved content, its effec-
tiveness in detecting unanswerable queries varies
significantly across LLMs—ranging from 63.66%
with Gemini-2.5-Flash to just 6.01% with o4-mini.
The 0-shot approach answers correctly most of the
unanswerable queries since no context has been
provided. These again highlight a potential trade-
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Models Cont. Peop. Cust. Art. Avg. Unan.

Standard RAG Techniques (GPT-4o)

0-shot 18.19 0.0 0.0 0.0 4.55 88.70
Vector 30.61 16.05 0 20.42 16.77 28.76
Hybrid 34.87 18.54 0 29.02 20.61 25.32
Raptor 31.42 12.68 0 14.98 14.77 47.82
GRAG 28.27 9.46 0 3.49 10.31 63.41
HRAG 39.35 11.38 0 18.12 17.21 52.07
PGRAG 35.78 14.59 0 18.61 17.25 45.49

Agentic RAG (ReAct)

GPT-4o 32.22 23.45 41.35 34.81 32.96 23.03
o4-mini 35.25 27.19 24.54 26.94 28.48 6.01
DSr1 32.44 18.73 6.16 18.47 18.95 34.33
lam405B 27.84 18.23 33.17 22.03 25.32 40.06
lam70B 25.44 13.71 33.10 18.70 22.74 41.06
lam4Mav 33.01 22.74 30.18 30.16 29.02 57.22
DSv3 36.17 26.62 5.87 27.42 24.02 23.18
gem2.5f 31.54 23.32 21.22 25.55 25.41 63.66

Table 2: Evaluation results of standard RAG techniques
(using GPT-4o) and the React Agentic RAG approach
using various LLMs on the HERB dataset.

off between answerable and unanswerable shown
in (Peng et al., 2024), and risk of hallucinated an-
swers when no valid evidence exists.

4.3 Long-Context Evaluation
HERB also supports a long-context evaluation
setting, in which the model is provided with
the complete set of product-specific artifacts di-
rectly—without invoking any retrieval—and must
reason purely in context. Results show a significant
improvement in this setting: for instance, Gemini-
2.5-Flash attains a score of 76.55 (Table 3) when
using long-context inputs, compared to only 32.96
under the full-corpus RAG configuration. To ex-
amine whether this gap stems from interference
caused by cross-product artifacts, we further evalu-
ate a product-only RAG variant, restricting retrieval
strictly to the same product corpus. Despite this
controlled setup, accuracy remains substantially be-
low the long-context setting, suggesting that shal-
low retrieval is one of the main performance bottle-
neck. Full experimental results and detailed com-
parisons are provided in Appendix B.1.

4.4 Oracle Evaluation
We experiment with an oracle evaluation setting in
which LLMs are provided only with the ground-
truth evidence linked to each question, effectively
removing retrieval and irrelevant context as po-
tential confounding factors. This setup isolates
the model’s reasoning ability under ideal evi-
dence conditions. Despite the controlled input,

LLMs—particularly older ones—still frequently
fail due to unanswered questions, flawed reasoning
chains, or incomplete use of the provided context,
underscoring persistent challenges in replicating
human-designed reasoning. The full experimental
setup, results, and human analyses are discussed
in §B.2.

5 Human Analysis: ReAct Trajectories

We manually analyze how the GPT-4o-based ReAct
agent uses tools across 50 questions from Table 2
results. In 21 cases, it relies only on unstructured
search. In 24 cases, it uses two tools, while 4 cases
involve three tools, and just 1 case requires four.
Table 6 shows the full breakdown by question type.

Most tool-use sequences are short and shal-
low. The agent always invokes unstructured
search—often by itself or in combination with
structured tools when employee or customer meta-
data is needed. It tends to rely on the first retrieved
result rather than performing deeper or iterative
searches. For instance, out of 10 artifact-related
questions, the agent uses only unstructured search
in 5 cases and fails to invoke structured tools like
PR or URL search, answering based on surface-
level mentions in the text. We also observe 8 cases
of unnecessary tool usage, such as resolving an
employee name that isn’t needed to answer the
question. In 4 other cases, the agent uses tools
incorrectly—for example, querying with an em-
ployee ID when the tool expects a name.

6 Conclusion

We introduce HERB, a new benchmark for evalu-
ating RAG systems in realistic enterprise settings.
Unlike previous benchmarks that focus on shal-
low reasoning over loosely connected documents,
HERB requires deep search across diverse and
naturally connected data sources such as Slack
messages, GitHub pull requests, meeting tran-
scripts and chats, and internal documents. Our
experiments show that even the most advanced
agentic RAG systems struggle on HERB, with re-
trieval emerging as the primary limitation. While
long-context language models perform better when
given all product-specific data, they still fall short
of consistently following the detailed reasoning
steps needed to answer questions accurately. These
results highlight the need for improved retrieval and
reasoning methods to support realistic and complex
enterprise RAG tasks.
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Limitations

Constructing HERB requires significant human ef-
fort—designing realistic workflows, connecting re-
lated documents, and writing good questions and
answers all require manual work. This makes it
harder to scale compared to fully synthetic bench-
marks that can be generated automatically. Also,
even though HERB is designed to reflect real en-
terprise workflows, it only covers a small part of
how organizations actually work. Therefore, RAG
or deep search systems evaluated on HERB should
not be explicitly tuned to the specific workflows or
distractor patterns used to generate the data, as that
would reduce the generalizability of results. Lastly,
HERB focuses only on software and product devel-
opment. Using it in other areas like healthcare or
finance would require input from domain experts
to create accurate and useful workflows.
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A Experiments

A.1 Baseline RAG Configurations

We use the same retrieval pool for all baselines
methods, which includes Slack messages, meet-
ing transcripts and chats, internal documents,
GitHub PR and URL metadata, and employee and
customer-related metadata. The Vector and Hybrid
baselines are implemented using LlamaIndex (Liu,
2022). The Vector baseline performs dense re-
trieval over the unified index. The Hybrid base-
line combines dense (vector) and sparse (BM25)
retrieval by retrieving the top-k results from each
and taking their union.

GRAG is implemented using the offi-
cial codebase from https://github.com/
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Models Cont. Peop. Cust. Art. Avg. Unan. Cont. Peop. Cust. Art. Avg. Unan.
Product-Specific Long Context Product-specific RAG (ReAct Agent)

gem2.5f 82.34 68.80 79.07 75.97 76.55 60.80 42.39 45.86 39.01 40.16 41.86 57.22
GPT-4o 52.58 37.15 19.11 46.53 38.84 59.94 42.71 40.49 53.41 37.04 43.41 29.33
o4-mini 68.05 46.33 56.04 60.73 57.79 32.90 42.12 42.73 28.35 35.58 37.20 6.58
DSr1 69.98 50.25 49.37 65.05 58.66 38.91 46.50 41.57 21.53 29.63 34.81 36.48
lam405B 29.96 17.80 6.08 18.97 18.20 52.79 38.11 33.95 43.45 25.55 35.27 34.76
lam70B 37.07 21.51 5.10 19.82 20.88 43.63 36.62 31.59 44.54 19.06 32.95 31.90
lam4Mav 60.91 44.54 50.70 44.87 50.26 44.64 43.35 43.64 39.28 35.04 40.33 52.65
DSv3 63.66 47.26 48.27 56.99 54.05 18.31 46.09 44.78 39.02 31.44 40.33 17.10

Table 3: Evaluation results of different LLMs in long-context setting and product-specific RAG settings. In the
long-context setting (left half), all product-specific data is concatenated and provided directly as context, without
retrieval. In the product-specific RAG setting (right half), the ReAct agent retrieves only from product-specific
documents.

microsoft/graphrag, with the drift mode
enabled. HRAG uses the official HippoRAG
implementation from https://github.com/
OSU-NLP-Group/HippoRAG. RAPTOR is im-
plemented using the standard LlamaIndex pack
available at https://github.com/run-llama/
llama_index/tree/main/llama-index-packs/
llama-index-packs-raptor. PGRAG uses the
proposition graph retriever proposed by Choubey
et al. (2024).

We set k = 20 for all methods. We use GPT-
4o for response generation and knowledge graph
construction for graph-based retrievers.

A.2 ReAcT
We use the ReAct agent implementation from Lla-
maIndex (Liu, 2022) for retrieval using both un-
structured and structured tools. For unstructured
search, we use a single hybrid retriever with top-
k = 20, applied over the union of Slack messages,
meeting transcripts, meeting chats, and internal
documents. For structured search, we define eight
tools designed to extract employee, customer, PR,
or URL-related information:

• Employee Role ↔ ID Search: Enables bi-
directional mapping between an employee role
and employee IDs. Given a role (e.g., Software
Engineer), the tool returns the IDs of all employ-
ees with that role. Conversely, it can map an
employee ID back to their role.

• Employee Name ↔ ID Search: Enables bi-
directional mapping between employee names
and their IDs. Slack messages and meeting tran-
scripts often mention employees by name, so the
agent uses this tool to resolve employee refer-
ences in unstructured text.

• Company ID ↔ Name Search: Provides map-
ping between internal company identifiers and
their full names, helping resolve customer refer-
ences in unstructured text.

• PR Link → Metadata Search: Retrieves struc-
tured metadata (e.g., title, author, reviewers, sta-
tus) given a Github pull request link.

• URL Link → Metadata Search: Returns meta
data for internal document or webpage URLs.

Unless otherwise specified, the agent performs a
single run in which it can invoke any combination
of structured and unstructured search tools to gather
relevant information and answer the query. Each
run is limited to a maximum of 20 tool calls due
to a context length limit of 131K tokens. If the
agent’s response is unsatisfactory—as determined
by an LLM-based quality check—we fall back to
using the hybrid retriever.

B Additional Experiments

B.1 Long Context Evaluation

In table 3, we evaluate various LLMs with 131K
context length for a long-context setting, where
we slightly relax the task difficulty by providing
only the relevant product-specific data as input, re-
moving information related to other products. This
reduces the input tokens to 3.33% compared to the
original HERB setting. To compare this against
retrieval-based reasoning over the same context,
we also evaluate a RAG setup in which the ReAct
agent retrieves only from the same context.

LLMs struggle with long-context reasoning
on HERB. Gemini-2.5-Flash performs the best,
achieving the highest average score of 76.55. Other
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Models Cont. Peop. Cust. Art. Avg.

GPT-4o 61.72 52.99 63.28 68.94 61.73
o4-mini 89.47 64.24 75.07 91.23 80.0
gem2.5f 88.67 71.59 86.42 96.34 85.76
DSr1 84.66 63.84 68.85 90.31 76.92
lam405B 79.95 60.55 59.74 80.03 70.07
lam70B 71.89 56.75 54.01 75.43 64.52
lam4Mav 84.35 67.02 73.07 96.55 80.25
DSv3 82.39 64.52 54.54 91.52 73.24

Table 4: Evaluation results of all LLMs when using only
the oracle evidence linked to each question (as identified
during data synthesis) as context.

recent high-performing LLMs fall significantly be-
hind, with the second-best, DeepSeek-R1, scoring
17.89 points lower on average. However, even
Gemini-2.5-Flash shows a 23.45 points perfor-
mance gap, indicating that long-context reasoning
remains a challenging problem. Older and open-
source models like the LLaMA-3.1-Instruct series
perform considerably worse in our long-context
setting.

Retrieval Limits Performance for Strong
LLMs in HERB. Recent LLMs like Gemini-2.5-
Flash (76.55 vs. 41.86) and DeepSeek-R1 (58.66
vs. 34.81) perform significantly better in the long-
context setting than in RAG, even when retrieval is
restricted to product-specific documents. This gap
highlights retrieval as a key bottleneck, limiting the
effectiveness of even reasoning-capable models. In
contrast, models with weaker reasoning, such as
LLaMA-3.1 variants, show gains in the product-
specific RAG setting—likely due to reduced input
length—but their performance drops when retrieval
spans the full dataset without product boundaries
(Table 2). These results underscore the challenge of
retrieving relevant context in HERB and the need
for retrieval systems that support deep search.

B.2 Oracle Evaluation

Table 4 shows the performance of various LLMs
in an oracle setting, where only the ground-truth
evidence linked to each question, identified during
data synthesis, is provided as context. This setup
removes the variability introduced by retrieval (as
in RAG) and unrelated or noisy context (as in long-
context settings), enabling a controlled comparison
of each model’s reasoning capabilities when given
only the exact supporting information. This re-
duces the number of input tokens to just 0.213% of
the original HERB data.

LLMs struggle to replicate human-designed

reasoning on HERB. In an oracle setting, over-
all performance improves, particularly for weaker
models such as the LLaMA-3.1 variants. However,
no model achieves perfect accuracy, even with full
access to the relevant context. This highlights a key
limitation of current LLMs: while the answers were
generated using the same evidence, they were con-
structed through human-defined reasoning steps.
In contrast, LLMs rely on their own inference pro-
cesses and parametric knowledge of enterprise pro-
cesses, which proves insufficient for consistently
arriving at the correct answers.

Human Analysis of Common Errors in Oracle
Setting: We analyze model failures under oracle
settings to better understand the error patterns of
Gemini-2.5-Flash and DeepSeek-R1. Among 815
answerable questions, Gemini scores zero on 71,
while DeepSeek-R1 does so for 108. We exam-
ine 50 such questions per model. Our LLM-based
evaluator performs consistently with human judge-
ments in identifying incorrectly answered ques-
tions. The observed errors fall broadly into three
categories.

Unanswered questions: DeepSeek-R1 fails to
answer 15 questions, either by using all output
tokens for internal reasoning without producing a
final answer or by explicitly stating that it cannot
answer based on the provided context. Gemini
exhibits similar behavior on 2 questions.

Incorrect reasoning: DeepSeek-R1 answers 24
questions with flawed reasoning, while Gemini
does so for 32 questions. These errors primarily oc-
curred in questions related to the previous release
of a product. A common mistake made by both
models is inferring that members of the current
team—who are merely discussing artifacts from
the prior release—were also contributors to that
earlier work. However, correct reasoning requires
identifying individuals who were directly involved
in creating those artifacts, such as the author of the
product requirements document or the QA special-
ist who reported bugs during that release.

Incomplete use of context DeepSeek-R1 and
Gemini fail to consider the full set of relevant ev-
idence in 11 and 16 cases, respectively, resulting
in incorrect answers. This issue frequently occurs
in analytical questions. For example, to answer
“Which customer has the most active bugs?”, a
model must gather all reported bugs from sources
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#Attempt Cont. Peop. Cust. Art. Avg. Unan.

1 32.22 23.45 41.35 34.81 32.96 23.03
5 34.05 28.26 45.33 39.32 36.74 20.60
10 34.43 28.19 45.60 40.34 37.14 20.03
20 33.21 28.83 46.41 40.71 37.29 19.17

Table 5: Performance of the ReAct agent based on GPT-
4o under different attempt budgets.

like Slack messages and meeting transcripts, re-
move those with resolution PRs, and include bugs
that were previously resolved or dismissed but later
reopened. Instead, both models focus only on re-
opened bugs and ignore unresolved ones, which
results in incorrect answers.

B.3 Ablation: Effect of Attempt Budget on
ReAct Performance

We evaluate the ReAct agent by allowing it to make
up to 1, 5, 10, or 20 reasoning attempts per ques-
tion. In each attempt, the agent completes a full
reasoning trajectory, and an LLM-based judge de-
termines whether it has produced a valid answer. If
the agent answers a question at any point, we stop
further attempts. If it fails to provide an answer
within the allowed limit, we fall back to the hybrid
retriever. As shown in Table 5, increasing the max-
imum number of attempts consistently improves
performance across all query types, with the most
substantial gains in People, Customer and Artifact
search tasks. The average performance score rises
from 32.96 with a single attempt to 37.29 with 20
attempts, while the percentage of unanswered ques-
tions drops from 23.03% to 19.17%. These results
demonstrate a trade-off: more attempts enhance
accuracy but also increase the risk of hallucinated
answers.

C Dataset

C.1 Example Data Schema Objects in HERB
Figure 3 shows an example team with roles such as
engineers and product managers. Figure 4 shows
sample product metadata used during data genera-
tion; however, this metadata is not typically avail-
able in real enterprise environments and should
not be used to evaluate system performance. Simi-
larly, Figure 5 illustrates an example customer pro-
file, including associated products. Since product-
customer links are rarely stated explicitly in real
enterprise data, this information is also excluded
from performance evaluation. Figure 6, Figure 7,
and Figure 8 illustrate Slack messages, meeting

transcripts, and chats. Figure 9, Figure 10, and
Figure 11 show examples of documents, GitHub
PRs, and URL metadata.

C.2 Distractors for Enterprise Noise
Modeling

To increase the complexity of the HERB data
synthesis pipeline and better mimic real-world
enterprise noise, we introduce several distrac-
tors—elements that complicate the reasoning pro-
cess without contributing to the correct answer.

• Temporal Overlap: Teams simultaneously dis-
cuss related topics (e.g., competitor product anal-
ysis) while producing planning documents, re-
quiring models to topically disentangle mixed
discussions.

• Product Name Change: A product may be re-
named during the planning or development stage.
After the change, all future documents and mes-
sages use the new name, so models must link
both names to the same product.

• Multiple Planning Teams: More than one team
initiates product planning, but only one contin-
ues to development and support stages. Queries
may involve distinguishing which team authored
artifacts that persist through all stages.

• Cross-Product References in Development:
Teams discuss similar features from competitors
or open-source libraries and share corresponding
GitHub PRs during development-stage meetings
and Slack threads.

• Cross-Product References in Support: Teams
bring up bugs found in other projects—like com-
petitor software or open-source tools—that are
similar to their own issues in stage three work-
flows.

• Public External Links: Teams often share pub-
lic content—such as blogs, demo videos, or news
articles—which may seem topically related but
are not about the current product.

• Legacy Feedback Mentions: Some planning
discussions mention customer or QA feedback
from previous product versions, which were cre-
ated by different teams, making it harder to track
who was involved.
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Trajectory Cont. Peop. Cust. Art.

unstructured_search 15 1 – 5
unstructured_search + employee_name_to_ID + employee_ID_to_name∗ – 1 – –
unstructured_search + customer_name_to_ID – – 2 –
unstructured_search + employee_ID_to_name∗ – 5 – –
unstructured_search + pr_search – 1 – 4
unstructured_search + pr_search + employee_ID_to_name∗ – 1 – –
unstructured_search + unstructured_search 1 1 – 1
employee_role_to_ID + unstructured_search – 2 – –
unstructured_search + customer_name_to_ID + unstructured_search 1 – – –
unstructured_search + customer_ID_to_name – – 6 –
unstructured_search + employee_ID_to_role – 1 – –
unstructured_search + unstructured_search + employee_ID_to_name∗ – 1 – –
unstructured_search + employee_role_to_ID + unstructured_search + unstructured_search – 1 – –

Table 6: Count of ReAct trajectories by question type. Each row represents a distinct trajectory executed by the
ReAct agent, and the columns indicate the number of questions of each type that followed the corresponding
trajectory. “–” indicates no questions of that type were associated with the trajectory. Bolded tool names within
trajectories denote that the tool was invoked with incorrect parameters. Italicized∗ tool names indicate that the tool
was called unnecessarily, i.e., its output was not required for answering the question.

• Competitor Planning Documents: Teams
sometimes review or comment on planning doc-
uments for other (competitor) products, adding
cross-product entanglement into planning-stage
reasoning.
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Stage ID Description

1 1 The Marketing Research Analyst, Product Manager, and Architect each draft their respective documents.
All documents undergo review and revision through Slack discussions. Teams also discuss strengths and
weaknesses of competitor products during this phase.

1 2 The same documents are created in a two-stage review process: initial feedback via Slack and final
feedback through meetings. Teams also review competitor documents during this process.

1 3 The new team reviews key documents from the previous release and discusses customer feedback and QA
issues. Based on this, they update the same set of documents for the next release.

2 1 The workflow begins with a team meeting to discuss new features for the upcoming release. In regular
follow-up meetings, the team assigns implementation tasks to engineers and tracks progress. Engineers
create pull requests (PRs), which are reviewed and either approved or rejected and reassigned through
Slack discussions or meetings. Throughout the process, the team also shares and discusses PRs for similar
features in open-source libraries to inform their development.

2 2 As a continuation of the first workflow, some approved or merged PRs are later reverted due to changes in
product direction, security concerns, or other factors.

2 3 As a continuation of the first workflow, some approved PRs are put on hold due to changes in product
direction, security concerns, or other factors, and are merged later once the issues are resolved. In some
cases, previously merged PRs are also reverted for similar reasons.

3 1 The team resolves customer-reported bugs, which come from multiple customers and may have similar
impact. Bugs are discussed and assigned to engineers through Slack. Engineers then fix the issues and
submit pull requests (PRs) for review. Throughout the process, the team also discusses similar bugs and
fixes in open-source projects to inform their approach.

3 2 As a continuation of the first workflow, engineers investigate assigned customer-reported bugs. In some
cases, they determine that the reported behavior is expected and not a real issue. For valid bugs, they
implement fixes and submit pull requests (PRs) for review.

3 3 As a continuation of the second workflow, some dismissed or resolved bugs are re-reported by customers.
The team revisits these cases, re-evaluates the original assessments or fixes, and makes updates if needed.
Engineers submit revised pull requests (PRs) where necessary to address the recurring issues.

Table 7: Overview of nine enterprise workflows, three per stage, used for synthesizing HERB dataset.
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Query Type Query Templates

Content

What are the unique features of {product}’s competitor products?
What are the weaknesses of {product}’s competitor products?
What are the changes suggested by {employee role} to improve the {document name} for {product}?
What issues were reported by customers for the previous release of {product}?
What issues were reported during QA testing for the previous release of {product}?
What strengths were highlighted by customers for the previous release of {product}?
Find features for {product} that were discussed but not implemented?
What new features about {feature topic} are added to the {product}?
What features could not be added to {product} due to {issue type}?
What features were temporarily delayed due to {issue type} but eventually added to {product}?
Find bugs reported by {customer company name} in {product} that did not require any fixes?
Find all unresolved issues reported by {customer company name} in the {product}?

People

Find employee IDs of team members who provided insights on the strengths and weaknesses of {product}’s
competitor products.
Find employee IDs of team members who shared demos of {product}’s competitor products.
Find employee IDs of the authors and key reviewers of the {document name} for the {product} product.
Find employee IDs of {employee role}s who worked on the previous release of {product}.
Find employee IDs of team members who shared demos of the previous version of {product}.
Find employee IDs of QA specialists who worked on the previous release of {product}.
Find employee IDs of team members who were responsible for features in {product} that were discussed but not
implemented.
Find the employee ID of engineer with the highest number of approved feature development PRs in product[’name’].
Find the employee ID of engineer with the highest number of unapproved feature development PRs in prod-
uct[’name’].
Find employee IDs of engineers who resolved the issues with {issue area and impact} in {product}.
Find the employee ID of engineer who resolved the maximum number of customer bugs in {product}.
Find the employee ID of engineer who is assigned to the highest number of unresolved bugs in {product}.
Find the employee ID of engineer who authored maximum number of PRs in product name for bug fixes that are
now reopened by customers.
Find the employee ID of engineer who dismissed maximum bugs in {product} that are now reopened by customers.

Artifact

Find demo URLs shared by team members for {product}’s competitor products.
Find demo URLs shared by team members for the previous version of {product}.
Find links to PRs for implementing {feature topic} in {product} that were reverted due to {issue type}.
Find links to the approved PRs for implementing {feature topic} in {product} that need to be closed.
Find links to the PRs for implementing {feature topic} in {product} that need to be merged.
Find links to PRs for {feature topic} in {product} that were not approved.
Find link to the approved PRs for implementing {feature topic} in {product}.
Find PR links submitted by {employee ID} to resolve bugs reported by {customer company name} for {product}.

Customer

Find names of companies which reported issues with the previous release of {product}.
Find names of companies which highlighted strengths of the previous release of {product}.
Find names of companies which reported the issues with {issue area and impact} in {product}.
Find the name of company which has the maximum number of resolved bugs in {product}.
Find the name of company which reported the maximum number of issues that didn’t need fixes in {product}.
Find the name of company which has the maximum number of reopened bugs in {product}.
Find the name of company which has the maximum number of active bugs in {product}.

Table 8: All 41 manually constructed query templates categorized into four enterprise search intents: content-based
(12), people-search (14), artifact-search (8), and customer-search (7).
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{
"employee_id": "eid_9b023657",
"name": "Hannah Taylor",
"role": "VP of Engineering",
"location": "San Francisco",
"engineering_leads": [

{
"employee_id": "eid_e96d2f38",
"name": "David Williams",
"role": "Engineering Lead",
"location": "Remote",
"engineers": [

{
"employee_id": "eid_234b3360",
"name": "Ian Davis",
"role": "Software Engineer",
"location": "Remote",
"org": "slack"

},..
],
"qa_specialists": [

{
"employee_id": "eid_df392037",
"name": "George Taylor",
"role": "QA Specialist",
"location": "Remote",
"org": "slack"

},..
],,
"org": "slack"

}..
],
"product_managers": [

{
"employee_id": "eid_03a183c9",
"name": "Fiona Brown",
"role": "Product Manager",
"location": "Seattle",
"org": "slack"

},..
],
"tech_architects": [

{
"employee_id": "eid_816aea15",
"name": "Alice Taylor",
"role": "Technical Architect",
"location": "San Francisco",
"org": "slack"

}
],
"ux_researchers": [

{
"employee_id": "eid_839bc5eb",
"name": "Julia Jones",
"role": "UX Researcher",
"location": "Seattle",
"org": "slack"

}
],
"marketing_research_analysts": [

{
"employee_id": "eid_bb22e59b",
"name": "Alice Martinez",
"role": "Marketing Research Analyst",
"location": "Remote",
"org": "slack"

}
],
"chief_product_officers": [

{
"employee_id": "eid_ce2f3276",
"name": "Bob Williams",
"role": "Chief Product Officer",
"location": "New York",
"org": "slack"

}
],
"marketing_managers": [

{
"employee_id": "eid_f1c8f4a5",
"name": "Charlie Martinez",
"role": "Marketing Manager",
"location": "Berlin",
"org": "slack"

}
],
"org": "slack"

}

Figure 3: An example Team.

{
"name": "MonitorForce",
"product": "MuleSoft AI Monitoring",
"alias": "torAIX",
"description": "AI-driven monitoring tool that provides real-time
insights and proactive alerts on API performance and health.",
"distractor": "MuleSoftAIMonitoring",
"old_name": "torProX",
"competitor": {

"name": "New Relic AI Monitoring",
"description": "monitors distributed systems and APIs in real time,
delivering alerts on performance issues."

}
}

Figure 4: An example product-related metadata.

{
"name": "Frank Lewis",
"role": "Product Manager",
"company": "BlueWave",
"products": [

"SupportForce",
"VizForce",
"WorkflowForce",
"SentimentForce",
"ForecastForce",
"ContentForce"

],
"id": "CUST-0001"

}

Figure 5: An example customer profile.

{
"Channel": {
"name": "planning-SecurityForce-PM",
"channelID": "ch-ix-pm-16b727"
},
"Message": {

"User": {
"userId": "eid_c8ebc4b0",
"timestamp": "2026-04-28T10:21:00",
"text": "Hi team, I've shared the <https://sf-internal.slack.com/
archives/docs/rityaix_product_vision_document|Product Vision Doc
ument> for rityAIX. Let's discuss any feedback or suggestions you
might have to refine it further. Looking forward to your thoughts",
"utterranceID": "20260427-0-a635b"

},
"Reactions": []

},
"ThreadReplies": []

}

Figure 6: An example slack message.

{
"name": "product_dev_WorkFlowGenie_5",
"text": "Attendees\nGeorge Garcia, David Garcia, Ian Davis, David Brown,

Julia Smith, Alice Taylor, Julia Brown, Charlie Davis,
Charlie Martinez, Fiona Martinez, Bob Miller, Julia Garcia,
Alice Taylor, Fiona Martinez, Bob Garcia, Charlie Smith,
Alice Johnson\n
Transcript\n
George Garcia: Alright team, let's kick off this sprint review.
First, let's go over the completed PRs. Julia, can you...
...
George Garcia: Alright then, let's get to work. Thanks",

"timestamp": "2026-04-29T06:27:00",
"participants": [

"eid_95f6d01c", "eid_f4f58faa", "eid_71c0d545", "eid_1f678d18",
"eid_827a0ea9", "eid_2543da6a", "eid_c92d3e03", "eid_4812cbd8",
"eid_55f29a0d", "eid_1e8695b6", "eid_d96bfd9b", "eid_136119e9",
"eid_18571957", "eid_e214d622", "eid_e3c15ff5", "eid_515ae627",
"eid_686130c8"

]
}

Figure 7: An example meeting transcript.

{
"text": "2026-02-11T01:00:00\nHannah Taylor: https://sf-internal.
slack.com/archives/docs/final_ectaix_product_vision_document",
"id": "ectAIX_planning_2_chat"

}

Figure 8: An example meeting chat.
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{
"name": "new_shaix_system_design_document",
"link": "https://sf-internal.slack.com/archives/docs/new_shaix_s

ystem_design_document",
"text": "Introduction: Salesforce AI Search is an advanced enterprise

search solution designed to optimize data retrieval within the
Salesforce ecosystem. By leveraging machine learning.....",

"timestamp": "2026-10-06T08:04:00",
"author": "eid_d0b6cb92",
"title": "System Design Document"

}

Figure 9: An example document.

{
"id": "github_com_LibreOffice_core_pull_1576",
"title": "Data Corruption in Calc Reports",
"summary": "Generated spreadsheets sometimes contain corrupted

summary data, misleading users about financial
calculations.",

"link": "https://github.com/LibreOffice/core/pull/1576",
"mergeable": true,
"merged": true,
"number": "1576",
"state": "closed",
"user": {
"login": "EMP_361702750"

},
"created_at": "2025-03-12T00:00:00",
"reviews": [
{

"state": "APPROVED",
"user": {
"login": "EMP_310841237"

},
"comment": "LGTM",
"submitted_at": "2025-03-13T01:46:00"

}
]

}

Figure 10: An example GitHub PR metadata.

{
"id": "hbr_org_2023_02_the-ethical-implications-of-ai-in-sales",
"link": "https://hbr.org/2023/02/the-ethical-implications-of-ai

-in-sales",
"description": "A Harvard Business Review article discussing the

ethical implications of AI in sales and coaching."
}

Figure 11: An example meeting URL metadata.
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